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We use scanning tunneling microscopy to determine the surface structure and dopant distribution
in PrxCa1−xFe2As2, the highest-Tc member of the 122 family of iron-based superconductors. We
identify the cleaved surface termination by mapping the local tunneling barrier height, related to the
work function. We image the individual Pr dopants responsible for superconductivity, and show that
they do not cluster, but in fact repel each other at short length scales. We therefore suggest that the
low volume fraction high-Tc superconducting phase is unlikely to originate from Pr inhomogeneity.

PACS numbers: 68.37.Ef, 74.55.+v, 74.70.Xa, 74.62.Dh

The recent discovery of high-Tc superconductivity in
Fe-based materials[1] has rejuvenated worldwide efforts
to understand and predict new superconductors. Like
cuprates, Fe-based superconductors (Fe-SCs) are lay-
ered, with Fe-based superconducting planes separated
by buffer layers. Furthermore, superconductivity typi-
cally arises by chemically doping an antiferromagnetic
parent compound [2]. In the first generation of AFe2As2
(122) Fe-SCs, hole doping resulted in higher maximum
Tc (38 K in KxBa1−xFe2As2 [3]) than electron dop-
ing (25 K in Ba(Fe1−xCox)2As2 [4]). However, the
highest Tc among all Fe-SCs was 57 K in electron-
doped Sm1−xLaxO1−yFyFeAs [5], prompting the sugges-
tion that Tc could be enhanced in electron-doped 122s by
removing the damaging dopant disorder from the crucial
Fe layer, and doping the buffer layer instead. The strat-
egy was successful in the rare-earth-doped Ca122 family
[6–8], with Tc reaching 49 K in PrxCa1−xFe2As2. How-
ever, the high Tc appeared in only ∼ 10% of the volume,
while the bulk of the material showed Tc ∼ 10− 20 K.

Saha et al. performed a thorough search for the ori-
gin of the low volume fraction high-Tc phase, using bulk
experimental probes. First, the high Tc was found to be
impervious to etching or oxidation, arguing against sur-
face superconductivity. Second, high-Tc resistive transi-
tions were never observed for dopant concentrations be-
low those necessary to suppress the parent antiferromag-
netic phase, arguing against random inclusions as the
origin. Furthermore, no such contaminant phases were
observed in over 20 samples examined by x-ray diffrac-
tion. Third, the high Tc was unaffected by the global
structural collapse phase transition (the abrupt ∼ 10%
shrinkage of the c-axis lattice constant that occurs in the
Ca122 family under external or chemical pressure), ar-
guing against any relationship to the collapsed phase or
to interfaces between collapsed and non-collapsed phases.
In fact, aliovalently-doped CaFe2(As1−xPx)2 also shows
the structural collapse but no high-Tc volume fraction
[9]. Saha et al. therefore concluded that the charge dop-
ing is an essential ingredient to the high-Tc phase, and

speculated that it has “a localized nature tied to the low
percentage of rare earth substitution.”
Given the challenges in identifying the origin of the low

volume fraction high-Tc phase from bulk experiments, a
local probe is naturally required. Here we use scanning
tunneling microscopy (STM) to investigate two possible
sources of electronic inhomogeneity in PrxCa1−xFe2As2:
the surface and the dopants. We provide the first
definitive identification of the cleaved surface termina-
tion and the first image of all individual dopants in the
Ca122 system. Based on our results, we suggest that
dopant inhomogeneity is unlikely to be responsible for
the low volume fraction of high-Tc superconductivity in
PrxCa1−xFe2As2.
Single crystals of PrxCa1−xFe2As2 are grown via self-

flux with measured x = 10.5% and resistive Tc = 43.2 K
[10]. The crystals are handled exclusively in Ar envi-
ronment, cleaved in ultra-high vacuum at cryogenic tem-
perature, and immediately inserted into the STM head
where they are imaged with a PtIr tip, cleaned by field
emission on Au. The first challenge in STM imaging
of any new material is to identify the surface structure
and evaluate to what extent it is representative of the
bulk. The surface structure of the AFe2As2 system has
been particularly controversial [11]. Due to the stronger
bonding within the FeAs layer [Fig. 1(a)], the FeAs layer
is expected to remain intact upon cleaving, leaving half a
complete A layer on each surface [12]. This preservation
of charge neutrality is a necessary (but not sufficient)
condition for the surface to be representative of the bulk.
However, a number of experiments have claimed that the
cleaved surface is As-terminated in the Ba122 [13], Sr122
[14], and Ca122 [15] systems.
We encounter three different surface morphologies in

