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Quantum spin liquids are highly entangled ground states of quantum systems with an emergent
gauge structure, fractionalized spinon excitations, and other unusual properties. While these features
clearly distinguish quantum spin liquids from conventional, mean-field-like states at zero temperature
(T ), their status at T > 0 is less clear. Strictly speaking, it is known that most quantum spin liquids
lose their identity at non-zero temperature, being then adiabatically transformable into a trivial
paramagnet. This is the case for the U(1) quantum spin liquid states recently proposed to occur
in the quantum spin ice pyrochlores. Here we propose, however, that in practical terms, the latter
quantum spin liquids can be regarded as phases distinct from the high temperature paramagnet.
Through a combination of gauge mean field theory calculations and physical reasoning, we argue
that these systems sustain both quantum spin liquid and thermal spin liquid phases, dominated
by quantum fluctuations and entropy, respectively. These phases are separated by a first order
“thermal confinement” transition such that, for temperatures below the transition, spinons and
emergent photons are coherently propagating excitations, and above it the dynamics is classical.
Even for parameters for which the ground state is magnetically ordered and not a quantum spin
liquid, this strong first order transition occurs, pre-empting conventional Landau-type criticality.
We argue that this picture explains the anomalously low temperature phase transition observed in
the quantum spin ice material Yb2Ti2O7.

PACS numbers:

I. INTRODUCTION

Since the discovery of the quantum Hall effect, it has
been recognized that phases of matter at zero tempera-
ture can be distinguished by means other than symmetry,
e.g. in that case by a quantized Hall conductance, related
to a topological invariant.1 In recent years, the quantum
Hall state has been placed into a much broader class of
phases with topological order of various types, or more
generally quantum order or long range entanglement.2

Theoretically, many such states may be realized as Quan-
tum Spin Liquids (QSLs): ground states of frustrated
quantum magnets with long range entanglement (and
usually, though not necessarily, the absence of symme-
try breaking).3 The key feature of such QSL states is
that they support non-trivial excitations which cannot
be created individually by any local operator, and with
mutual statistics (and often quantum numbers) differ-
ent from that of the bare electron and composites made
from it. In some cases, a quantitative measure of the long
range nature of the entanglement can be devised through
a study of the entanglement entropy, a non-local quan-
tity defined in terms of the ground state.4,5 The entangle-
ment entropy is very difficult to measure experimentally,
however. A number of other approximate approaches
have emerged to characterize and describe quantum spin
liquid phases in theoretical studies of model Hamilto-
nians. A particularly useful method is the mean field
approximation to lattice gauge theories, where local or-
der parameters can be defined and meaningfully describe
confinement and deconfinement properties.6 Indeed, all
modern slave-particle mean field theories2 are actually of

this type.

While zero temperature (T ) phases can be character-
ized and distinguished by entanglement properties and by
their excitations, these criteria fail at nonzero tempera-
ture, the former for obvious reasons. The excitation crite-
rion is also invalid at T > 0, where the description of the
system involves the thermal superposition of all eigen-
states of the Hamiltonian. In the thermodynamic limit,
even if the density of elementary excitations (provided
they can even be defined) is small and finite, their number
is infinite, and the description of an “excitation above the
thermal ground state” makes little sense. For a system
with a QSL ground state, which lacks a symmetry-based
characterization, one is tempted to conclude that at any
non-zero temperature, there is no qualitative distinction
of the physics from that of a trivial paramagnet, and con-
sequently no phase transition on heating from absolute
zero to high temperature.

The true answer is more complex. Some understand-
ing may be gleaned from work on lattice gauge theory,
a natural framework for QSL states. It is known that,
in some but not all cases, the low and high temperature
phases can be qualitatively distinguished, so that a phase
transition at non-zero T is inevitable. For example it is
known that the Coulomb U(1) spin liquid in three spatial
dimensions and the Z2 spin liquid in two spatial dimen-
sions need not go through a transition as the temperature
is increased, while the Z2 phase in three spatial dimen-
sions at infinitesimal temperature is not qualitatively the
same as the paramagnetic phase.7 This difference can be
understood from a picture of the topological defects of
the QSL states, whose proliferation coincides with and is
necessary for the complete destruction of the spin liquid
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state. In the 2d Z2 and 3d U(1) QSLs, the topological
defects are point-like objects, Z2 vortices or “visons” in
the former case and magnetic/electric monopoles in the
latter case. The pointlike defects are always created with
non-zero density at T > 0, making these states smoothly
connected to a paramagnet. By contrast, in the 3d Z2

QSL, the defects are Z2 vortex lines. Therefore, only
when infinitely long loops proliferate will the QSL state
be destroyed. And, because such loops have infinite total
energy (non-zero energy per unit length), they can only
burgeon and eventually destroy the QSL state above a
nonzero critical temperature.

The above considerations give only some indication of
the presence or absence of a phase transition but do not
prejudge of the existence of conventional first order tran-
sitions in cases where one is not required. This is a non-
universal question, a type often frowned upon by theo-
rists. However, this non-universality has the virtue that
the answer may shed light on the microscopic physics of
the system. In this paper, we address it in the specific
case of the general model for nearest-neighbor quantum
pyrochlore antiferromagnets studied in Refs.8,9. This
model contains a U(1) QSL phase at zero temperature,
and can be considered a concrete model for “quantum
spin ice”. The model and the question of a thermally
driven phase transition is particularly relevant to the
case of Yb2Ti2O7, which appears in some experiments
to exhibit a QSL ground state and also clearly shows a
sharp phase transition in the best quality samples.10–16

While on the general grounds mentioned above there is
no requirement for a T > 0 phase transition, and indeed
there is none in the simple U(1) lattice gauge theories,17

we argue that the quantum spin ice model model does
indeed exhibit a first order phase transition. The differ-
ence is that quantum spin ice is described by a U(1) gauge
theory strongly coupled to “spinons”, i.e. fractional spin
excitations which appear in the theory as matter fields
carrying the U(1) gauge charge (see Section III B). Thus
in quantum spin ice the matter matters.

The first order transition from the QSL to the high
temperature phase occurs without any change of sym-
metry, and is thus an analog of the liquid-gas transition.
Pushing this analogy, we argue that the transition may
be regarded as a catastrophic collapse of the QSL state
occuring at T < Tc, which is supported by quantum co-
herence, to a thermal spin liquid state for T > Tc, sup-
ported instead by a large residual entropy. In fact, the
tendency of the thermal spin liquid to supplant the quan-
tum coherent phases is so strong that the collapse tran-
sition persists even in regions where the ground state is
not a QSL, but an ordered ferromagnet or antiferromag-
net (which appear as Higgs phases in the theory). We
will return to the implications of this finding for the pu-
tative Higgs transition observed in Yb2Ti2O7 at the end
of this paper.

Our results are summarized by the three-dimensional
phase diagram shown in Fig. 1 and in the Supplemental
Movie available online.18 It includes two exotic phases,

namely a U(1) Coulomb quantum spin liquid (QSL) and
a U(1) “Coulombic ferromagnet” (CFM), whose prop-
erties are now well known at zero temperature.8,19 Our
calculations extend the zero temperature diagram in the
J±/Jzz−Jz±/Jzz plane to include the temperature axis,
T/Jzz, and, as advertised above, this diagram contains a
large-entropy thermal spin liquid phase (TSL), in addi-
tion to the zero-temperature-like phases. The boundaries
in Fig. 118 are calculated using the extension of gauge
Mean Field Theory (gMFT), described below. While
one may be concerned about possible artifacts due to
this approximation, we provide physical arguments that
the phase boundaries we obtain are qualitatively correct.
Notably, the transition to the TSL is first order and oc-
curs at a temperature strikingly lower than the natural
energy scales (such as the exchange couplings themselves
and the Curie-Weiss temperature). Indeed, in the per-
turbative regime with J± � Jzz and Jz± = 0 studied
by Hermele et al.,20 analytic arguments imply it occurs
at kBTc ∼ J3

±/J
2
zz � Jzz. The gMFT approximation

described here actually overestimates Tc in this limit,
giving kBT

gMFT
c ∼ J2

±/Jzz, but does qualitatively cap-
ture its smallness relative to natural energy scales. The
phases which appear, their formal characteristics, and
their physical properties, are summarized in Table I in
the Discussion section below.

