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We employ quantum Monte Carlo techniques to calculate the Z2 topological invariant in a two-
dimensional model of interacting electrons that exhibits a quantum spin Hall topological insulator
phase. In particular, we consider the parity invariant for inversion-symmetric systems, which can
be obtained from the bulk’s imaginary-time Green’s function after an appropriate continuation
to zero frequency. This topological invariant is used here in order to study the trivial-band to
topological-insulator transitions in an interacting system with spin-orbit coupling and an explicit
bond dimerization. We discuss the accessibility and behavior of this topological invariant within
quantum Monte Carlo simulations.
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I. INTRODUCTION

Topological insulators have been intensively explored
in recent years1,2, especially since their prediction3 and
experimental realization in HgTe quantum wells4. Pro-
posed also by Kane and Mele in a theoretical model for
spin-orbit interactions in graphene5 in search for an in-
trinsic quantum spin Hall (QSH) effect, topological band
insulators in two dimensions are characterized in the
presence of time-reversal invariance by an Z2 topologi-
cal index of the insulating electronic state6. In the case
of non-interacting systems6, the Z2 topological invariant
can be extracted from the insulating band structure in
analogy to the Thouless, Kohmoto, Nightingale and den
Nijs (TKNN) classification of Block wave functions rel-
evant for the integer quantum Hall effect7. Still in the
context of non-interacting systems, it was found, that
for inversion symmetric systems, e.g., in the sublattice-
symmetric case on the graphene lattice, the Z2 topo-
logical invariant can be easily extracted directly from
the Hamiltonian matrix of the system at the so-called
time-reversal invariant momenta (TRIM) in the Brillouin
zone8–10. At these specific momenta, Kramers degener-
ate partners share the same band-structure eigenvalues,
and from the parity of the occupied band eigenstates the
corresponding Z2 parity invariant (PI) is easily obtained.
This approach will be reviewed below within a more gen-
eral setting.
Recently, topological insulators augmented with

(strong) electron-electron interactions have attracted
growing attention (see e.g. Ref. 11 for a recent review
of work on two-dimensional systems). Hence, the ques-
tion arises, how the concept of a topological characteri-
zation of an insulating electronic state can be extended
beyond the non-interacting band-structure regime. An
important issue is, how such topological information can
be efficiently calculated for interacting systems, in par-
ticular using unbiased numerical methods, such as quan-
tum Monte Carlo (QMC) simulations. Several means to

calculate topological invariants for interacting electronic
insulators have been put forward12–17. In a non-trivial
generalization from the non-interacting case, these topo-
logical quantities are constructed based on the system’s
dressed single-particle Green’s function, which remains
a well-defined quantity also for interacting systems. Of
particular interest from a numerical perspective are the
schemes presented in Refs. 15 and 16, which allow to
obtain the topological index based solely on the single-
particle Green’s function G(ω,k) at zero frequency ω = 0
and momentum k. As will be shown below, this quan-
tity can be easily obtained from QMC calculations. The
calculations can be further simplified for systems with
explicit inversion symmetry, where G(ω = 0,k) needs
to be obtained at the TRIM only16, similar to the non-
interacting case8. A description of this approach to ex-
tract the PI for interacting systems, which in addition
also exhibit spin Sz conservation, will be presented be-
low.

Such methods to obtain topological invariants for in-
teracting systems have been applied recently, e.g., to cor-
related electron systems in one dimension using the nu-
merically exact time-dependent density matrix renormal-
ization group (DMRG) approach18. For two-dimensional
interacting systems, approximate means to estimate the
Green’s function have been employed; for example the
variational cluster approximation (VCA) has been ap-
plied to the Kane-Mele model with local interactions (the
Kane-Mele-Hubbard model19–24)25 to study the transi-
tion from the quantum spin Hall topological insulating
phase to the antiferromagnetic Mott insulator regime
at strong interactions. Dynamical mean-field theory
(DMFT) has been employed to study the interaction-
driven transition between topological states in a Kondo
insulator26 and cluster DMFT to study the three dimen-
sional pyrochlore iridates27.