our STM topographs of PrxCa1−xFe2As2. The majority
of the observed sample surface displays a 2× 1 structure
[Fig. 1(b)] frequently observed in other STM studies of
122 materials [16]. We occasionally observe a disordered,
“web-like” structure [Fig. 1(c)], which smoothly merges
with the 2 × 1 structure [Fig. 1(d)]. The third type of
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FIG. 1. (color online) Surface morphologies of cold-
cleaved Pr0.105Ca0.895Fe2As2. (a) Crystal structure of
PrxCa1−xFe2As2. Topographs of (b) 2 × 1 surface structure
(250 pA, +300 mV, 7 K) (c) disordered, “web-like” surface
structure (15 pA, 100 mV, 7 K), (d) smooth transition be-
tween 2 × 1 and “web-like” structures (20pA, -100mV, 7K),
and (e) 1×1 square lattice with ∼ 4 Å lattice constant (5 pA,
50 mV, 25 K). Inset in (b) shows an average 30×15 pixel, 2×1
supercell [17] tiled 2×4 times. Inset in (e) shows an enlarged,
4 nm topograph of 1×1 square lattice acquired at 50 mV and
50 pA. (Due to an external noise source present during the
acquisition of the data in panel (e), the images in (e) have
been filtered to remove all spurious spatial frequencies higher
than the 4 Å periodicity.)

TABLE I. Work functions for several pure elements. [18]

Atom Fe As Ca Pr Sr Ba Au Pt Ir

ϕ (eV) 4.65 3.75 2.71 2.7 2.76 2.35 5.32 5.40 5.6

surface, observed rarely, shows a 1×1 square lattice with
∼ 4 Å periodicity [Fig. 1(e)].

We map the tunneling barrier height to identify these
surfaces. The tunneling current I is expected to decay
exponentially with the tip-sample separation z as

I ∝ e
−

√

8meΦ

~2
z

where Φ is the local barrier height (LBH), approximately
equal to the average of the tip and sample work functions
[19]. However, the LBH is sensitive not only to the ele-
mental composition of the tip, but also the geometric con-
figuration of the tip’s terminal atoms, and the tip-sample
angle (which reduces the LBH by cos2 θ, where θ is the
deviation between the sample surface perpendicular and
the z direction of tip piezo motion [20]). Moreover, the
LBH depends on the sample topography through two op-
posing mechanisms. On the one hand, protruding atoms
or clusters may stretch out as the tip is retracted, reduc-
ing the effective rate at which the tip-sample distance de-

creases, and thus suppressing the measured LBH above
the protrusion [21]. On the other hand, the topographic
corrugation appears smoothed out at distances far from
the surface; this implies that the wave function decays
faster above a protrusion than a depression, thus enhanc-
ing the measured LBH above a protrusion [22]. Without
accounting for these factors, previous studies found the
LBH on the 2× 1 surface of BaFe2As2 to be much lower
than the expected work functions for either Ba or As [23].

In contrast, the comparison of LBH measurements
with the same tip (i.e. the same microscopic configura-
tion of terminating atoms) across different flat regions of
the same cleaved surface (i.e. the same tip-sample angle)
can yield a robust measure of relative work functions, and
can be utilized for element identification in cases where
the sample consists of two different surfaces [24]. Here,
we directly compare LBH values measured with the same
STM tip across the different morphologies of Fig. 1 on the
same cleaved sample.

To extract the LBH at each point (x, y) in a field
of view (FOV), a feedback loop first adjusts z0(x, y) to
maintain I = 100 pA at Vset = −100 mV; the current
I(z) is then measured as the tip is retracted from z0. Fig-
ure 2 shows simultaneous topographs and work function
maps for the 1×1 square lattice across a step edge [Figs.
2(a,c)] and the 2×1 structure in a nearby flat area [Figs.
2(b,d)]. Figure 2(e) shows two sets of representative I(z)
curves from the square regions in Figs. 2(a,b), which are
clearly distinct from one another. After correcting for
the surface slope, we find the average LBH values are
Φ1×1 = 4.50± 0.42 eV and Φ2×1 = 3.57± 0.34 eV. Tak-
ing Table I and the tip work function into account, these
values suggest that the 1 × 1 surface is a complete As
layer, while the 2× 1 surface is a half Ca layer.

