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Tight-binding model for graphene 7-bands from maximally localized Wannier functions

Jeil Jung and Allan H. MacDonald
Department of Physics, University of Texas at Austin, USA

The electronic properties of graphene sheets are often understood by starting from a simple phenomenologi-
cal -band tight-binding models. We provide a perspective on these models that is based on a study of ab initio
maximally localized Wannier wave functions (MLWF) centered at carbon sites. Hopping processes in graphene
can be separated into inter-sublattice contributions responsible for band dispersion near the Dirac point, and
intra-sublattice contributions responsible for electron-hole symmetry breaking. Both types of corrections to the
simplest near-neighbor model can be experimentally relevant. We find that distant neighbor hopping param-
eters increase the ratio of the full z-band width to the Dirac point velocity and flatten bands along the KM
Brillouin-zone edge. We propose a 5-parameter model which achieves a good compromise between simplicity
and accuracy, and an alternate 15 parameter model achieves better accuracy with some loss of simplicity.

PACS numbers: 73.22.Pr, 71.20.Gj,71.15.Mb,31.15.aq
I. INTRODUCTION

The electronic structure of graphene features r-orbital
bands close to the Fermi energy and o-orbital bands associ-
ated with its honeycomb lattice sp, bonding network.! The
m and 7" bands that are responsible for most observable
electronic properties of graphene are usually described using
tight-binding models obtained by fitting either to experiment
or to theoretical first principles bands.! Many qualitative
features are correctly captured when only near-neighbor hop-
ping is retained, although more accuracy can be achieved by
increasing the number of parameters. For instance, the model
introduced many years ago by Wallace? includes first and sec-
ond neighbor hopping terms. Another useful model retains
only nearest neighbor hopping, but introduces an additional
parameter to allow for a finite overlap between orbitals' local-
ized on neighboring sites. Both improvements make it possi-
ble to account for the electron-hole asymmetry of graphene’s
band structure. More recent work® based on the SIESTA’
ab initio simulation software has provided a model which in-
cludes up to the third nearest neighbor hopping terms with fi-
nite overlaps between neighboring localized orbitals and pro-
vides a better fit of the bands over a broader energy range.
An alternate and physically more transparent hopping tight-
binding model has been obtained using a similar scheme.*
More accurate tight-binding models are sometimes important
in understanding the electronic properties of grapheme sheets,
for example in deciding whether deviations from the near-
neighbor model should be ascribed to band or many-body ef-
fects.

In this paper we explore graphene tight-binding models
from the point of view of maximally localized Wannier® func-
tions. The Wannier approach provides a physically intuitive
but fully rigorous representation of graphene’s 7-bands.’” In
the Wannier representation the band Hamiltonian is succinctly
represented in terms of parameters with an intuitive physical
meaning as amplitudes for electron hopping from one site to
another; the more physically opaque overlap parameters of
some LCAO theories vanish exactly because of the orthonor-
mality of the Wannier basis set. There is however a gauge
freedom® in Wannier function construction that can mod-

ify localization details and hopping parameters. One useful
and physically meaningful prescription is to construct maxi-
mally localized Wannier functions which minimize spread rel-
ative to localization centers.® The numerical calculations we
present are based on the maximally localized Wannier func-
tion method implemented in the software package wannier90°
which postprocesses Bloch wave functions obtained from first
principles calculations.

Our aim is to provide a tight-binding model for graphene
that accurately reproduces the first principles local density
approximation!? bands produced by plane-wave psedopoten-
tial calculations as implemented in Quantum Espresso.!! The
numerical values of the hopping parameters thus obtained pro-
vide a highly accurate tight-binding fit to the ab initio =,
* bands throughout the Brillouin zone. We explicitly dis-
cuss the role played by remote neighbor hopping terms in
these models, explaining how they are related to the Fermi
velocity value, and to the trigonal warping and particle-hole
symmetry breaking. Our paper is structured as follows. In
section Il we briefly summarize some of the ideas behind
the Wannier function basis construction implemented in wan-
nier90, and explain some details of this particular application
of the maximally-localized Wannier method. In section III
we present several tight-binding model approximations to the
graphene m-bands model, some including up to seventeen dis-
tinct hopping parameter. We close the paper with a conclu-
sions and discussion section, in which we focus on the merits
of the recommended models.