Here, we set out to employ unbiased and numerically
exact methods to access Green’s function-based topolog-
ical invariants in two dimensional fermion systems. In
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FIG. 1. (Color online) (a) Honeycomb lattice with a unit
cell indicated by dashed lines. The arrows indicate the lat-
tice vectors a1,2. Bold (red) lines denote bonds with hopping
amplitude t′, while the hopping amplitude along the other
bonds on the honeycomb lattice equals t. Filled (open) cir-
cles indicate lattice sites belonging to the A (B) sublattice.
(b) Brillouin zone with the time-reversal invariant momenta
{Γ,M1,M2,M3}, and the reciprocal lattice vectors b1,2 indi-
cated.

particular, we use a projective QMC scheme to study
the PI for a Kane-Mele-Hubbard model with anisotropic
hopping, which exhibits a topological insulator regime, a
trivial, non-magnetic insulating phase, as well as an an-
tiferromagnetically ordered Mott insulating regime. We
analyze the PI in these phases, the transitions between
them and assess the PI’s characterization of these differ-
ent regimes. The goal of this paper is not to provide a
detailed analysis of the complete phase diagram of this
model, but to instead illustrate the actual application of
the Green’s function approach to study topological in-
variants in interacting two-dimensional fermion systems.

The rest of this paper is organized as follows: In
the next section, we introduce the dimerized Kane-Mele-
Hubbard model that we explore further below, followed
by a review how to extract the PI from the zero-frequency
Green’s function. We examine the non-interacting limit
of our model, where the Green’s function and the PI may
be easily calculated. After that, we discuss how to obtain
the PI for finite interactions from QMC simulations, be-
fore we then apply this approach to the dimerized Kane-
Mele-Hubbard model.

II. DIMERIZED KANE-MELE-HUBBARD

MODEL

In the following, we consider the half-filled Kane-Mele-
Hubbard model19–21,23 with an additional, explicit bond
dimerization, described by the Hamiltonian

H = H0 +HSO +HU , (1)

with the nearest-neighbor hopping terms

H0 = −t′
∑

i

∑

σ

(a†iσbiσ +h.c.)− t
∑

〈i,j〉

∑

σ

(a†iσbjσ +h.c.) ,

the spin-orbit next-nearest-neighbor term

HSO = iλ
∑

〈〈i,j〉〉

νij(a
†
iσσ

z
σσ′ajσ′ + b†iσσ

z
σσ′bjσ′ ) ,

and the Hubbard local interaction term

HU = U
∑

i

(a†i↑ai↑a
†
i↓ai↓ + b†i↑bi↑b

†
i↓bi↓) .

Here, a†iσ (b†iσ) denote creation operators for spin-σ
fermions on a sublattice-A site (sublattice-B site), with i
denoting the two-site unit cell at position ri on the honey-
comb lattice. The spin-orbit coupling strength is denoted
by λ, while νij = ±1 depending on whether the consid-
ered hopping process involves a left, or a right turn. We
allow for a different nearest-neighbor hopping strength t′

along one of the three nearest-neighbor bond directions,
as compared to the other directions, cf. Fig. 1. Here,
the unit cell is chosen such that it contains a t′ bond and
is centered on this bond. The two lattice vectors of the
honeycomb lattice a1,2 = a0(3/2,±