We expect the LBH to be affected by differences in the
local environments for As/Ca atoms on PrxCa1−xFe2As2
versus their respective pure elements. A dominant con-
tribution to these differences may be due to dipole barri-
ers arising from charge redistribution at the surface [26].
This can increase or decrease the measured LBH accord-
ing to the relative sign and magnitude of surface dipole
barrier on PrxCa1−xFe2As2 versus the pure element sin-
gle crystals represented in Table I. We therefore expect

Φ1×1 =
ϕAs + Edip

As + ϕtip

2
; Φ2×1 =

ϕCa + Edip
Ca + ϕtip

2

where ϕAs and ϕCa are the pure element work func-
tions, and Edip

As and Edip
Ca are the additional energies for

an electron to escape the dipole layers at the As- and
Ca-terminated surfaces of PrxCa1−xFe2As2. Assuming
ϕtip . ϕPtIr [27], the values of Edip

As , E
dip
Ca , and their dif-

ference Edip
As −Edip

Ca = 0.82 eV are all of the correct magni-
tude for such dipole layers [26]. The sign of the difference,
which indicates that it is harder to remove an electron
from the dipole barrier of the As surface than that of the
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FIG. 2. (color online) LBH comparison between 1 × 1 and
2× 1 surface structures. Topographs acquired at 25 K of (a)
1× 1 (4 Å × 4 Å) square lattice appearing on both sides of a
step edge and (b) 2 × 1 (8 Å × 4 Å) lattice. Simultaneously
acquired LBH maps are shown in (c) and (d). Approximately
26% larger LBH is observed in a clean, flat area of the 1× 1
surface (red box in (a)) than in a clean flat area of the 2× 1
surface (green box in (b)). Furthermore, sparse topographic
protrusions on the 1×1 surface (e.g. marked by yellow arrow)
show a lower LBH close to that of the flat 2 × 1 surface,
suggesting that they are scattered remaining Ca or Pr atoms
[25]. Both datasets were acquired at Iset=100 pA and Vset=-
100 mV. (e) Representative sets of I(z) curves from square
regions in (a) and (b) are shown as thin red and green lines
respectively. Darker red and green lines represent linear fits
to the average I(z) curves from boxes in (a) and (b).

half-Ca surface, is physically justified because the half-Ca
surface is nonpolar, whereas the As surface is deficient of
electrons from the stripped Ca, and thus more electroneg-
ative. The inferred electron-deficiency of this As surface
is consistent with the failure to observe even proximity-
induced superconductivity on the As-terminated surface
of the related Sr0.75K0.25Fe2As2 [28].

The density of atoms in the surface layer is also known
to affect the measured LBH [29, 30]. Theories that treat
the ionic lattice pseudopotential as a perturbation pre-
dict ∼10% variations among different faces of single crys-
tals [29]. Measurements on Cu(100), Cu(110), Cu(112),
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FIG. 3. (color online) LBH comparison between “web-like”
and 2 × 1 surface structures. Topographs acquired at 7 K of
(a) “web-like” surface and (b) 2× 1 surface. Simultaneously
acquired LBH maps are shown in (c) and (d). Both datasets
were acquired at Iset=105 pA and Vset=100 mV. The z cali-
bration used here was obtained by assuming that the average
LBH for the 2 × 1 surface in the boxed region of (b) here is
the same as that in Fig. 2(d).

and Cu(111) confirm variations of at most 10% [30] al-
though the surface density of atoms differs by almost
65% between Cu(110) and Cu(111). Therefore, the 50%
difference in atom density between 1 x 2 and 1 x 1 sur-
faces of PrxCa1−xFe2As2 is unlikely to account for the
26% difference we observe between LBH values on these
surfaces (Fig. 2).

We also note the reduced LBH along the step edge
in Fig. 2(c), which may be attributed to two mecha-
nisms [24]. First, the step edge is effectively an angled
surface, so the LBH is reduced by cos2 θ. Second, the
Smoluchowski smoothing of the electron wave functions
along the step edge results in an additional dipole mo-
ment which reduces the LBH [31].

To further support the identification of the 2 × 1 sur-
face, we show a high-resolution map of the intra-unit
cell structure to rule out the possibility of “hidden” sur-
face atoms. We correct for small piezoelectric and ther-
mal drift by placing the Ca/Pr atoms of Fig. 1(b) on
a perfect lattice [32]. We then use the whole FOV to
create the average 2 × 1 supercell in the inset to Fig.
1(b) [17]. We do not observe atom dimerization (as seen
in Ca0.83La0.17Fe2As2 [15] and Sr1−xKxFe2As2 [14, 33]),
but rather a single row of atoms, similar to the CaFe2As2
parent compound [34]. We note that the appearance of
dimerization [14, 15, 33] may be an artifact attributed
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to hybridization between the surface A atoms and the
underlying As atoms [12].