II. MAXIMALLY LOCALIZED WANNIER FUNCTIONS IN
GRAPHENE FROM DFT CALCULATIONS

Bloch states in topologically trivial solids can always be ex-
panded in terms of localized Wannier orbitals. Because of the
arbitrary k-dependent Bloch-state phase, Wannier functions
are not unique. Our study is based on the wannier90 tool
developed by Marzari and collaborators’ which constructs
maximally localized Wannier functions (MLWF) that mini-
mize the spread of density probability around localization cen-
ters. We performed initial band-structure calculations using
the quantum espresso code!! with the ultrasoft C.pz-rrkjus



a — 3X3 b Minimal —|TB, 5NN 3X3 (]
— 6X6 — |TB, 15NN 6 X6
10 - 30 X 30 = |30 X 30
=
2
3 0 g ***************** > <
5 °
Q £
o) B
T >
S -10 5 \
m &
c ::?
2
S
w

FIG. 1: (Color online) a. Band structure of graphene obtained through Wannier interpolation of first principles LDA results for three different k-
point sampling densities. The potential was constructed from a common converged charge density obtained using a 36 x 36 mesh. Differences
between the coarser sampling bands and the reference 30 x 30 sampling bands are shown below using solid (dashed) lines for the 7-conduction
(valence) bands. Note that the conduction band energy near the Brillouin-zone edge M point is most sensitive to the Wannier interpolation. b.
Tight-binding band structures for different hopping parameter sets. The bands of the commonly used minimal model (pink) that has nearest
neighbor hopping only is also shown for comparison. The minimal model hopping parameter chosen was #; = —2.59 eV to match the Dirac
point velocity of the ab initio bands. The black solid lines plot the same reference bands as in the left panel, whereas the blue and red lines
represent the tight-binding model bands obtained from 3 x 3 sampling which results in 5 independent hopping parameters (see Tables I, IV),
and the 15-band model implied by by 6 x 6 sampling. Note that the 5 nearest neighbor tight-binding model gives more accurate band structures
than the 3 x 3 interpolated bands with a maximum error of about 2% of the bandwidth, whereas the 15 neighbor model is essentially identical
to the 6 x 6 interpolated bands. The five parameter model follows the ab-initio bands reasonably accurately over the full Brillouin zone using
a small number of parameters. The panel below plots differences relative to the reference bands. ¢. Surface plots for the maximally localized
7-band and ¢ bonding orbital Wannier functions. The red and blue regions indicate positive and negative values of the real part of the wave
function amplitudes. Adapted from Ref. [8].

pseudopotential which is based on the Perdew-Zunger!? local-
density-approximation (LDA)!® exchange-correlation poten-
tial parameterization. We used a kinetic-energy cutoff of
80 Ry for the plane-wave expansion and calculated the self-
consistent ground state using a 36x36x1 Monkhorst-Pack
mesh of k-points and a Fermi distribution edge fictitiously
smeared by 0.02 Ry. Starting from a self-consistent charge
density obtained in this way we evaluated up to 36 bands on
different sets of ng, X ny, x 1 k-point grids. The required in-
put overlap matrices and projections were calculated using the
post-processing routine pw2wannier90 supplied with quan-
tum espresso. For the maximally localized Wannier function
calculation we used atom centered projections of the p, or-
bitals for the @, 7*-bands of graphene and bond centered s
orbitals for the bonding ¢ bands as initial guesses, and then
ran wannier90 to obtain optimized MLWFs, following proce-
dures similar to those explained in Refs. [8,9]. We fixed the
upper limit of the frozen energy window to be 1 eV above
the Dirac point for the disentanglement procedure and set the
maximum number of iterative steps to 300, which proved to

be more than sufficient to converge the MLWFs and works
particularly well for graphene. The Wannier function spread
for the p, orbitals are discussed in appendix A and their nu-
merical values gathered in Table III.

