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Realizing Majorana modes (MMs) in condensed-matter systems is of vast experimental and the-
oretical interests, and some signatures of MMs have been measured already. To facilitate future ex-
perimental observations and to explore further applications of MMs, generating many MMs at ease
in an experimentally accessible manner has become one important issue. This task is achieved here
in a one-dimensional p-wave superconductor system with the nearest- and next-nearest-neighbor in-
teractions. In particular, a periodic modulation of some system parameters can induce an effective
long-range interaction (as suggested by the Baker-Campbell-Hausdorff formula) and may recover
time-reversal symmetry already broken in undriven cases. By exploiting these two independent
mechanisms at once we have established a general method in generating many Floquet MMs via
periodic driving.

PACS numbers: 03.67.Lx, 03.65.Vf, 71.10.Pm

Introduction.—The Majorana fermion, a particle
which is its own anti-particle,1 is attracting tremendous
attention.2–5 In addition to its fundamental interest,6–9

its potential applications in topological quantum com-
putation are also noteworthy.10 Along with considerable
theoretical studies,7,10–20 the experimental search for Ma-
jorana modes (MMs) in condensed-matter systems has
become a timely and important research topic. Indeed,
following the theoretical results in Refs. 19–25, the zero-
bias conductance peaks observed recently26–29 are re-
garded as a signature of MMs in one-dimensional (1D)
spin-orbit coupled semiconductor nanowires. However,
the observed zero-bias peaks can be due to other reasons
as well, e.g., the strong disorder in the nanowire30,31 or
smooth confinement potential at the wire end.32 This be-
ing the case, the formation of MMs in these systems are
yet to be double-confirmed by other approaches.

To identify MMs and facilitate their experimental ob-
servation, the signal strength should be enhanced.33–35

If many MMs are present at the same edge and topo-
logically protected from hybridizing with each other, one
may verify if the signal originates from MMs by tun-
ing the actual number of them, with the enhanced sig-
nal also more robust against experimental disorder24,30,36

and contaminations from thermal excitations.21–25 It is
thus constructive to find a general method to form many
MMs within one single system. In this respect, two facts
are known. First, the formation of many MMs needs the
protection of time-reversal symmetry.35,37,38 Second, a
longer-range interaction in a system is helpful to obtain
more than two pairs of MMs.37 As such, the generation
of many MMs is equivalent to the following theoretical
question: how to synthesize a long-range interaction in
a topologically nontrivial condensed-matter system while
maintaining time-reversal symmetry?

As a conceptual advance, our answer to this question
is rather simple and general. Given that periodic driving
has become one highly controllable and versatile tool in
generating different topological states of matter,39–47 we
show that a periodic driving protocol can create many
Floquet MMs because it can generically induce effec-
tive long-range interactions and may also restore time-
reversal symmetry (if it is broken without driving). Note
that Floquet MMs are a particular class of MMs associ-
ated with the Floquet quasi-energy bands of a periodi-
cally driven system:44 they may be used for topological
quantum computation as “normal” MMs do.48

Specifically, we propose to generate multiple Floquet
MMs by switching (periodic quenching) a Hamiltonian
from H1 for the first half-period to H2 for the second
one. The Floquet operator U is then

U(T ) = e−
iH2T

2h̄ e−
iH1T

2h̄ ≡ e−
iHeffT

h̄ , (1)

where an effective Hamiltonian Heff for the driven system
has been defined. Using the Baker-Campbell-Hausdorff
(BCH) formula, one finds that Heff is formally given by

Heff =
H1

2
+

H2

2
− iT

8h̄
[H2, H1]

− T 2

96h̄2 [(H2 −H1), [H2, H1]] + · · · . (2)

Clearly then, even if H1 or H2 are short-range Hamilto-
nians, the engineered Heff may still have long-range hop-
ping or pairing terms via the nested-commutator terms
in Eq. (2). This constitutes a main difference from un-
driven systems. Thus, the remaining job is to design
such a protocol so that Heff also possesses time-reversal
symmetry. Interestingly, in the first proposal to realize
Floquet MMs,44 no more than two pairs of MMs can
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be generated precisely because time-reversal symmetry
is not restored by the periodic driving therein.
In the following we present our detailed results using

a model of a 1D spinless p-wave superconductor with the
nearest- and next-nearest-neighbor (NNN) interactions
only. Under a periodic modulation of superconducting
phases, we not only demonstrate that many Floquet MMs
(e.g. 13 pairs in one case) can be generated, but also show
that the number of the MMs may be widely tuned by
scanning the modulation period. These results also shed
more light on the inherent advantages of driven systems
in exploring new topological states of matter, which can
be useful for other timely topics related to long-range
interactions (e.g., fractional Chern insulators.49,50)
Static model.—We start from the Kitaev model Hamil-