FIG. 1: (Color online) Finite temperature gauge mean field
phase diagram obtained for J±± = 0 and Jzz > 0. “QSL”,
“CFM”, “FM”, “AFM” and “TSL” denote the U(1) Quantum
Spin Liquid, Coulomb Ferromagnet, standard ferromagnet,
standard antiferromagnet, and Thermal Spin Liquid, respec-
tively. The lines represent fixed-J±/Jzz cuts and are high-
lighted here to serve as guides to the eye. Details of how this
figure was obtained are given in Appendix F. An animated
version of this figure is available online.18

We proceed as follows. We first set up T > 0 gMFT,
mostly extending the analysis introduced in Ref. 8, and
present our results after describing the methods used
to obtain the three-dimensional phase diagram of Fig-
ure 1.18 Finally, we discuss our results in the context
of the QSL candidate Yb2Ti2O7, whose Hamiltonian is
known quantitatively.
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FIG. 2: (Color online) Cuts through the three-dimensional finite-temperature gauge mean field phase diagram obtained for
J±± = 0 and Jzz > 0. “QSL”, “CFM”, “FM”, “AFM” and “TSL” denote the U(1) Quantum Spin Liquid, Coulomb Ferro-
magnet, standard ferromagnet, standard antiferromagnet, and Thermal Spin Liquid, respectively. Subfigure (a) (resp. (b), (c))
shows cuts for fixed values of T/Jzz (resp. Jz±/Jzz, J±/Jzz). Details of how this figure was obtained are given in Appendix F.

II. GAUGE THEORY

A. Formulation

In this section, we recapitulate the spin Hamiltonian
and its exact slave particle reformulation introduced in
Ref. 8. The Hamiltonian of the system is

H =
∑
〈ij〉

[
JzzS

z
i S
z
j − J±(S+

i S
−
j + S−i S

+
j )

+ J±±
[
γijS

+
i S

+
j + γ∗ijS

−
i S
−
j

]
+ Jz±

[
Szi (ζijS

+
j + ζ∗ijS

−
j ) + i↔ j

] ]
, (1)

where the sans serif characters Sµi denote components of
the spins in the local pyrochlore bases, where γ is a 4× 4
matrix with only nonzero off-diagonal entries, which are
complex unimodular numbers, and ζij = −γ∗ij8,9 whose
explicit expression as well as those of the local bases used
in Eq. (1) are given in Appendix A. Details of the gMFT
formalism were given in Ref. 8 and we give here only the
main definitions and results. The gauge “charge” on each
diamond site is

Qr = ηr
∑
µ

Szr,r+ηreµ , (2)

where ηr = 1 (resp. −1) for a I (resp. II) diamond
sublattice site, and the eµ are the four nearest-neighbors
of an ηr (I) diamond sublattice site. The Hilbert space
is enlarged, and the spins are rewritten

S+
r,r+eµ = Φ†r s

+
r,r+eµΦr+eµ , Szr,r+eµ = szr,r+eµ , (3)

which will allow implementation of mean field the-
ory, while preserving the possibility of describing exotic
phases. Here Φr = e−iϕr is a bosonic spinon field, with
[ϕr, Qr] = i. For J±± = 0, within this exact reformu-
lation, the Hamiltonian becomes a nearest- and next-
nearest-neighbor hopping Hamiltonian for the spinons,
in a background of fluctuating gauge fields (see Eq. (4)
of Ref. 8). This Hamiltonian is invariant under the U(1)
gauge transformation{

Φr → Φr e
−iχr

s±rr′ → s±rr′e
±i(χr′−χr)

, (4)

for any arbitrary real function r 7→ χr.

B. Gauge mean field theory at T > 0

Ref. 8 introduced a “gauge mean field theory” (gMFT)
at T = 0 to decouple the matter fields from the gauge
fields. Here we extend this analysis to T > 0. Following
Ref. 8 we now make the Ansatz

〈szµ〉 = s sin θ εµ, 〈s−µ 〉 = s cos θ, (5)

where the expectation value of an operator U is 〈U〉 =
1
ZTr

[
U e−βH

]
, with β = 1/(kBT ) the inverse tempera-

ture for Boltzmann’s constant kB and Z = Tre−βH the
partition function, µ = 0, .., 3 and ε = (1, 1,−1,−1).
This Ansatz assumes translational invariance (as seen
in experiment on Yb2Ti2O7 for example), and is com-
patible with FM polarization along the (global) x axis
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(〈s+µ 〉 = 〈s−µ 〉). 0 ≤ s = |〈~s〉| ≤ 1/2 represents the mag-
nitude of the expectation value of the spin, which we
know in two limits, s(T = 0) = 1/2 (as in Ref. 8) and
s(T = +∞) = 0. The variation of the magnitude s (and
in particular the possibility for it to be zero) is the key
new ingredient for T > 0.

To avoid spurious solutions, here we do not solve the
consistency equations but rather calculate and minimize
the variational free energy21

Fv = F0 + 〈H −H0〉0, (6)

where now F0 is defined to be Z0 = e−βF0 , where

Z0 = Tr e−βH0 is the partition function of a fiducial sys-
tem with Hamiltonian H0 (we know that the extrema
of the variational free energy should be the solutions of
the mean field consistency equations).37 The expectation
value of an operator U with respect to the trial Hamilto-
nian H0 is defined to be as usual 〈U〉0 = 1

Z0
Tr
[
U e−βH0

]
.

As trial Hamiltonian, we choose a decoupled one made
of a sum of a free spin Hamiltonian and that of a sim-
ple nearest-neighbor and next-nearest-neighbor hopping
Hamiltonian on the diamond lattice, i.e. H0 = H0

Φ +H0
s

with

H0
Φ =

∑
r∈I,II

J

2
Q2

r −

∑
r∈I

∑
µ,ν 6=µ

t′µν Φ†r+eµΦr+eν +
∑
r∈II

∑
µ,ν 6=µ

t′µν
∗

Φ†r−eµΦr−eν

 (7)

−

{∑
r∈I

∑
µ

(
tµ Φ†r Φr+eµ + h.c.

)
+
∑
r∈II

∑
µ

(
tµ Φ†r−eµΦr + h.c.

)}
,

and

H0
s = −

∑
r∈I

∑
µ

~hµ(r) ·~sr,r+eµ , (8)

where J , t′µν , tµ, ~hµ are real variational parameters,
which we constrain below.

We need to determine the free energy F0 = − 1
β lnZ0.

The free spin part F 0
s is trivial, and F 0

Φ is obtained as
described in Ref. 8 and Appendix B (see in particular
Eqs. (B1) and (B5)). Now, trying

J = Jzz,

t′µν = t′ = J±s
2 cos2 θ,

tµ = εµt = εµJz±s
2 sin 2θ,

(9)

in our variational wavefunction, we get

Fv/Nu.c. = (10)

2
{

2T
[(

1
2 + s

)
ln
(

1
2 + s

)
+
(

1
2 − s

)
ln
(

1
2 − s

)]
− λ
}

+
1

Nu.c.

∑
k

∑
i=±1

{
ωik − 2T ln

1

1− e−βωik

}
,

where ω±k =
√

2Jzz

√
λ− L̃k ± |M̃k|, L̃k =

J1

2

∑
µ,ν 6=µ cos (k · (eµ − eν)), M̃k = J2

∑
µ εµe

ik·eµ with

J1 = 2J±s
2 cos2 θ, J2 = 2Jz±s

2 sin 2θ, ε = (1, 1,−1,−1).
We will also be using Lk = 1

2

∑
µ,ν 6=µ cos (k · (eµ − eν)),

Mk =
∑
µ εµe

ik·eµ . Like in Ref. 8, λ is a Lagrange mul-
tiplier present to enforce the constraint on the spinons

(rotor operators) Φ†rΦr = 1, in the form 〈Φ†rΦr〉 = 1, i.e.

1 = I3 =
1

2Nu.c.

√
Jzz
2

∑
k

 F+
k√

λ− `+k
+

F−k√
λ− `−k

 ,
(11)

where

F±k = coth

[
β

√
Jzz
2

√
λ− `±k

]
, `±k = L̃k ∓ |M̃k|.

(12)

In the condensed phases, we find λ = λmin + δ̂ T
Nu.c.