√
3/2) are also shown

in Fig. 1(a). In the following, we set the distance between
nearest neighboring lattice sites a0 = 1. For t′ = t, the
usual Kane-Mele-Hubbard model is recovered, which for
finite spin-orbit coupling λ and in the small-U regime
features a QSH topological insulating region, adiabati-
cally connected to the U = 0 QSH state. Increasing the
onsite repulsion U eventually drives the system into an
ordered phase with long-ranged transverse antiferromag-
netic correlations21. Furthermore, at U = 0, the explicit
bond dimerization allows to drive the system from the
topological insulator QSH state to a (trivial) band in-
sulating phase for t′ > 2t. At t′/t = 2, the system is
gapless with the bulk gap closing at one of the M-points
in the Brillouin zone, cf. Fig. 1(b). This will be exam-
ined in more detail below as well as the properties of the
model for t′ > t and finite interactions, U > 0. To study
the effects of interactions in terms of the topological in-
variants, we employ quantum Monte Carlo simulations
to calculate the imaginary-time Green’s functions of this
model Hamiltonian and then transform to the Green’s
function at zero frequency, from which we extract the Z2

PI for this inversion symmetric system.

III. PARITY INVARIANT FROM GREEN’S

FUNCTION

In an inversion symmetric system, the PI may be
calculated from the system’s Green’s function follow-
ing Ref. 15, which generalizes the procedure from the
non-interacting case8. Here, due to the explicit Sz con-
servation of the Hamiltonian, the Green’s function is
block-diagonal in spin-space, and the procedure can be
restricted to a single spin sector. The zero-frequency
Green’s function for each spin sector, Gσ(0,k), where
σ = +1 (−1) for spin-up (spin-down), thus is a 2 × 2
matrix in the A/B-sublattice basis. Denoting by b1,2
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the reciprocal lattice vectors (with bi · aj = 2πδij), we
consider the four TRIM

κn1,n2
= n1b1/2 + n2b2/2, ni = 0, 1 , (2)

corresponding to the Γ-point and the three M-points in-
dicated in Fig. 1(b), at which the operation of inver-
sion commutes with the zero-frequency Green’s function
Gσ(0,k). Here, the operation of inversion that inter-
changes the two sublattices and squares to the identity
can be represented in the sublattice basis by the first
Pauli-matrix, P = σx. Simultaneously diagonalizing the
two matrices P and Gσ(0,κn1,n2

), we identify for each of
the four TRIM the eigenvalue of P for the common eigen-
vector with a positive eigenvalue of Gσ(0,κn1,n2

). These
eigenvectors are referred to as right-zeros or R-zeros in
Ref. 15. Denoting the corresponding P eigenvalue of the
R-zero by ηκn1,n2

, we obtain the PI, ∆ ∈ {0, 1}, as

(−1)∆ =
∏

n1,n2

ηκn1,n2
, (3)

from any of the two spin sectors, which together form a
Kramer’s pair at each TRIM. It is thus sufficient for the
calculation of the PI, to only consider e.g. the spin-up
sector due to the explicit Sz conservation of the Hamil-
tonian. The procedure is however easily generalized to
inversion symmetric systems without explicit Sz conser-
vation15.

IV. NON-INTERACTING CASE

To illustrate the above procedure, let us first consider
the non-interacting limit, i.e., the dimerized Kane-Mele
model. For U = 0, the Hamiltonian H can be diagonal-
ized directly via a transformation to momentum space,

H =
∑

k,σ

(a†
k,σ b†

k,σ) hσ(k)

(

ak,σ
bk,σ

)

. (4)

In each spin sector σ = +1 (−1), the Hamiltonian matrix
at wave vector k equals

hσ(k) =

(

σγk −gk
−g∗

k
−σγk

)

, (5)

where gk = t′ + t(eia1·k + eia2·k) relates to the near-

est neighbor hopping terms and γk = 2λ(− sin(
√
3ky) +

2 cos(3kx/2) sin(
√
3ky/2)) to the spin-orbit term. The

system described by H conserves Sz, such that the
Green’s function G(ω,k) is block-diagonal in spin-space,
and each spin component in the non-interacting case
equals

Gσ(ω,k) = [ω − hσ(k)]
−1 . (6)

At zero frequency this is essentially the inverse of the
Hamiltonian matrix:

Gσ(0,k) = −h−1
σ (k) . (7)

-6

-4

-2

0

2

4

6

 E
 / 

t

t’ / t = 1
t’ / t = 2
t’ / t = 3

λ / t  = 0.2

ΓΓ K’ M
3KM

1

FIG. 2. (Color online) Band structure of the dimerized Kane-
Mele model along the indicated path through the Brillouin
zone for λ/t = 0.2 and different values of t′, as indicated.