tonian for a 1D spinless p-wave superconductor

H = −µ

N∑

l=1

c†l cl −
2∑

a=1

N−a∑

l=1

(tac
†
l cl+a +∆ac

†
l c

†
l+a + h.c.),

where µ is the chemical potential, ta and ∆a = |∆a| eiφa

with a = 1 (a = 2) describes the nearest- (next-nearest-)
neighbor hopping amplitude and pairing potential respec-
tively, and φa is the associated superconducting phases.
All energy-related parameters are scaled by |∆1| and
h̄ = 1 is set in our calculations. Majorana operators here

refer to (cl+c†l ) or i(cl−c†l ). Such synthesized MMs may
appear as edge modes under open boundary condition, if
the bulk band structure is topologically nontrivial.
The relative phase φ = φ1−φ2 determines the topolog-

ical class of H .51 For φ = 0 and π, H has time-reversal
and particle-hole symmetries. These cases then belong
to the so-called “BDI” class characterized by a topolog-
ical invariant Z. For other values of φ, H has particle-
hole symmetry only and falls into the so-called “D” class
characterized by a topological invariant Z2. The D class
can generate at most one pair of MMs. As to the BDI
class, despite its potential in forming many MMs,38 at
most two pairs of MMs can be generated here due to the
short-range nature of H .
Driven model.—We now turn to periodically driven

cases under a protocol given by Eq. (1). The emergence of
Floquet MMs is directly connected to topological proper-
ties of the eigenstates of the Floquet operator U(T ). Let
|u〉 be an eigenstate of U(T ) with an eigenvalue e−iǫT ,
namely U(T )|u〉 = e−iǫT |u〉. Evidently, the eigenvalue
index ǫ is defined only up to a period 2π/T and hence
called “quasi-energy”. The periodicity in ǫ may lead to
a novel topological structure in driven systems, with the
corresponding topological classification revealed by the
homotopy groups.42 However, if the driven system be-
longs to a trivial class to this novel topological structure,
then topological properties of the driven system is fully
characterized by Heff defined in Eq. (1).38 This will be
the case for our driving protocol proposed below.
As an explicit example, we propose to switch between

two HamiltoniansH1 andH2 by the following: in the first
half period, H1 = H(φ1, φ2) with both superconducting
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FIG. 1: (Color online) (a) Winding of the ~n(k) [see Eqs. (4)
and (5)] for k ∈ [−π, π]. W = −3,−2, 0, 1 correspond to
(t1, t2)=(1, 5), (1,3), (1, 0), (1,−3), respectively. Indicated
on each panel is the winding number W . The solid and dotted
line indicates a gap closing (of Ek) at k = 0 or ±π, while the
dashed line corresponds to a gap closing at k = π/2. Other
parameters are µ = −10, |∆2| = 2.5 and T = 0.2.

phase parameters φ1 and φ2 fixed; whereas in the second
half period, we swap φ1 and φ2 so that H2 = H(φ2, φ1).
Without loss of generality, we choose φ1 = π/2 and
φ2 = 0. Thus, within each half period, the Hamilto-
nian is in class D that breaks time-reversal symmetry. In
addition to a possible generation of long-range interac-
tions for Heff, this driving protocol is designed to recover
time-reversal symmetry. In particular, let K be a conven-

tional time-reversal operator and G ≡ e−i
φ1+φ2

2

∑
l
c†
l
cl be

a gauge transformation operator. Considering a general-
ized time-reversal operator K̄ ≡ KG, we find

K̄U(T )K̄−1 = e
iH1T

2h̄ e
iH2T

2h̄ = U †(T ). (3)

This constitutes a direct proof that our driven system
now possesses time-reversal symmetry, and as a result its
topological class is switched from class D to class BDI.
To further examine this restored time-reversal symme-
try, we work in the momentum representation and di-
rectly find an analytical Heff from Eq. (1). We define

ck =
∑

l cle
−ikl/

√
N and introduce the Nambu represen-

tation Ck = [ck, c
†
−k]

T . A standard procedure then leads

to Heff =
∑

k∈BZ C
†
kHeff(k)Ck, with Heff(k) = Ek~n(k)·~σ,

where ~σ represents the Pauli matrices.41 The three com-
ponents of ~n(k) are given by n1(k) = 0, and

n2(k) =
g1,k sin(skT )

sk sin(EkT )
− 2g2,kηk sin

2(skT/2)

s2k sin(EkT )
, (4)

n3(k) =
ηk sin(skT )

sk sin(EkT )
+

2g1,kg2,k sin
2(skT/2)

s2k sin(EkT )
, (5)

where ga,k = |∆a| sin(ak), sk = (η2k +
∑

a g
2
a,k)