,

where λmin = maxk `
−
k and δ̂ = O(1), with δ̂ positive and

independent of T (the difference in the exponent com-
pared with the zero temperature case explored in Ref. 8
is addressed in Appendix C).

Taking the T → 0 limit of Fv and comparing with the
ground state energy found at zero temperature is rather
subtle, and carefully described in Appendix D. We find
limT→0 Fv = −2λ(T = 0) +

∑
i=±1 ω

i(T = 0), where
λ(T = 0) is determined by the I3 = 1 equation at zero
temperature (i.e. I3(T = 0) = 1); this is a variational
form of the zero-temperature ground state energy (see
Appendix D).

III. RESULTS

A. Phase diagram

We find the phase diagram presented in Figure 1 and
in the Supplemental Movie.18 It contains the “continu-
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ation” of the four phases present at zero temperature:
the conventional ferromagnet and antiferromagnet, the
deconfined U(1) quantum spin liquid and Coulomb fer-
romagnet (CFM). This diagram is also enriched by the
additional thermal spin liquid (TSL) phase mentioned in
the introduction, which exists at temperatures Tc ≤ T �
Jzz.

Within gMFT, we find that the transition to the TSL
is first order and, at small J±/Jzz and Jz±/Jzz, occurs
when kBTc ∼ J2

i /Jzz. More precisely:

kBTc =
3 cos4 θ

16 ln 2

J2
±

Jzz
+

sin2 2θ

4 ln 2

J2
z±
Jzz

, (13)

where θ needs to have been well chosen to minimize the
T = 0 energy (see Appendix E). Using the perturbative
limit of the theory9, the transition temperature would
be expected to scale as kBT

pert
c ∼ J3

±/J
2
zz. This means

that mean field theory overestimates the magnitude of
transition temperature.

The zero-temperature properties of the U(1) spin liq-
uid and CFM were described at length in Refs. 8,9,19,20,
22,23. The elementary excitations in these phases are de-
confined fractional particles – the spinons and monopoles
– as well as a gapless photon, which arises thanks to fluc-
tuations of the “electric field” (E = sz) and “vector po-
tential” (e±iA = s±).38 Hallmarks of those excitations
can in principle be seen in inelastic neutron scattering.8

The former two appear as a diffuse signal, and the pho-
ton as a sharp, linearly dispersing mode whose amplitude
vanishes on approaching k = 0.8,23 Within the gMFT ap-
proach, despite the fluctuations of the gauge and “elec-
tric” fields, these phases are nevertheless described by
a nonzero 〈s−〉, thanks to 〈Φ〉 = 0.39 In the mean field
sense these phases “survive” at low but non-zero tem-
perature, i.e. we retain 〈Φ〉 = 0 and 〈s−〉 6= 0, with
the latter expectation value reduced in magnitude by
thermal fluctuations (in fact the reduction is very small
for all temperatures below Tc). This is consistent with
the notion that the topologically non-trivial spinon and
monopole excitations – those generating long-range elec-
tric and/or magnetic fields – are dilute at low tempera-
ture, due to their non-zero energy cost (gap). A “black
body” spectrum of thermally excited artificial photons
will also be produced by thermal fluctuations, but as the
photons are themselves weakly interacting (they inter-
act only via anharmonic terms whose effects are small at
low energy), the thermally excited photons do not induce
significant scattering. Physically, the neutron structure
factor should also remain qualitatively similar to its form
at zero temperature, modified mainly by small thermal
rounding. We remark that, in contrast to classical spin
ice, the equal time T = 0 structure factor in these quan-
tum phases does not show pinch points.23

Let us turn to the TSL phase. Here the gMFT solution
is qualitatively changed, and with 〈s−〉 = 0 and likewise

〈~hµ〉 = 0. The former implies that, at the mean field
level, the spinons cannot hop (recall that at least one
factor of 〈s±〉 enters every spinon hopping amplitude),

and the latter implies that the “spins”~s are freely fluctu-
ating thermally. Consequently we can view the TSL state
as one in which spinons are non-propagating, and where
there is a large true entropy. Physically, this is the best
the mean field theory can do to emulate the situation in
classical spin ice, in which the spins are completely free
apart from the two-in/two-out constraint. In the part
of the TSL phase with kBT � Jzz, we therefore expect
classical spin liquid behavior, qualitatively the same is
in classical spin ice. In particular, this signifies the ap-
pearance of pinch points in the static (equal time) struc-
ture factor. However, the spin ice constraint is relaxed
slowly as the temperature is raised from well below Jzz
to well above it, and hence the TSL state is adiabatically
connected to the high-temperature paramagnetic phase,
which is described by the same order parameter values
within gMFT. If Tc becomes sufficiently large, i.e. com-
parable to Jzz, as it will deep in the FM or AFM regimes,
then the paramagnetic state becomes trivial, and features
like pinch points need not arise.

B. Validity of the gMFT treatment

Within the gMFT solution, the TSL appears via a
strong first order transition from the exotic states at
lower temperature. One may be suspicious of this conclu-
sion, since a mean field treatment of related lattice gauge
theories sometimes gives spurious first order transitions.
For example, numerical studies of the simplest pure com-
pact U(1) gauge theory without matter fields show that
it undergoes a smooth evolution from T = 0+ to high
temperature, without any phase transition.17 Neverthe-
less, a mean field treatment predicts a first order tran-
sition in that case as well.24 It is therefore natural to
ask: What is wrong with the mean field treatment in
this case? Does the same problem affect our calculations
for the pyrochlore problem?

In the pure compact U(1) gauge theory, the Hilbert
space consists of the space of electric field configurations
on the lattice which strictly satisfy the charge neutrality
constraint divE = 0 on all sites. The Hamiltonian in this
case has the usual form,

HU(1) = U
∑
〈ij〉

E2
ij

2
−K

∑
p

cos(∇×A)p, (14)

where the second sum is over spatial plaquettes p, and
gives an explicit microscopic stiffness K penalizing con-
figurations with non-zero magnetic flux Bp = (∇× A)p.
As usual, Aij and Eij are canonically conjugate variables.
The mean field treatment consists of decoupling this stiff-
ness term by defining a self-consistent value of the bond
“order parameter” 〈eiAij 〉, calculated using a Hamilto-
nian for decoupled bonds. At the mean field level, there
are two phases: one where this expectation value 〈eiAij 〉
is non-zero, defining a putative “Coulomb phase”, and
another where the expectation value vanishes, signaling
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a “confined” phase. This transition occurs abruptly, i.e.
is first order, because the mean field treatment essentially
neglects correlations amongst the fluctuations of the elec-
tric field. In reality, if one considers the situation with
large K and low temperature, the electric field fluctu-
ations are highly correlated. They arise from magnetic
monopole excitations, i.e. textures in Bp, whose mo-
tion leads to long-range electric field fluctuations through
Faraday’s law. The complicated spatial structure of mag-
netic monopoles is completely missed in the mean field
treatment. Instead, in mean field theory, the electric
field fluctuations occur locally (and do not even obey
the divergence-free constraint since the latter is only sat-
isfied on average in mean field theory). In fact, because
monopoles have a finite energy, at any T > 0 they appear
in a non-zero (albeit exponentially small) concentration,
and their motion immediately leads to the destruction
of the Coulomb phase, in a strict sense. Specifically,
they screen the interactions between inserted test mag-
netic charges, and lead to exponential decay of all corre-
lations. Nevertheless, at very low temperature, because
the monopoles are very dilute, the short distance stiffness
given by K is largely unaffected. With increasing tem-
perature, the density of monopoles increases, gradually
reducing the effective stiffness on the scale of the correla-
tion length (distance between monopoles). We can con-
clude that mean field theory fails in this case because it
misses the true mechanism of destruction of the Coulomb
phase at T > 0, which is magnetic monopole prolifera-
tion.