Based on the approach outlined in the previous section,
we then obtain for finite values of λ a change in the PI
from ∆ = 1 for t′ < 2t to ∆ = 0 for t′ > 2t. This indi-
cates the change from a topological insulator to a trivial
band insulating state driven by the explicit bond dimer-
ization. At t′ = 2t, the system becomes semi-metallic
due to the single particle gap closing at the M3 point,
i.e., at k = κ1,1. This can be seen from the band struc-
ture shown for λ/t = 0.2 in Fig. 2. In the following, we
will examine this transition also at finite values of U .
Before performing such an analysis, we first explain, how
we extract the PI in the interacting regime from QMC
simulations.

V. PARITY INVARIANT FROM QMC

Once the zero-frequency Green’s function G(0,k) has
been obtained for the interacting model, the PI can
be calculated as outlined in Sec. III. In analogy with
Eq. (7) for the non-interacting case, one can associate
to the interacting model a fictitious Hamiltonian ma-
trix htopol(k) = −G−1(0,k), which has been dubbed the
topological Hamiltonian17. It contains the topological in-
formation of the interacting model, where for the free case
htopol(k) equals the Hamiltonian matrix of H . Hence, we
merely need to consider, how the zero-frequency Green’s
function is obtained from the QMC calculations. In par-
ticular, we employed a projective QMC scheme, by which
we obtain the momentum and spin resolved single par-
ticle Green’s function in imaginary time within the sys-
tem’s ground state on finite lattices. To obtain the PI,
we then calculate from the imaginary-time data of the
Green’s function those at Matsubara frequencies, and
continue in particular to zero frequency. For this pur-
pose, let us first consider the system at a finite temper-
ature T = 1/β. The imaginary time Green’s function
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Gσ(τ,k;β) at a given momentum k and spin projection
σ is a two-by-two matrix with entries

[Gσ(τ,k;β)]jl = −〈ck,σ,j(τ) c†k,σ,l(0)〉β , (8)

where j, l = 1, 2 is a sublattice index, with ck,σ,1 = ak,σ
and ck,σ,2 = bk,σ. For frequencies ωn = 2(n+ 1)π/β the
Matsubara-Green’s function is then given as

Gσ(iωn,k;β) =

∫ β

0

Gσ(τ,k;β) e
iωnτdτ . (9)

Particle hole symmetry of the model at half-filling, i.e.,

under the transformation c†
k,σ,j → dk,σ,j = (−1)jc†−k,σ,j

in each spin sector together with inversion symmetry
leads to the following conditions onGσ(τ,k;β): For equal
sublattices, [Gσ(τ,k;β)]jj = [Gσ(β − τ,−k;β)]jj , while,
for j 6= l, [Gσ(τ,k;β)]jl = −[Gσ(β − τ,−k;β)]jl.
We thus obtain for the diagonal elements of the Green’s

function at one of the TRIM κ = κn1,n2
the equation

[Gσ(iωn,κ;β)]jj = 2 i

∫ β/2

0

[Gσ(τ,κ;β)]jj sin(ωnτ) dτ ,

(10)
and, for j 6= l,

[Gσ(iωn,κ;β)]jl = 2

∫ β/2

0

[Gσ(τ,κ;β)]jl cos(ωnτ) dτ .