One advantage of the Wannier interpolation method is the
possibility in some systems of accurately parameterizing first
principles band structures across the entire Brillouin zone with
a small number of parameters that can be extracted from a
coarse k-point sampling.!3 In the case of graphene a rather
limited 6 X 6 x 1 k-point sampling density with two atoms in
the unit cell already leads to Wannier interpolated bands that
are practically indistinguishable from the fully converged ab
initio bands obtained from interpolation of a 30 x 30 k-points
sampling calculation as shown in Fig. 1. Some discrepancies
are visible to the naked eye when we use a lower sampling
density of 3 x 3 x 1. The density of k-point sampling defines
the system size beyond which all properties are periodic, and
therefore limits the maximum number of physically meaning-
ful nearest neighbor hopping terms that can be used to repro-
duce the bands in the system. For a 3 x 3 x 1 sampling density
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FIG. 2: (Color online) a. Honeycomb lattice neighbors m as defined in Tables V and VI grouped by symmetry. The central site (0) in this
illustration is on the A (blue) sublattice and the three 1*' near neighbors are on the B (red) sublattice. The inner and outer hexagons indicate the
hopping processes included in 5 and 15 neighbor tight-binding models. b. Hopping amplitude #(d) as a function of the real space distance d
between the carbon lattice sites for Wannier models implied by different k-point sampling densities. The inset highlights differences between

remote hopping amplitudes.

only 5 nearest neighbor hopping terms are properly defined
(see Table I).

III. 7-BAND TIGHT-BINDING HAMILTONIANS

Because there is one m-electron per site, the 7-band tight-
binding Hamiltonian is a 2 X 2 matrix:

H(k) _ HAA(k) HAB(k) (1)
Hpa(k) Hpp(k)/)

The Bloch function basis function for this Hamiltonian is re-
lated to the Wannier functions by

|Via) = fZe"‘R”“ R+ Tq) )

where « is the sublattice index, 7y is the position of the sublat-
tice relative to the lattice vectors R and |R+ 7) is a Wannier
function. The matrix elements of the Hamiltonian are related
to the Wannier representation hopping amplitudes by

Hep(K) = (VialH |Wig) 3)
1 o
— N Zetk(R 7R)taB(R_R/) (4)
RR/
where
tap(R—R') = <R+ra\H|R’+rlg> )

represents tunneling from f to o sublattice sites located re-
spectively at R’ + ‘L’;; and R+ 74. It follows from inversion
symmetry that Haa (k) = Hpp(K).

By grouping neighbor vectors related by symmetry, the
Hamiltonian matrix elements can be expressed as a sum over

neighbor indices n:
Hup(k) = Ztn Ju(K) (6)
n
or

=) tngn(K) (7

where #, = tap, and f, = t,, are the common hopping of
members of the set of n’ neighbors for a given sublattice and
Jn(K) and g, are the corresponding structure factors obtained
by summing phase factors exp(ﬁé . fé) over this set.!* Addi-
tional discussions on the role of distant hopping terms can
be found in appendix B. It is useful to distinguish neighbor
groups that are off-diagonal in sublattice from those that are
diagonal. The positions of the distant neighbors from a ref-
erence site 0 at the origin are shown in Fig. 2 where we use
the blue and red colors to distinguish A and B sublattices. We
have chosen a coordinate system in which the honeycomb’s
Bravais lattice has primitive vectors

LYY, @

d :a(170)7 52261(5,7 ’

where a = 2.46A is the lattice constant of graphene. The self-
consistent LDA lattice constant we obtained was a = 2.44,
about 1% smaller, and yields a converged nearest neighbor
hopping of t = —2.99, see Table IV in appendix C, a value
about 2-3 % greater than the results quoted in table I. The
reciprocal lattice vectors are then

. ar /3 1 - An
bl — E(?a_i) ) b2_ E(()?l) (9)