Now let us turn to the real pyrochlore problem. Here
the gauge theory is distinguished from the pure U(1)
problem described above by the presence of matter
(spinon) fields Φr (and by the constraint on the magni-
tude of the electric fields, but this is of secondary impor-
tance). Most importantly, there is in fact no microscopic
stiffness for the magnetic flux. Recall that s± ∼ e±iA rep-
resents the gauge magnetic vector potential in this for-
malism, and these fields appear only in the kinetic terms
of the spinon variables. Hence, in this problem, the mag-
netic stiffness arises only dynamically: spinons propagate
coherently most efficiently through a background of zero
magnetic gauge flux, and thereby have lowest kinetic en-
ergy in that situation. It is the lowering of spinon kinetic
energy that is responsible for the magnetic stiffness, and
hence stabilization of Coulombic (QSL and CFM) phases
at zero temperature. At T > 0, there are now two sources
of gauge fluctuations, in contrast to the situation in the
pure gauge theory. Gapped magnetic monopole excita-
tions still exist (in these phases), but in addition we may
have thermal activation of excited spinon states. The for-
mer process is similar to that in the pure gauge theory,
and is missed by gMFT. The latter process is captured
by gMFT, and acts to reduce the microscopic magnetic
stiffness even on short length scales. As this stiffness is
reduced, electric field fluctuations grow in response, fur-
ther decreasing the stiffness leading to a rapid explosion
of gauge fluctuations and rapid reduction of the spinon

bandwidth. Once it reaches the thermal energy kBT ,
the Coulomb phase collapses entirely as there is no mi-
croscopic stiffness to support it.

In reality, both this process and the one due to ther-
mally excited monopoles should be responsible for de-
struction of the Coulomb phase. Since gMFT captures
one but not both of these mechanisms, we expect it to
be a better approximation here than in the pure gauge
theory, but still susceptible to possible O(1) errors. Our
expectation is that, like most mean field theories, the ne-
glect of correlated fluctuations will lead to a reduction of
the true critical temperature in comparison to the mean
field result, but likely not suppress the transition entirely.
Since this is a non-universal issue, we can expect that
the O(1) errors may fully suppress the sharp transition
in some models. This appears to occur even in the zero
bare stiffness limit of the abelian Higgs model studied
by Banks and Rabinovici17. However, our pyrochlore
model differs from the Banks-Rabinovici model in sev-
eral respects, most importantly by the discrete Hilbert
space of the s± gauge fields of our theory; the results of
Ref. 17 therefore do not have much bearing on our con-
clusions. Some further evidence leading us to conclude
that a transition does occur in the pyrochlore case comes
from examining the phase diagram more broadly.

First, let us consider the role of symmetry. The above
discussion, and comparison to the situation in the pure
gauge theory, applies best when the ground state is in the
QSL phase, which breaks no symmetries and at T > 0
can be adiabatically connected to the paramagnetic state.
In the other phases, which break symmetries, a phase
transition is required at T > 0. In crude but physi-
cal terms, we can imagine two possible scenarios. On
one hand, confinement may occur at a lower temperature
than the restoration of symmetry, so that a conventional
Landau picture describes the symmetry breaking transi-
tion. On the other hand, confinement may occur simul-
taneously with symmetry restoration, which is what oc-
curs in gMFT. In the former case, we should expect that
the phase transition should be described approximately
by the usual Curie-Weiss mean field theory (CWMFT)
in terms of self-consistent exchange fields and spin ex-
pectation values9, since once the confinement transition
temperature is reached, confinement is occuring on short
length scales, and the microscopic spin variables are
good order parameters. It is interesting to compare the
CWMFT temperature to that predicted by gMFT. We
find that the Tc from CWMFT is systematically signifi-
cantly larger than that found in gMFT. For example, for
the parameters corresponding to Yb2Ti2O7, the critical
temperature in CWMFT is TCWMFT

c = 3.2 K,9 while in
gMFT it is T gMFT

c = 0.56 K. The much smaller value
of the critical temperature in gMFT is strong evidence
that confinement physics plays a role in the transition.
Note also that the gMFT value (0.56 K) is much closer
to the observed one in Yb2Ti2O7 (0.27 K), supporting
this notion for experiment as well.

Second, we may consider the role of Higgs condensa-
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tion. When J± and/or Jz± are not too small, the ground
state is not a deconfined but a Higgs phase, with a spinon
condensate. Consequently, the magnetic stiffness is en-
hanced beyond the usual dielectric form to a Meissner
one, such that magnetic gauge flux is actually expelled
from the system. In particular, in these Higgs phases
(the AFM and FM in Fig. 1),18 due to this Meissner ef-
fect, the energy of a magnetic monopole is no longer finite
but actually infinite. Consequently, magnetic monopoles
cannot be thermally activated in these phases. There-
fore only the mechanism of spinon fluctuations (weak-
ening of the Higgs condensate), which is captured by
gMFT, is present in these regimes, and we expect the
accuracy of gMFT to increase. The fact that a single
T > 0 confinement-like transition appears here and is
smoothly connected to the one appearing for small J±,
Jz± couplings suggests that gMFT is qualitatively cor-
rect throughout the phase space.

The above arguments rely on the fact that the mag-
netic stiffness is due to the matter fields in the theory,
and is not explicit at the lattice level. However, in the
extreme perturbative limit, for very small J±, Jz±, as
shown in Hermele et al.,20 an effective pure gauge the-
ory can indeed be derived, which applies to the low en-
ergy physics even at the lattice scale. One may then
expect that the confinement transition may be removed
in this extreme corner of the phase diagram. Banerjee
et al.22 performed quantum Monte Carlo calculations on
the XXZ limit (Jz± = J±± = 0) of our model, approach-
ing the ground state from non-zero temperature. Their
simulations, which indeed focus on (a segment within)
this corner (small J±/Jzz) of the phase diagram do not
appear to observe a thermal phase transition. Thus we
postulate that, beyond gMFT, the confinement transi-
tion approaches a critical endpoint somewhere in the very
small J±, Jz± region. It would be interesting to study
this critical endpoint theoretically.

Based on the above reasoning, we conclude that the
T > 0 transitions for quantum spin ice in the region of
phase space studied here are, with the exception of very
small J±, Jz±, qualitatively correctly described by the
gMFT treatment, and should be thought of as confine-
ment or quantum-to-classical transitions. As a conse-
quence of the latter, the experimental signatures of clas-
sical spin ice are expected in the TSL regime above the
critical point. In particular, the famous “pinch points”
(see Sec. IV A below) should appear in this phase.

IV. DISCUSSION

We have carried out a gauge mean field analysis of a
model for quantum spin ice pyrochlores at T > 0. No-
tably, we find that the thermal transition from all the
low temperature phases is of a confinement type. This
confinement transition pre-empts a Landau symmetry-
breaking type transition even when the latter is logically
possible, e.g. from the low temperature ferromagnetic or

antiferromagnetic phases. A summary of our results is
given in the phase diagram in Fig. 1, in the Supplemen-
tal Movie,18 and in Table I.

Our calculations complement several others in the lit-
erature which address T > 0 properties of pyrochlores.
Nussinov et al.25 studied an exactly soluble Klein model
for an SU(2) invariant pyrochlore antiferromagnet, ob-
taining a classical spin liquid state at non-zero temper-
ature. Their model is quite distinct from the physically
appropriate quantum spin ice Hamiltonian, however. Ap-
plegate el al.26 obtained thermodynamics of the quantum
spin ice model from a high temperature expansion. Their
results agree well with experiment, proving the applica-
bility of the model, but apply only for temperatures well
above any phase transitions.

A. Connection with real materials: the case of
Yb2Ti2O7

The Hamiltonian parameters Jzz, J±, Jz± and J±±
(see Eq. (1)) of Yb2Ti2O7 were extracted in Ref. 9,
by fitting linear spin wave theory to high-resolution in-
elastic neutron scattering in high field. The accuracy
of the values Jzz = 0.17, J± = 0.05, Jz± = −0.14
and J±± = 0.05 meV was subsequently confirmed in
Refs. 11,26 through comparison of high-temperature spe-
cific heat and entropy data (for various exchange param-
eters reported in the literature9,12,16). Despite the evi-
dent complete quantitative knowledge of its Hamiltonian,
the nature of the low-temperature phase of Yb2Ti2O7 in
zero field is still open to debate. Several studies find
no sign of order down to the lowest accessible temper-
atures (e.g. 30 mK in Ref. 13),10,13–15,27 and diffuse
neutron scattering at T = 30 mK and H = 0 compati-
ble with a two-spinon continuum.8,9 Two other neutron
scattering studies have reported the presence of an or-
dered ferromagnetic moment.12,28 Specific heat measure-
ments reveal strong sample dependence, which has re-
cently been associated to Yb substitution (“stuffing”) on
the Ti site,29 so it is possible that such disorder modifies
the zero field ground state in some samples. However,
even this is not clear. Not knowing for sure what the
low-temperature phase is, the nature of the transition
observed at T ∼ 200 mK10,12,13 also remains equivocal.