For completeness, we investigate the nature of the
“web-like” surface. Because it merges smoothly into the
2× 1 surface without any evident step edges [Fig. 1(d)],
it is also likely a reconstruction of the Ca layer. A si-
multaneous topograph and LBH map of the “web-like”
surface are shown in Figs. 3(a,c), with analogous maps
for the 2×1 surface, acquired with the same tip for direct
comparison, shown in Figs. 3(b,d). Bright spots in the
topograph of Fig. 3(a) exhibit anomalously high LBH,
highlighting the importance of the complex geometric ef-
fects of protrusions previously mentioned [25]. This re-
inforces the necessity of flat atomic planes in order to
extract a reliable LBH comparison. We reiterate that
our identification of the 1 × 1 surface as a complete As
layer and the 2× 1 surface as a half-Ca layer is robustly
drawn from the flat surfaces in Fig. 2.

Since ϕCa and ϕPr differ by less than 1% (Table I),
LBH mapping cannot be used to identify Pr atoms in
the Ca surface layer. However, STM can image dopants
using the differential conductance dI/dV , which is pro-
portional to the local density of states [35]. Substituting
Pr3+ for Ca2+ creates a localized positive charge, so the
impurity state is expected above the Fermi level. We
therefore search for Pr dopants in dI/dV images at high
bias. Figure 4(a) shows a dI/dV image obtained simul-
taneously with the topograph in Fig. 1(b) at +300 mV,
revealing a set of bright, atomic-scale features that can
be visually identified in the simultaneous topograph with
constituent atoms of the 2 × 1 surface. These features,
which start to appear in dI/dV at biases higher than
+70 mV, comprise ∼10.4% of the total number of visible
atoms in this FOV, matching the macroscopically mea-
sured x = 10.5% and confirming the half-Ca termination.
Although a subset of Co dopants were previously imaged
in Ca(Fe1−xCox)2As2 [34], this is the first time that all

dopants have been imaged in a Ca122 system.

Because we have imaged all dopants, we can investi-
gate the possibility of clustering, which was suggested
as the origin of the inhomogeneous high-Tc phase [6].
We compute a “radial distribution ratio” (RDR) by his-
togramming all observed Pr-Pr distances within a FOV,
then dividing this observed histogram by an average his-
togram of 1000 simulated random dopant distributions
at the same concentration [36]. The RDR in Fig. 4(b)
shows no clustering, and in fact slight repulsion of the
Pr dopants at short distances, possibly due to their like
charges. The repulsion is not an artifact of poor dopant
identification, as illustrated by clear detection of two ad-
jacent Pr dopants in the inset to Fig. 4(b). The lack
of dopant clustering in PrxCa1−xFe2As2 contrasts with
the Se dopants in FeTe1−xSex that are prone to forming
patches of ∼1 nm size [37]. This contrast may arise from
the ∼10% size mismatch of Se (198 pm) and Te (221 pm)
vs. the similar sizes of Ca (126 pm) and Pr (126.6 pm)
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FIG. 4. (color online) Map of Pr dopants. (a) dI/dV image at
+300 mV showing Pr dopants as bright atomic-scale features
from the same FOV as Fig. 1(b). (b) Radial distribution
ratios for two sets of Pr dopants. Full squares represent the
distribution of Pr dopants shown in (a), while open squares
represent a different dataset used to confirm the conclusions.
Inset shows a 2.5 nm × 2.5 nm region in which surface Ca
positions (white dots) and Pr dopants (yellow dots) have been
marked, demonstrating our ability to resolve individual Pr
dopants even at adjacent Ca sites.

[28, 38]. Our observation of the expected number of Pr
dopants, more homogeneously distributed than would be
expected for a random distribution, suggests that dopant
clustering is unlikely to be responsible for the small vol-
ume fraction high-Tc superconducting state.
In conclusion, our STM images of PrxCa1−xFe2As2

have addressed its surface structure and dopant distribu-
tion, with bearing on its high-Tc volume fraction. First,
we used LBH mapping to identify the 2 × 1 surface as
a half-Ca termination, and the 1 × 1 surface as an As
termination. This LBH mapping method could be used
to resolve debated cleaved surface terminations in a wide
variety of materials, such as other Fe-SCs [39] or heavy
fermion materials [40, 41]. Second, we demonstrated by
direct imaging that the Pr dopants responsible for su-
perconductivity do not cluster, and in fact show a slight
repulsion at very short length scales. Our findings sug-
gest that Pr inhomogeneity is unlikely to be the source
of the high-Tc volume fraction, in contrast to previous
speculation [6].
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