We choose 7o = (0,0) and 75 = (0,a/+/3). Numerical val-
ues of the inter-lattice hopping parameters implied by dif-
ferent k-space sampling densities are plotted in Fig. 4 and
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FIG. 3: (Color online) a. Band structure estimates near the Dirac point obtained using the minimal model, using the five hopping parameter
model extracted from the from 3 x 3 calculation, and using the 15 hopping parameter model extracted from 6 x 6 k-point sampling, compared
to the interpolated reference bands in solid black lines. The dotted horizontal lines show the energy cuts used for the contour plots in ¢. b.
Absolute value of quasiparticle velocities v = dE /hidk for the minimal model, the five nearest neighbor model, and the reference ab initio
bands. The dotted horizontal line at v = 0.838 - 10® m/s specify the Fermi velocity at the Dirac point. The solid lines represent conduction
bands quasiparticle velocities and the dashed lines correspond to valence band velocities. Note that the velocity vanishes in both conduction
and valence bands at the k = M van Hove singularity point. ¢. Contour lines of the energy bands in a. for the minimal and reference band
model for 0.2, 0.4 and 0.6 eV. d. Color scale plot of Hs4 (k) calculated using 17 nearest neighbor hopping terms. The combined effect of
second and fifth nearest neighbor hopping terms is able to account for the negative inverted parabolic correction near K, the more pronounced

negative corrections near M and large positive corrections near I'.

listed in tables V and I. The translation vectors for each group
of neighbors, the associated structure factors, and their ex-
pansions near the band-crossing Brillouin-zone corner points
kp = (47/3a,0) are listed in Tables V, VL

Because of the inversion symmetry property Haa(k) =
Hpp(k), the m-band energies of graphene are given by

Ey (k) = [Hpa (K)| + |Hap (k)| - (10)

It follows that the velocity at the Dirac point is determined
by |Hap(k)|, i.e. by the inter-sublattice hopping contribu-
tion to the Hamiltonian, and that particle-hole symmetry is
broken whenever |Hax (k)| # 0, i.e. whenever there is an
intra-sublattice contribution. As summarized in Table V, for
all inter-sublattice hopping processes f, (k) vanishes at the
Brillouin-zone corner kp = (47/3a,0) and has a leading cor-
rection proportional to gexp(—i6;). Here g is wave vector
measured from the Brillouin-zone corner. The intra-sublattice
processes on the other hand have no linear in ¢ terms and are
isotropic to second order in g. The sub-leading term in the ex-
pansion of the inter-sublattice terms behaves like ¢* exp(2i 0;).

The low energy k- p model implied by a given tight-binding
parameterization is obtained by performing a Taylor expan-
sion of the bands near the Dirac point K. Intra-sublattice pro-
cesses contribute to the diagonal elements of the k- p Hamil-
tonian whereas inter-sublattice processes contribute to the off-
diagonal matrix elements. For the off-diagonal elements for
which the Dirac velocity and trigonal warping are specified at

low energies we have
Hyp(kp+k) o Cupike % +Copok®e™®,  (11)

involving sums of f;, terms for matrix elements connecting
sites otf = AB. The explicit form of the expansion coefficients
are given by

V3a

Cop1 = T(—n+2t2+t3—5t4—4t5+7t6+5t7
+ 213 —4dtg+ Llty) (12)
2
Copr = %(t1+4t2—13[3—t4+16t5—|—11t6—|—25t7
— 5213 — 4619 +47119). (13)

where we have abbreviated the notation by denoting 7, = 74,
removing the o3 subscripts.

For the diagonal elements responsible for particle-hole
symmetry breaking as summarized in Table VI we have

Hop(kp+K) = Cppy+Chp, kK (14)
and their form is given by
Capo = —3t] + 615 — 313 — 61, + 615
+ 615 — 615 (15)
' 3a’ / ' / /
Capr = T(t1 — 6ty + 413 + 141

— 1815 — 6t +2615). (16)



AB n m N° dyfa  t,3x3 T6x6  t12x12  1n30x30
1 1 3 % -3.00236 -2.94015 -2.92774 -2.92181
2 3 3 % -0.22464 -0.26199 -0.27586 -0.27897