Recently, experimental12 and theoretical26 works have
also addressed the nature of the phase transition. The
authors of Ref. 12 argue that their experiments imply an
ordered ferromagnetic phase, and provide evidence for the
first order nature of the thermal transition to this phase.
In Ref. 26, a theoretical model with third neighbor ex-
change (which can be considered a perturbative approxi-
mation to the full H9) and consequently a ferromagnetic
ground state is studied by Monte Carlo simulations, find-
ing a first-order transition. In our gMFT calculations, as
discussed above, all the transitions with increasing T are
first order as well.

Ref. 12 suggests that the thermal transition in
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TABLE I: Summary of the properties of the phases of Eq. (1) obtained within gMFT (for Jzz > 0 and J±± = 0). “QSL”, “CFM”,
“FM”, “AFM” and “TSL” denote the U(1) Quantum Spin Liquid, Coulomb Ferromagnet, standard ferromagnet, standard
antiferromagnet, and Thermal Spin Liquid, respectively. The abbreviations “magn.” and “INS” stand for magnetization and
inelastic neutron scattering, respectively. CV denotes the specific heat, and more precisely its T → 0 behavior. Note that Higgs
= condensed.

order parameters
phase

properties experimental signatures

|〈~s 〉| 〈Φ〉 〈Sz〉 nature magn. excitations main INS signal CV

6= 0 0 0 QSL deconfined zero photon, spinons, monopoles diffuse, linear photons ∼ T 3

6= 0 0 6= 0 CFM deconfined small photons, spinons,
monopoles, spin waves

diffuse, linear photons,
weak spin wavesa

∼ T 3

6= 0 6= 0 6= 0 FM Higgs large spin waves sharp activated

6= 0 6= 0 0 AFM Higgs zero spin waves sharp activated

0 0 0 TSL confined zero N/A pinch points

aSpin waves, which could arise thanks to the weak magnetization,
are likely to not be seen since their signal may be hidden in the
continuum originating from the spinon excitations.

Yb2Ti2O7 may be regarded as a “Higgs transition”. We
would like to discuss this interpretation, in light of the
one we have offered above. The term Higgs transition has
an accepted meaning in quantum field theory, where it
refers to a transition which may be described as the con-
densation of a bosonic field carrying a non-zero gauge
charge, and coupled to a dynamical gauge field. In our
formulation, such a bosonic field is the spinon, which
carries the “electric” gauge charge, and phases with non-
zero spinon condensates are indeed Higgs phases, and
correspondingly have magnetic order. The zero temper-
ature quantum phase transitions from the CFM and QSL
phases into FM and AFM phases are indeed (quantum)
Higgs transitions in this sense. In a strict sense, the situ-
ation at T > 0 prohibits any true Higgs transitions, since
the Coulomb phase itself is not sharply defined at T > 0,
i.e. there are no critical gauge fields anywhere in the
phase diagram at T > 0 since the U(1) gauge fields are
compact. Even if we look for a non-strict interpretation,
since the CFM and QSL phases are deconfined, tran-
sitions from them to the confined paramagnetic phase
with increasing temperature can clearly not be regarded
as Higgs transitions, as none of these phases have Higgs
condensates. A non-strict view of the thermal transition
from the FM or AFM phases to the paramagnetic one as
a Higgs transition might be possible. However, since the
FM and AFM phases are already confined states even at
T = 0, it seems unreasonable to consider spinon conden-
sation as the mechanism for this transition.

From our point of view, the essence of this transi-
tion is not Higgs condensation but confinement, as dis-
cussed extensively in the previous section. According
to this picture, supported by gMFT, the phase above
the transition should be regarded as a classical ther-
mal spin liquid (TSL), similar to the low temperature
regime of classical spin ice, and the transition may be

regarded as describing the release of entropy associated
with an abrupt loss of quantum coherent spin dynam-
ics. We would therefore expect significant differences in
the inelastic spin correlations below and above the tran-
sition. Specifically, below the transition, quantum co-
herence is known to wash out the pinch points, even in
the QSL regime.8,23 Above the transition, diffuse scat-
tering with visible pinch-point-like features would be ex-
pected, provided Tc � Jzz, so that the classical ice rules
are not strongly violated. And indeed, features reminis-
cent of pinch points were observed above Tc in Ref. 12
in Yb2Ti2O7. Another piece of support for this inter-
pretation is the rough agreement of the critical tempera-
ture predicted by gMFT for this confinement transition
(using JYb2Ti2O7

±± ≈ 0),9 T gMFT
c ≈ 560 mK, with the

experimental value T exp
c ≈ 265 mK13. The agreement

is much better than in the usual Curie-Weiss MFT for
which TCWMFT

c = 3.2 K,9 as noted above.

A more tricky issue is the presence or absence of
magnetic order below Tc, which is controversial exper-
imentally, and is likely to be related to the Yb stuff-
ing mentioned earlier. It is not unreasonable to expect
the extra Yb spins to affect the state and dynamics of
the system. Yet, if so, it is surprising that the micro-
scopic model which neglects them appears to provide
an excellent quantitative description of a comprehen-
sive set of data in applied magnetic fields and/or higher
temperatures.9,11,26 A possible interpretation is that the
“interstitial” spins become polarized in modest applied
fields, and fluctuate paramagnetically at higher tempera-
tures, in either case obviating their effects on the Yb sub-
lattice spins. At low temperature and low fields, however,
the interstitial spins may be free to couple to the main
sublattice, and act to effectively modify the exchange
parameters, moving the material around in the general
phase diagram, perhaps even into the QSL regime. From
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Fig. 1,18 one sees that although the ground state is
quite sensitive to values of the exchange parameters, the
thermal transition remains confinement-like regardless of
these values, consistent with observations. Obviously this
interpretation is highly speculative. Disorder might have
many other unanticipated effects, and understanding the
presence or absence of magnetic order and the sample de-
pendence of various experiments requires significant more
experimental and theoretical study.

B. Conclusions

We have studied the development of a quantum spin
liquid ground state and its neighboring phases on cool-
ing from high temperature. We argued that in the case of
quantum spin ice, quantum coherence of spins onsets in
an abrupt first order transition. When the ground state
is a deconfined spin liquid, this transition may be viewed
as describing the deconfinement of fractional spinon exci-
tations. Above the transition, the system has substantial
entropy and behaves as a thermal spin liquid, with many
of the characteristics of classical spin ice.

In quantum pyrochlore magnets, more experimental
studies on the spin correlations at intermediate temper-
atures would be welcome, not only from neutron scatter-
ing, but also other probes of spin dynamics such as muon
spin resonance. A thorough study of the development of
the phase transition in Yb2Ti2O7 with applied magnetic
fields would also provide considerable fuel for future the-
oretical work. The techniques of the present paper, along
with other approaches, can certainly address such prob-
lems.

This raises the more general question of the exis-
tence of first order quantum-to-classical transitions for
other models and materials with spin liquid ground
states. Most of the techniques used to study quan-
tum spin liquids address either ground state properties
(e.g. Gutzwiller variational wavefunctions, Density Ma-
trix Renormalization Group) or are limited to relatively
high temperatures (e.g. high temperature series expan-
sion, quantum Monte Carlo), leaving the intermediate
temperature regime where such a transition might occur
relatively unstudied theoretically. It may consequently
be interesting to develop theoretical methods for such
temperatures in the future for frustrated quantum spin
models.
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Appendix A: Notations

The local cubic bases in which the Hamiltonian Eq. (1)

is expressed are the following (âi, b̂i, êi) bases
ê0 = (1, 1, 1)/

√
3

ê1 = (1,−1,−1)/
√

3

ê2 = (−1, 1,−1)/
√

3

ê3 = (−1,−1, 1)/
√

3,

,


â0 = (−2, 1, 1)/

√
6

â1 = (−2,−1,−1)/
√

6

â2 = (2, 1,−1)/
√

6

â3 = (2,−1, 1)/
√

6

,

(A1)

b̂i = êi × âi, such that spin Si on sublattice i is Si =
S+
i (âi − ib̂i)/2 + S−i (âi + ib̂i)/2 + Szi êi.
The 4× 4 matrix γ introduced in Eq. (1) is

γ =


0 1 w w2

1 0 w2 w

w w2 0 1

w2 w 1 0

 , (A2)

where w = e2πi/3 is a third root of unity.