1/2,

ηk = −µ − 2
∑

a ta cos(ak), and cos(EkT ) = cos(skT ) +

2(g22,k/s
2
k) sin

2(skT/2). For each value of k, one obtains
two values of Ek and hence two values for the quasi-
energy ǫ. Consistent with the K̄ symmetry, we now have
H∗

eff(−k) = Heff(k). Noting the inherent particle-hole
symmetry of Heff, one may construct a chiral symmetry
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FIG. 2: (Color online) Quasi-energy spectrum for a driven
case (a) vs energy spectrum for a static case (b) obtained
under open boundary condition. Dashed blue line and solid
black line stand for two degenerate pairs and a single pair of
MMs, respectively. t1 = 1, N = 200, and other parameters
are the same as in Fig. 1(b).

for Heff, a fact consistent with our above result that ~n(k)
is in the yz plane for all k. The above analysis makes it
clear that our driving protocol changes both the under-
lying symmetry and the topological class of the system.
Without a gap closing between the two branches of

Ek, the topological invariant Z in class BDI can be ob-
tained by the integer winding number W =

∫ π

−π
dθk
2π ∈ Z,

where θk = arctan[n3(k)/n2(k)]. A computational ex-
ample illustrating W is shown in Fig. 1(a). The number
of pairs of MMs under open boundary condition is then
given by |W |. As some system parameters continuously
change, gap closing and consequently topological phase
transitions occur.7 Figure 1(b) depicts a phase diagram,
obtained by explicitly evaluating W . It is seen that |W |
ranges from 0 to 3. This indicates that three pairs of
MMs can be formed in our driven system. This is beyond
the expectation for the undriven model, where the NNN
interaction can give at most two pairs of MMs. Therefore,
the finding of |W | = 3 in some parameter regime is the
first clear sign that our driving protocol may synthesize
some features absent in the static model. The bound-
aries between different topological phases of our driven
system are also interesting on their own right. The solid
and dotted lines in Fig. 1(b) depict the topological phase
transition points at whichW jumps by one. This is found
to go with the gap closing at k = 0 or ±π. The dashed
line gives the phase transition points at which W jumps
by two. This happens at k = π/2.
To confirm our theoretical results presented in Fig. 1

we carry out numerical calculations of the quasi-energy
spectrum ǫ under open boundary condition. Because
ǫ = π/T is equivalent to ǫ = −π/T , Floquet MMs have
two flavors: one at ǫ = 0 and the other at ǫ = ±π/T . The
second flavor is certainly absent in an undriven system.44

For fixed t1 = 1 and a varying t2, Fig. 2(a) depicts the for-
mation of both flavors of Floquet MMs, with the second
flavor emerging in a wider parameter regime. The total
number of pairs of MMs should equal |W | (if the wind-
ing number is well defined). For example, Fig. 2(a) shows
that two degenerate pairs of MMs at ǫ = ±π/T and one
pair of MMs at ǫ = 0 are formed when t1 = 1 and t2 = 4.
This agrees with the W = −3 region shown in Fig. 1(b).
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FIG. 3: (Color online) The expansion coefficients of Heff

for T = 0.2 (a) and 2.0 (b), and of the static H for
the real (c) and imaginary (d) parts in the operator basis
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parameters are the same as in Fig. 2.

Likewise, all other details in Fig. 2(a) are fully consistent
with our analytical results shown in Fig. 1(b). We have
also studied the dynamics of the formed MMs in one full
period of driving: they are indeed well localized at two
edges. Further, as a comparison with our static model
H , we plot in Fig. 2(b) our system’s energy spectrum in
the absence of driving. It is seen that at most one pair
of MMs can be formed only in a very narrow t2 regime
for the large |µ| case. The parallel driven case is how-
ever different: one may still obtain three pairs of MMs.
Thus, even in the large |µ| case, our driving protocol can
still generate more MMs than the static case. This is
both interesting and useful because in general, the large
|µ| is preferred for the protection of MMs against strong
disorder in actual experiments.
In efforts to generate even more MMs, we now extend

our direct numerical studies to other parameter regimes.
Remarkably, the BCH formula in Eq. (2) indicates that
as T increases, the nested commutators on the right hand
side of Eq. (2) will have heavier weights. An increasing
T can then induce longer-range interactions in Heff. This
trend is investigated in Fig. 3, where the expansion coef-
ficients of Heff [numerically obtained from Eq. (1)], with
Heff expanded as a quadratic function of the operators