(11)
Now, the limit β → ∞ can be taken properly: From
the projective QMC, we obtain the ground state Green’s
function Gσ(τ,κ) = limβ→∞ Gσ(τ,κ;β), and then per-
form the above integrals with a sufficiently large cutoff
β → θ, set e.g. by the imaginary time evolution length
of the Green’s function θ employed in the QMC simu-
lations. Here, we used θ = 20/t. This cutoff proved
to be sufficient for the Greens function to decay to zero
within error bars, especially for large values of U/t, but
for the extreme cases close to the topological-to-trivial
band insulator transition, where the gap becomes very
small. Note, that one cannot simply take the limit
iωn → 0 before accounting for the (anti)symmetry con-
ditions on the imaginary time Green’s functions. This
would lead to wrong results, as exemplified below. Af-
ter (anti)symmetrization, the limit iωn → 0 can be per-
formed with the T = 0 Green’s functions, so that in
particular,

[Gσ(ω = 0,κ)]jj = 0 , (12)

and, for j 6= l,

[Gσ(ω = 0,κ)]jl = 2

∫ θ/2

0

[Gσ(τ,κ)]jl dτ . (13)

Hence, within the QMC simulations, one merely needs
to measure the off-diagonal part of the Green’s function
explicitly. To illustrate the above point, consider for a

moment the non-interacting limit, for which the exact
T = 0 imaginary-time Green’s function

Gσ(τ,κ) = −1

2
e−|gκ|τ

(

1 −1
−1 1

)

. (14)

If calculated naively, via
∫∞

0
Gσ(τ,Γ) dτ , one would

(wrongly) obtain a finite value of [Gσ(ω = 0,Γ)]jj in-
stead of the actual value (i.e. zero), which also follows in
this case directly from Eq. (6).

VI. QMC RESULTS

After having examined the calculation of the PI for
the interacting system in the previous section, we now
present results from QMC simulations of the dimer-
ized Kane-Mele-Hubbard model. We employ a projector
axillary-field determinantal QMC scheme28 by which we
obtain the momentum and spin resolved single particle
Green’s function in imaginary time within the system’s
ground state for finite lattices with N = 2L2 lattice sites
employing periodic boundary conditions. Here, L de-
notes the linear system size, which for multiples of six al-
lows all TRIM as well as the corners of the Brillouin zone
(the so-called Dirac points) to be presented. In particu-
lar, we use a projection length Θ = 50/t, imaginary-time
step ∆τ = 0.05/t and linear systems sizes L = 6, 12 and
18. An imaginary time evolution length θ = 20/t has
been used to obtain the Green’s function, as discussed in
Sec. V. Details on the employed QMC method in appli-
cation to the Kane-Mele-Hubbard model can be found in
Ref. 23.
To test the feasibility of extracting the PI within QMC,

we first consider the t′/t-driven transition between the
topological insulator regime and the trivial band insula-
tor for large t′ at finite values of U . In the following,
we consider λ/t = 0.2, in order to focus on the QSH
to dimerized insulator transition without being compro-
mised by the influence of the QSH-insulator transition
at λ = 0, and without loss of generality.21,23,29,30 As an
example, Fig. 3 shows the imaginary-time dependence of
the off-diagonal component of the Green’s function at the
M3-point at κ11, which in the following we denote by

Go(τ) := [G↑(τ,κ11)]12 . (15)

Indeed, a change in the PI in our model can be traced
back to a sign-change in Go(τ) (more precisely, in the
corresponding integral of Eq. (13)). As can be seen from
Fig. 3, for U/t = 2 and λ/t = 0.2, this change occurs
between t′/t = 1.94 and t′/t = 1.96, and correspond-
ingly, ∆ jumps from ∆ = 1 to ∆ = 0 between these
values. This indicates, that for these parameters, the
topological-to-trivial band insulator transition occurs for
a slightly smaller values of t′/t = 1.95(1) than at U = 0,
where the transition takes place at precisely t′/t = 2.
This can be understood to be the consequence of the
super-exchange induced by the local Coulomb repulsion
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FIG. 3. (Color online) Off-diagonal component of the Green’s
function at the M3-point for L = 6, U/t = 2 and λ/t = 0.2 at
various values of t′/t. Error bars are of the order of the line
width and have been omitted for clarity.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6  2.8  3