Appendix B: Details of the calculations

Here we describe the calculations leading to Eq. (10)
in great detail, and proceed making simplifying assump-
tions as we go.

The decoupled Hamiltonians H0
Φ and H0

s such that the
trial Hamiltonian is H0 = H0

Φ +H0
s are given in Eqs. (7)

and (8). From them, we need to determine the free energy
F0 = − 1

β lnZ0 = FΦ
0 + F s

0. The free spin part is trivial,

it is the free energy of free spins in a field ~h:

F 0
s = − 1

β

∑
r∈I,µ

ln

[
2 cosh

β|~hµ|
2

]
(B1)

= − 1

β

∑
r∈I,µ

[
ln 2− 1

2
ln
(
1− 4|〈~sr,r+eµ〉|2

)]
.

To compute F 0
Φ, we rewrite the first part of H0

Φ as8

∑
r∈I,II

J

2
Q2

r →
∑
r∈I,II

{
J

2
Π†rΠr + λ

(
Φ†rΦr − 1

)}
, (B2)

where the second part of the right-hand-side is intro-
duced to implement (a relaxed version of) the constraint
Φ†rΦr = 1 (see Ref. 8). Therefore, λ ∈ R+ serves as a
Lagrange multiplier. We get
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H0
Φ →

∑
r∈I,II

{
J

2
Π†rΠr + λ

(
Φ†rΦr − 1

)}
−

∑
r∈I

∑
µ,ν 6=µ

t′µν Φ†r+eµΦr+eν +
∑
r∈II

∑
µ,ν 6=µ

t′µν
∗

Φ†r−eµΦr−eν

 (B3)

−

{∑
r∈I

∑
µ

(
tµ Φ†r Φr+eµ + h.c.

)
+
∑
r∈II

∑
µ

(
tµ Φ†r−eµΦr + h.c.

)}
,

Then, using the following Fourier transformation conven-
tions

xk =
1

Nu.c.

∑
i

xie
−ik·ri , x†k =

1

Nu.c.

∑
i

x†ie
ik·ri ,

xi =
∑
k

xke
ik·ri , x†i =

∑
k

x†ke
−ik·ri , (B4)

we arrive at

FΦ
0 =

∑
k

∑
i=±

ωik − 2T
∑
i=±

∑
k

ln
1

1− e−βωik
− 2λNu.c.,

(B5)
where ω±k involve t and t′ introduced in Eq. (7), and J ,
and where the last term comes from the constant term in
Eq. (B2). Note that λ and ω±k are quantities defined from
the fiducial system with Hamiltonian H0 (in Ref.8 their
“equivalents” were defined from the gMFT Hamiltonian).

Let us now calculate 〈H〉0 and 〈H0〉0. Going to the
action formalism, with the conventions

xΩn =
1

2π

∫ +β/2

−β/2
dτ xτ e

iΩnτ , (B6)

x†Ωn =
1

2π

∫ +β/2

−β/2
dτ x†τ e

−iΩnτ , (B7)

xτ =
1

β

∑
n∈Z

xn e
−iΩnτ , (B8)

x†τ =
1

β

∑
n∈Z

x†n e
iΩnτ , (B9)

where Ωn = 2πn
β is the bosonic Matsubara frequency, we

find the Green’s function of HΦ
0 :

[G−1
0 ] =

 1
2Jω

2
n + λ− L̃k −M̃k

−M̃∗k 1
2Jω

2
n + λ− L̃k

 , (B10)

where

L̃k =
1

2

∑
µ,ν 6=µ

[
t′µνe

ik·(eν−eµ) + t′µν
∗
e−ik·(eν−eµ)

]
,

M̃k = 2
∑
µ

tµe
ik·eµ , (B11)

setting t∗µν = tνµ. Here L̃ and M̃ are defined in terms of t
and t′, which are at this stage arbitrary. In the main text
we give formulae for these quantities which are equal to
the above ones when the specific values for t and t′ have
been taken. For simplicity we use the same symbols for
both expressions. From this we get the spinon dispersion
relations

ω±k =
√

2J

√
λ− L̃k ± |M̃k|. (B12)

Note that, like λ and ω, L̃ and M̃ are defined here from
the fiducial Hamiltonian. So, inverting Eq. (B10):

G0(k,Ωn) =
1

D(k,Ωn)

 1
2JΩ2

n + λ− L̃k M̃k

M̃∗k
1

2JΩ2
n + λ− L̃k

 (B13)

=
1

2


1

Ω2
n

2J +λ−`+k
+ 1

Ω2
n

2J +λ−`−k

Mk

|Mk|

[
−1

Ω2
n

2J +λ−`+k
+ 1

Ω2
n

2J +λ−`−k

]
Mk
∗

|Mk|

[
−1

Ω2
n

2J +λ−`+k
+ 1

Ω2
n

2J +λ−`−k

]
1

Ω2
n

2J +λ−`+k
+ 1

Ω2
n

2J +λ−`−k

 , (B14)

where

D(k,Ωn) =

(
Ω2
n

2J
+ λ− L̃k

)2

− |M̃k|2 (B15)

`±k = L̃k ∓ |M̃k|. (B16)

Carrying out the sum over all integers n, we get
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G0(k, τ = 0) =
1

β

∑
n∈Z

G0(k,Ωn) =
1

2

√
J

2


F+

k√
λ−`+k

+
F−k√
λ−`−k

Mk

|Mk|

[
−F+

k√
λ−`+k

+
F−k√
λ−`−k

]
M∗k
|Mk|

[
−F+

k√
λ−`+k

+
F−k√
λ−`−k

]
F+

k√
λ−`+k

+
F−k√
λ−`−k

 , (B17)

where

F±k = coth

[
β

√
J

2

√
λ− `±k

]
. (B18)

As usual, we have

〈Φ†I,kΦII,k〉0 = G0
II,I(k), (B19)

where G0(k) = G0(k, τ = 0), so

〈H0
Φ〉0 =

J

2

∑
r∈I,II

〈Π†rΠr〉0 −

∑
r∈I

∑
µ,ν 6=µ

t′µν 〈Φ
†
r+eµΦr+eν 〉0 +

∑
r∈II

∑
µ,ν 6=µ

t′µν
∗ 〈Φ†r−eµΦr−eν 〉0

 (B20)

−

{∑
r∈I

∑
µ

(
tµ 〈Φ†r Φr+eµ〉0 + h.c.

)
+
∑
r∈II

∑
µ

(
tµ 〈Φ†r−eµΦr〉0 + h.c.

)}
.

Now, recall:

〈H〉0 =
Jzz
2

∑
r∈I,II

〈Π†rΠr〉0 − J±

∑
r∈I

∑
µ,ν 6=µ

sµ s
∗
ν 〈Φ

†
r+eµΦr+eν 〉0 +

∑
r∈II

∑
µ,ν 6=µ

s∗µ sν 〈Φ
†
r−eµΦr−eν 〉0

 (B21)

−Jz±

∑
r∈I

∑
µ,ν 6=µ

(
γ∗µν s

z
µ s
∗
ν 〈Φ†r Φr+eν 〉0 + h.c.

)
+
∑
r∈II

∑
µ,ν 6=µ

(
γ∗µν s

z
µ s
∗
ν 〈Φ

†
r−eνΦr〉0 + h.c.

)
(where we have defined x = 〈x〉0), with

〈Φ†r+eµΦr+eν 〉0 = 〈Φ†eµ−eνΦ0〉0 =
∑
k

〈Φ†II,kΦII,k〉0e
ik·(eµ−eν) =

1

2Nu.c.

√
J

2

∑
k

 F+
k√

λ− `+k
+

F−k√
λ− `−k

 eik·(eµ−eν)

(B22)
and

〈Φ†rΦr+eν 〉0 =
∑
k

〈Φ†I,kΦII,k〉0e
−ik·eν = − 1

2Nu.c.