(c1, · · · , cN , c†1, · · · , c†N )T , are shown for two different val-
ues of T . For comparison, the expansion coefficients for
the static case are also plotted in Fig. 3(c,d). A few inter-
esting observations can be made from Fig. 3. First, the
plotted expansion coefficients of Heff are all real, which
is different from the shown static case with both real
and imaginary coefficients. This difference reflects the
restored time-reversal symmetry for the driven case. Sec-
ond, in sharp contrast to the results shown in Fig. 3(c,d),
coefficients for quite long-range hopping/pairing (e.g.,
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TABLE I: Number of MMs localized at each boundary for
different T . Other parameters are the same as in Fig. 2(a).

t2 −8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8

T = 0.5 2 4 4 3 3 2 0 0 0 1 1 2 2 4 4 4 3

T = 1.0 6 6 7 7 6 3 3 2 1 1 2 5 5 6 7 7 6

T = 2.0 13 13 12 11 9 8 8 1 1 3 4 7 11 10 13 13 12

across more than 10 sites) can be appreciably nonzero
for Heff in both cases of T = 0.2 and T = 2.0. The latter
case, plotted in Fig. 3(b) with wider stripes, confirms
the emergence of longer-range terms with considerable
weights as T increases. Third, the diagonal terms in the
expansion shown in Fig. 3(a,b) (which can be understood
as an effective chemical potential) are much smaller than
the diagonal elements, i.e. |µ|, in Fig. 3(c). This further
explains why a driven system may generate many MMs
despite a large |µ| in the undriven model.
Results in Fig. 3 motivate us to explore the formation

of Floquet MMs with sufficiently large values of T . There
is also one twist as we increase T . That is, the quasi-
energy gap may be generically closed at ǫ = 0. Conse-
quently the winding number W is no longer well-defined.
To characterize the topological phases at ǫ = ±π/T ,
where MMs can still be topologically protected, we re-
sort to another topological invariant52

ν =
1

2

∑

n3(k)=0,Ek 6=0

sgn{∂k[Ekn3(k)]}sgn[Ekn2(k)], (6)

which reduces to the winding number W when the gap
at ǫ = 0 is also open. We present in Tab. I the number
of pairs of MMs we obtain, for an increasing T and for
different choices of t2. For T = 0.5, the best observation
is the generation of 4 pairs of MMs but no MMs for |t2| <∼
|t1|. For T = 1.0, it is possible to achieve 7 pairs. For
T = 2.0, as many as 13 pairs of MMs can be formed.
Interestingly, in cases with large T such as T = 1.0, our
driving protocol can also form several pairs of MMs for
|t2| < |t1| or even with t2 = 0. Note that as more MMs
are generated by increasing T , the bulk quasi-energy gap
at ε = ±π/T decreases in general, leading to a larger
“penetration length” (into the bulk) for the synthesized
MMs. Considering the necessary protection of MMs by a
nonzero bulk gap, one may not wish to push our driving
protocol too far.
It is noted that the finite switching-time in the practise

to our ideal step-driving scheme has no qualitative change
to our results. However, it may influence quantitatively
the range of the synthesized interaction as well as the
numbers of the generated MMs. To simulate the smooth
switching we have separated each of the two half-periods
of our driving scheme into fifteen intermediate staircase-
like changes and confirmed numerically that longer range
interactions as well as more MMs can be generated. As

a final remark, the number of the MMs characterized
by the topological invariant depends on the topological
properties of the Floquet states, which are determined
by all the physical parameters in the driven model.
Conclusions.—A periodic driving has the capacity to

restore time-reversal symmetry and to induce an effec-
tive long-range interaction. With these two mechanisms
working at once, the generation of many MMs is achieved
using a standard p-wave superconductor model under cer-
tain periodic modulation.
In terms of possible experimental confirmation of our

predictions, our model may be realized with cold atoms
or molecules in a designed optical lattice, as clean systems
with negligible perturbations. Explicitly, the nearest and
NNN hopping (ta) can be realized by a simple zigzag
chain lattice,34 with the hopping strength adjustable by
the lattice geometry. The chemical potential (µ) is con-
trollable through the optical trap potential or a radio
frequency detuning. The pairing terms (∆a) may be in-
duced by a Raman induced dissociation of Cooper pairs
forming an atomic BCS reservoir and the associated su-
perconducting phases (φa) can be tuned by complex Rabi
frequencies.44 Another experimental realization is to use
the recently proposed quantum-dot-superconductor ar-
rays with a zigzag geometry.53 Here µ can be gate con-
trolled. ∆a can be proximity-induced and φa can be
tuned via applying fluxes on the superconducting islands.
The MMs formed in our system may be probed using
techniques analogous to what is being used for undriven
systems,34 but now with the hope of some enhanced sig-
nals if a measurement exploits the simultaneous genera-
tion of many MMs. The generation of a tunable number
of many MMs is also expected to offer a new dimension
for experimental studies.
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