∆ s
p/

t

t’/t

U/t = 2

L = 6 
L = 12
L = 18

0.00

0.04

0.08

0.12

 1.92  1.96  2

FIG. 4. (Color online) Evolution of the single particle gap
∆sp for different system sizes as a function of t′/t for U/t =
2 and λ/t = 0.2 near the quantum phase transition from
the topological insulator to the dimerized phase. The inset
focuses in on the transition region.

which favors the singlet formation on the t′-bonds. At
the transition point, the single-particle excitation gap
∆sp closes, as can be seen from Fig. 4, which shows
∆sp at the M-point κ11, obtained from the decay in
imaginary time of the diagonal Green’s function elements
[G↑(τ,κ11)]jj ∝ exp (−τ∆sp). This reflects the same gap
closing at the transition point as observed for U = 0 at
t′/t = 2.
While in the small-U region, the QSH state is stable

with respect to interactions and adiabatically connected
to the U = 0 limit, for sufficiently large values of U the
system enters a transverse antiferromagnetically ordered
Mott-insulating phase, where the time-reversal symme-
try of the Hamiltonian H is spontaneously broken in the
thermodynamic limit19–21,23,24. This transition is how-

ever not related to a closing of the single particle gap, as
has been demonstrated by unbiased QMC simulations.
The single particle gap only exhibits a local minimum at
the transition point, but does not close21,23. This result
from numerically exact simulations is in contrast to pre-
vious VCA calculations, which concluded that the single
particle gap closes at the transition to the antiferromag-
netic phase32. In fact, the Green’s function exhibits no
qualitative change across the transition. This can be seen
also from the QMC data in Fig. 5, where Go(τ) is shown
for different values of U at λ/t = 0.2 and for t′ = t.

From previous QMC simulations21, we know that long-
ranged antiferromagnetic order sets in for these param-
eters near U/t ≈ 5 and flux induced edge states are
absent24. However, Go(τ) exhibits no significant changes
in this interaction region. In particular, and in contrast
to the t′-scan considered above, Go(τ) does not exhibit a
change in its sign. That this is not a finite size effect, can
be seen in the inset of Fig. 5, where we compare QMC
data at U/t = 8 for two different system sizes, L = 6 and
L = 12, which are seen to indeed be finite-size converged.
We verified that also up to U/t = 40, no sign change oc-
curs in Go(τ). This implies that the PI ∆ stays constant
when tuning across the antiferromagnetic transition. We
verified explicitly, that even at λ = 0 the PI takes on a
non-trivial value in the antiferromagnetic Mott insulating
region.

How does this relate to the quantum phase transition
that takes place when the system enters the antiferromag-
netic region, which is thus not adiabatically connected to
the U = 0 state? Only in the thermodynamic limit anti-
ferromagnetic order persists, which spontaneously breaks
time-reversal and the inversion (sublattice) symmetry of
the Hamiltonian. Yet this is not monitored by the single
particle Green’s function, on which the calculation of the
PI is based. Spontaneous symmetry breaking in the or-
dered region implies a degenerate ground state subspace
in the thermodynamic limit. In each specific ground state
from this manifold, the sublattices A and B are not equiv-
alent anymore, and this condition for a well defined PI
is broken. Remarkably, even in the antiferromagnetic re-
gion, the degeneracy of the ground state manifold implies
the existence of low-energy gapless excitations, namely
the Goldstone modes. However, these soft spin excita-
tions are of particle-hole type, and thus not attainable in
the single-particle sector.