√
J

2

∑
k

M̃∗k
|M̃k|

 F+
k√

λ− `+k
+
−F−k√
λ− `−k

 e−ik·eν . (B23)
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Finally,

〈H −H0〉0 = 〈H〉0 − 〈HΦ
0 〉0 − 〈Hs

0〉0 (B24)

=
Jzz − J

2

∑
r∈I,II

〈Π†rΠr〉0 (B25)

−

∑
r∈I

∑
µ,ν 6=µ

(
J±sµ s

∗
ν − t′µν

)
〈Φ†r+eµΦr+eν 〉0 +

∑
r∈II

∑
µ,ν 6=µ

(
J±s

∗
µ sν − t′µν

∗) 〈Φ†r−eµΦr−eν 〉0


−

{∑
r∈I

∑
µ,ν

[(
Jz±γ

∗
µν s

z
µ s
∗
ν −

tν
4

)
〈Φ†r Φr+eν 〉0 + h.c.

]
(B26)

+
∑
r∈II

∑
µ,ν

[(
Jz±γ

∗
µν s

z
µ s
∗
ν −

tν
4

)
〈Φ†r−eνΦr〉0 + h.c.

]}
+
∑
r∈I

∑
µ

~hµ(r) · 〈~sr,r+eµ〉0.

Now, simply assuming |〈~sr,r+eµ〉0| = s to be independent
of µ, we have already:

〈H0
s 〉0 = −

∑
r∈I

∑
µ

~hµ(r) · 〈~sr,r+eµ〉0 (B27)

= −4Nu.c.s

β
ln

1 + 2s

1− 2s
. (B28)

If we additionally use the Ansatz Eq. (5),

szµ = s εµ sin θ and s−µ = s cos θ,

then∑
µ

Jz±γ
∗
µνs

z
µs
∗
ν = 2s2Jz±εν cos θ sin θ = s2Jz±εν sin 2θ,

and J±sµ s
∗
ν = J±s

2 cos2 θ. (B29)

We now take

t′µν = t′ and tν = ενt, (B30)

so that Eq. (B24) becomes

〈H −H0〉0 =
Jzz − J

2

∑
r∈I,II

〈Π†rΠr〉0 (B31)

−
(
J1

2
− t′

)∑
r∈I

∑
µ,ν 6=µ

〈Φ†r+eµΦr+eν 〉0 +
∑
r∈II

∑
µ,ν 6=µ

〈Φ†r−eµΦr−eν 〉0


−
(
J2

2
− t
){∑

r∈I

∑
ν

[
εν〈Φ†r Φr+eν 〉0 + h.c.

]
+
∑
r∈II

∑
ν

[
εν〈Φ†r−eνΦr〉0 + h.c.

]}
+
∑
r∈I

∑
µ

~hµ(r) · 〈~sr,r+eµ〉0,

where

J1 = 2J±s
2 cos2 θ and J2 = 2Jz±s

2 sin 2θ.
(B32)

Finally, setting J = Jzz, t
′
µν = t′ = J1

2 = J±s
2 cos2 θ and

tµ = εµt = εµ
J2

2 = εµJz±s
2 sin 2θ, and using Eqs. (B22),

(B23) and (B28), we recover Eq. (10).

Appendix C: Explicit expression of the I3 = 1
constraint in the condensed and deconfined phases

The constraint on the spinons (rotor operators)
Φ†rΦr = 1 is enforced in the form 〈Φ†rΦr〉 = 1, i.e.

1 = I3 =
1

2Nu.c.

√
Jzz
2

∑
k

 F+
k√

λ− `+k
+

F−k√
λ− `−k

 ,
(C1)
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where

F±k = coth

[
β

√
Jzz
2

√
λ− `±k

]
, `±k = L̃k ∓ |M̃k|.

(C2)
While in the deconfined phases the sum in Eqs. (11)

and (C1) can be turned simply into an integral (since
λ−`±k > 0 for all k), in the condensed phases, the spinon
dispersion relation hits zero at a wavevector k0, i.e. such
that `−k0

= λmin = maxk `
−
k , and one should allow for a

subextensive part in λ. We write λ = λmin + δ̂T/Nu.c.,

where δ̂ = O(1), with δ̂ positive and independent of
T . This leads to (see also the Supplemental Material
of Ref. 8):

I3 = Imin
3 + I ′3, (C3)

where I ′3 is the right-hand-side of Eq. (C1) turned into
an integral and evaluated at λ = λmin, i.e.

I ′3 =
1

2

√
Jzz
2

∫
k

 F+
k√

λmin − `+k
+

F−k√
λmin − `−k

 , (C4)

and Imin
3 is the part of 1

2Nu.c.

√
Jzz
2

∑
i=±1

Fik0√
λ−`ik0

which

does not vanish when Nu.c. →∞. Defining ρ = Imin
3 , we

find, in terms of δ̂,

ρ =

{
1
2δ̂

for θ, s, Jz± 6= 0
1
δ̂

otherwise
, (C5)

or more generally, considering the rotor constraint, ρ =
1− I ′3.

Note: (i) the difference in the exponent compared with
the zero temperature case explored in Ref. 8, which comes
from the coefficient modification involved with F±k , (ii)
we used a hat on δ because its definition differed from its
“equivalent” at T = 0.

A final remark is in order: in∑
k

∑
i=±1

[
2T ln 1

1−e−βω
i
k

]
of Eq. (10), the k0 term is of

order lnNu.c. (for Nu.c. large at fixed T ) in the condensed
phases. Since lnNu.c. = o(Nu.c.), this contribution is
actually negligible at large Nu.c. compared with the
main contribution to the free energy, which is extensive
(i.e. ∝ Nu.c.).

Appendix D: Comparison with zero temperature

Here we outline the procedure described in Ref. 8, i.e.
in the case of zero temperature, and show that this case
is recovered when we take T → 0 in the present work.

1. Energy at T = 0 as derived in Savary and Balents

In Ref. 8, we reported

〈H〉gMFT,T=0 = EGS = Nu.c. (εav + εkin) , (D1)

with

εav = −2I2(θ, λ) cos2 θJ± − 4I1(θ, λ) sin 2θJz±(D2)

εkin =
1

2

∫
k

(
ω+
k (θ, λ) + ω−k (θ, λ)

)
, (D3)

where ω±k =
√

2Jzzz
±
k . λ will have been determined by

solving I3 = 1, and θ either by solving the consistency
equations (and choosing the lowest energy solution), or
by minimizing the Eq. (D1) form of the energy.

The energy can also be derived through another pro-
cedure, which we call “by decomposition.” The energy
found in such a way is not variational (i.e. the ground
state energy cannot be found by minimizing it over θ);
the ground state energy is found by plugging in the pa-
rameter values found by solving the consistency equa-
tions. For those values the decomposition and the vari-
ational forms of the energy yield equal values. The en-
ergy is found by analyzing what the decoupled problem is
equivalent to. The mean-field Hamiltonian, found using
the usual decomposition (see Eq. (6) of Ref. 8), is

HMF = HMF
spinon +HMF

spin − EMF
const, (D4)

so that

EMF = Nu.c.
(
εMF
spinon + εMF

spin − εMF
const

)
. (D5)

We find

εMF
spinon =

1

2π

∫
k

(
ω+
k + ω−k

)
− 2λ (D6)

εMF
spin = −2

√
hzMF

2
+ hxMF

2
(D7)

εMF
const = −4I2 cos2 θJ± − 8I1 sin 2θJz±, (D8)

where I1, I2, and ~hMF were defined in Ref. 8. It turns
out that we find, empirically (i.e. numerically),

∀ θ EMF
spinon = EGS, (D9)

provided λ is chosen such that I3 = 1 is satisfied.
Note that, to avoid any confusion, we refrained from

calling εMF
spinon (resp. εMF

spin) εMF
Φ (resp. εMF

s ) as they do

not come from H0
Φ and H0

s of the present paper.

2. T → 0 limit of the variational free energy

We now go back to the variational free energy at T > 0,
Eq. (10), and take its T → 0 limit. Since limT→0 s = 1/2,
the first part of the first term of Eq. (10) vanishes in the
T → 0 limit. Therefore,

lim
T→0

Fv = −2Nu.c. lim
T→0

λ (D10)

+
∑
k

∑
i=±1

{
lim
T→0

ωik − lim
T→0

[
2T ln

1

1− e−βωik

]}
.
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Since λ is determined through the I3 = 1 constraint, let
us address the zero temperature limit of the latter. It is

1 =
1

2Nu.c.

√
Jzz
2

∑
k

∑
i=±1

lim
T→0

F ik√
λ− `ik

, (D11)

with F defined in Eq. (12),

F±k = coth

[
β

√
Jzz
2

√
λ− `±k

]
. (D12)

In the deconfined phases, since λ−`±k > 0 for all k, F ik →
1 trivially, and it is obvious the I3 = 1 constraint reduces
to that found at zero temperature in Ref. 8 thanks to the
choice (described in Section II B and Appendix B) of pa-
rameters t, t′ and J of the fiducial Hamiltonian. It follows
immediately that limT→0 λ

decon = λdecon(T = 0). In the
condensed phases, as described in Ref. 8 and Appendix C,
the sum is better split into a k0 term (which we call ρ)
for which `−k0

= λmin = maxk `
−
k , and remaining terms

I ′3. Defining λ = λmin+ δ̂T/Nu.c. in the condensed phases
and taking the Nu.c. → ∞ limit before the T → 0 limit
(since physically we are interested in low but non-zero
temperature but thermodynamically large systems), we
find limT→0 λmin = λmin(T = 0) limT→0 I

′
3 = I ′3(T = 0),

which, from ρ = 1 − I ′3, implies limT→0 ρ = ρ(T = 0),
and as a consequence,

lim
T→0

λ = λ(T = 0), and lim
T→0

ωik = ωik(T = 0).

(D13)

Finally, the very last term limT→0

[
2T ln 1

1−e−βω
i
k

]
of

Eq. (D10) goes trivially to zero in the deconfined phases.
In the condensed phases, as noted in Appendix C, the
k0 term goes as lnNu.c. for Nu.c. large (at fixed T ), but
the zero-temperature limit takes this term to zero so that

limT→0

[
2T ln 1

1−e−βω
i
k

]
= 0 in the condensed phases as

well.
Finally, we arrive at

lim
T→0

Fv = −2Nu.c.λ(T = 0) +
∑
k

∑
i=±1

ωik(T = 0)

= Espinon. (D14)

Using the empirical evidence Eq. (D9), this proves that
the variational form of the ground state energy is re-
covered when we take the zero temperature limit of our
variational free energy. Note that Eq. (D14) could also
be seen as a convoluted proof of Eq. (D9)!

3. Discrepancy with the T = 0 phase diagram
computed in Savary and Balents

To obtain the phase diagram of Figure 1 of Ref. 8,
we did not minimize the variational ground state energy
at T = 0, but rather solved the consistency equations
Eq. (11) (of Ref. 8), and selected those with lowest energy.

In Ref. 8, the consistency equation Eq. (11) as well
as the variational form of the energy Eqs. (12) and (13)
(Eqs. (D2) and (D3) here) involve the sums I1 and I2
which are subject to greater numerical errors than the
variational form (of the type of EMF

spinon) presented here.
This led to a small mistake in the position of the AFM-
FM phase boundary in Ref. 8. We believe the slightly
modified diagram presented (Figure 3) here is correct.
An Erratum with this correction is being simultaneously
submitted to Physical Review Letters.
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J z
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z
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FIG. 3: (Color online) Zero-temperature gauge mean field
phase diagram obtained for J±± = 0 and Jzz > 0. “QSL”,
“CFM”, “FM”, “AFM” denote the U(1) Quantum Spin
Liquid, Coulomb Ferromagnet, standard ferromagnet, and
standard antiferromagnet, respectively. Phase boundaries
with (without) white lines indicate discontinuous (continu-
ous) transitions in gMFT.

Appendix E: Analytical phase transitions in the
small parameter regime J±, Jz± � Jzz

Here we look at simple limits and find approximate
phase transitions analytically, taking advantage of the
fact that the phase transitions to the TSL occur at low
temperature.

1. Variational free energy in the s = 0 state

For s = 0, the variational energy assumes the form

Fv(s = 0)/Nu.c. = 2
√
λ
(√

2Jzz −
√
λ
)

(E1)

−4T

(
ln 2− ln

[
1− e−

√
2Jzzλ

T

])
,

and

1 =

√
Jzz
2λ

coth

[
1

T

√
Jzzλ

2

]
. (E2)
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For small enough temperature, we find λ = Jzz/2, which
leads to

Fv(s = 0)/Nu.c. ≈ Jzz − 4T ln 2. (E3)

2. Variational free energy in the s = 1/2 state(s)

When s = 1/2 (which encompasses but is not a priori
restricted to the T = 0 case), the free energy takes the
form

Fv(s = 1/2)/Nu.c. (E4)

= Fv(T = 0)/Nu.c. − 2T
∑
i=±

∫
q

ln
1

1− e−ωiq/T
,

so, for small enough temperature, the variational free
energy at T 6= 0 is almost constant and equal to that at
T = 0. Eq. (E4) is valid both in the condensed and un-
condensed phases. The absence of a distinct correction
to this form in the presence of a condensate may be inter-
preted physically as the fact that the condensate carries
zero entropy. Since the final term in Eq. (E4) is a mea-
sure of the entropy, it is not corrected by a condensate.

3. Analytical transition to the s = 0 state (TSL) (if
it indeed occurs at small T and small J±)

We apply the results Eqs. (E3) and (E4) to find ana-
lytical forms of the transitions.

a. transition at Jz± = 0

Equating Eqs. (E3) with (E4) for Jz± = 0, we get

Tc =
3Jc±

2

16Jzz ln 2
⇐⇒ Jc± = 4

√
TcJzz ln 2

3
.

(E5)

b. transition at Jz± 6= 0

Similarly,

TcJzz =
3 cos4 θ

16 ln 2
Jc±

2 +
sin2 2θ

4 ln 2
Jcz±

2, (E6)

where θ needs to have been well chosen to minimize the
T = 0 energy, i.e.

Tc =
3Jc±

2

16Jzz ln 2
for Jz± ≤

√
3

2
√

2
J± where θ = 0,

(E7)

and at

TcJzz =
1

ln 2

4Jcz±
4

16Jcz±
2 − 3Jc±

2
(E8)

for Jz± >

√
3

2
√

2
J± where θ 6= 0.

Appendix F: Calculation of the phase diagram and
representation of 3D surfaces and cuts

The phase diagram, Figure 1 and associated Supple-
mental Movie,18 and the cuts, Figure 2, were obtained
by sampling points separated by 0.1 increments in the
J±/Jzz direction, 0.0125 to up to 0.05 in the Jz±/Jzz
direction and 0.0025 in the T/Jzz direction in regions
surrounding a phase transition.

Minimization was achieved by comparing values of Fv
for values s = 0.0001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.3, 0.4, 0.45, 0.46, 0.47, 0.48, 0.49, 0.495, 0.496, 0.497,
0.498, 0.499, 0.49999, and θ = nπ/32, n = 0, .., 7 for each
of the sampled points. Which phase each point belonged
to was determined according to Table II.

TABLE II: Criteria for determining the ground state phase.
Note that, in practice, the criterion used for determining θ
(resp. s) zero or nonzero was θ (resp. s) smaller or greater
than 10−6.

ρ θ s phase

0 0 6= 0 QSL

0 6= 0 6= 0 CFM

6= 0 6= 0 6= 0 FM

6= 0 0 6= 0 AFM

0 0 0 TSL

A set E of phase transition points was subsequently ob-
tained by taking the midpoints (along well-chosen lines)
between sampled points not belonging to the same phase.

The phase transition surfaces were then obtained by
triangulating the projections of the points of E onto ap-
propriate planes.

The edges of triangles (of the triangulation procedure)
were thereafter parametrized so that any surface cuts
could be obtained by simply solving linear equations.

Lines were smoothened by fitting cuts to fourth-order
polynomials.
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how mean field approaches for gauge theories35,36 were ac-
tually reconciled with the former theorem (for example, by
working in a fixed gauge), and that gauge invariant prop-
erties, such as expectation values of the physical spins 〈Sµ〉
were unaltered by the apparent gauge symmetry breaking.
This note holds of course as well for our previous works,
and indeed also for the vast literature on slave-particle
mean field theories.
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