Interestingly, once the antiferromagnetic order is de-
stroyed in the system by a sufficiently strong dimeriza-
tion t′, the PI does change to a trivial value. To ex-
plore this behavior, let us start from the large-t′ region,
t′ > 2t. Starting at U = 0 from the trivial band in-
sulator region for t′ > 2t and switching on local inter-
actions U > 0, the system remains insulating, and also
does not develop long-range order. This can be most
directly seen in the large-U limit. Here, the effective
model for the low-energy physics is a Heisenberg model
with an exchange dimerization along the t′-bonds: the
exchange interaction J ′ = 4t′2/U in second order pertur-
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Across the transition from the QSH insulator to the antiferro-
magnetic insulator the Green’s function remains qualitatively
unchanged. Error bars are of the order of the line width and
have been omitted for clarity. Inset: The Green’s function
shows very little finite size dependence due to the large gap
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bation theory is more than a factor four larger than the
exchange interaction J = 4t2/U along the other nearest-
neighbor bonds, and also dominates over the weak (for
λ/t = 0.2) next-nearest-neighbor anisotropic exchange
coupling J2 = 4λ2/U related to the spin-orbit terms19.
The strong J ′-dimerization drives the spin system into
a non-magnetically ordered, dimerized phase. Indeed,
for J2 = 0, the critical ratio beyond with the antiferro-
magnetic order vanishes in the Heisenberg model on the
dimerized honeycomb lattice equals J ′/J = 1.735(1)31,
which relates here to a ratio of t′/t ≈ 1.32 in the Hub-
bard model in the large-U limit. For t′ > 2t, the system
thus resides inside a non-magnetic phase, adiabatically
connected to the trivial band insulator at U = 0. Corre-
spondingly, the PI of the system does not change upon
increasing U at fixed t′ > 2t.

On the other hand, decreasing the ratio t′/t at suffi-
ciently large U , a transition from the large-t′ non-ordered
phase to the antiferromagnetic phase occurs, and we ob-
serve a corresponding transition in the PI: In Fig. 6, we
consider in particular the case of U/t = 8 and λ/t = 0.2.
Upon varying t′/t, we find a change in the sign of Go(τ),
and in more detail, the PI changes from ∆ = 1 to ∆ = 0
beyond t′/t = 1.28(2). Remarkable is the fact, that this
transition is again related to the emergence of low-energy
gapless excitations, namely the Goldstone modes, which
appear in the antiferromagnetic phase, but not in the
dimerized phase, where instead a finite spin-gap sepa-
rates the singlet ground state from the lowest triplet ex-
cited state, that relates in the strong-J ′ limit to a triplet
excitation on one of the strong J ′ bonds. The single par-
ticle gap ∆sp however stays finite in both phases, as well
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FIG. 6. (Color online) Off-diagonal component of the Green’s
function at the M3-point for L = 6, U/t = 8 and λ/t = 0.2
at different values of t′ between t′ = t and t′ = 1.6t (top to
bottom). Error bars are of the order of the line width and
have been omitted for clarity.

as across the transition.

VII. CONCLUSIONS

We explored Green’s function based methods to obtain
topological invariants in a two-dimensional strongly in-
teracting fermion system that exhibits trivial band insu-
lating, Mott insulating and topological insulator regimes.
Given an adiabatic connection for a phase of the inter-
acting system to the non-interacting limit, we found that
the calculated parity invariant indeed does not change,
and thus allows to extract the direct transition between
the topological insulator and the trivial insulator region
for finite interactions. However, since the parity invari-
ant relates to the single particle Green’s function, and
hence captures single particle properties only, it does not
allow to monitor, e.g., the transition to the antiferro-
magnetic regime from the topological insulator side. A
change of the parity invariant would require correspond-
ing changes in the single particle Green’s function, which
are not being observed in this case. Use of the parity
invariant based on approximate methods to calculate the
Green’s function may however lead to deviating conclu-
sions. For example, the change in the parity invariant
within the variational cluster approximation to the Kane-
Mele-Hubbard model25, is accompanied by a closing of
the gap in the single particle Green’s function32, which
does not reflect the actual behavior of this model21,23.
Although its usage is thus restricted, we have shown that
the parity invariant nevertheless constitutes a readily ac-
cessible measure within quantum Monte Carlo simula-
tions for a large variety of (quantum) phase transitions
from topological to trivial insulators.
Recently we became aware of a QMC investigation33

which examined the parity invariant in a related model,
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focusing on the interaction region below the magnetic
ordering transition.
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