3 4 6 % 0.05205 0.03172 0.02807 0.02669

4 7 6 4/ g -0.00830 -0.00727 -0.00885
5 8 3 % -0.02463 -0.01812 -0.01772

6 9 6 ? 0.00096 0.00463 0.00675
7 11 3 % 0.00467 -0.00227 -0.00262

8 13 6 4/ 23—8 -0.00724 -0.00088 0.00019

9 14 6 4/ 23—1 0.00562 0.00044 -0.00068

10 16 6 33l -0.00230 -0.00237

AA n m N dyfa s e Ininaz h3oxio
1 2 6 1 0.20509 0.21813 0.22377 0.22378

2 5 6 V3 0.06912  0.04357 0.04555 0.04813

3 6 6 2 -0.02379 -0.02406 -0.02402

4 10 12 V7 0.00538 0.00313 0.00263

5 12 6 3 0.00783 0.00296 0.00111

6 15 6 % -0.01429 -0.00110 0.00018
717 12 /% -0.00066 -0.00008

TABLE I: Hopping amplitudes in eV units implied by four different
k-point sampling densities. Intra-sublattice and inter-sublattice am-
plitudes are grouped separately. The two models on the left, with
five and fifteen parameters respectively, provide good compromises
between accuracy and simplicity.

for matrix elements connecting the sites aff = AA,BB for
intra-sublattice hopping parameters involving sums of g,
terms. We have used the primes, both for the expansion co-
efficients as well as the hopping terms, to remark they in-
volve expansions of g, terms rather than f,. More distant
hopping processes make a relatively smaller contribution to
Caa2 as expected. Thus, the continuum model Hamiltonian
near kp = (47 /3a,0) in terms of the effective parameters can
be written as

H" (k) = KChppl+kCapi (cos (6k) or +sin (6k) 0)
+ k% Capa (cos (26) o, — sin (26x) oy) (17

where 0, and oy are Pauli matrices. The values of the pa-
rameters for expansion near the Dirac point are given in ta-
ble II, both for the experimental lattice constant and a slightly
smaller self-consistent LDA value.

The values of the k - p parameters corresponding to differ-
ent tight-binding models are summarized in Fig. 4. We see
there that, in addition to providing a good characterization of
the overall shape of the bands, the 5 neighbor tight-binding
model accurately characterizes the three most important con-
tinuum model band parameters. The main advantage of the 15
parameter model is that it provides a more accurate descrip-
tion of the conduction band van Hove singularity.

exp. a =2.46A LDA a =2.4394

5 n.n. 15 n.n. 5 n.n. 15 n.n.
Clp (eV-A?) -0.951 -0.537 -1.01 -0.572
Cap1 (eV-4) 5.55 5.50 5.62 5.57
Cup (eV-A?) -3.46 -3.44 -3.50 -3.48

TABLE II: Expansion coefficients for the effective two-dimensional
continuum model Hamiltonian near the Dirac point kp = (47 /3a,0).
The Cyp; term is related with the Fermi velocity through v =
Cap1/h. Both the 5 and 15 parameter models give a satisfactory
agreement in the main parameters that define the effective continuum
model. Although the particle-hole symmetry breaking term given
by C),, shows the largest discrepancy between both models they
have a relatively small effect due to their small values compared to
the other two terms. The results between the experimental and self-
consistent LDA lattice constant that are different by less than 1%
introduce marginal changes in the obtained parameters.

IV. CONCLUSIONS AND DISCUSSIONS

We have discussed graphene 7-band tight-binding models
derived from maximally localized Wannier functions, assess-
ing the degree to which they reproduce the Dirac velocity, trig-
onal warping, and particle-hole-symmetry breaking parame-
ters that appear in continuum models of graphene, and their
overall accuracy within an eV of the Dirac point. We find
that a relatively convenient five near-neighbor tight binding
model with three inter-sublattice and two intra-sublattice hop-
ping parameters obtained from a rather coarse 3 x 3 k-point
momentum-space sampling already provides a substantial im-
provement relative to the commonly used minimal model with
only near-neighbor hopping. Accuracy is further improved
near the conduction band van Hove singularity by using a
fifteen parameter model which retains nine intra-sublattice
hopping processes and six inter-sublattice hopping processes.
These two models are superior in both accuracy and in the
transparency of their physical interpretation compared to pre-
viously proposed refinements of the minimal model.

Intra-sublattice particle-hole symmetry breaking effects are
most prominent near symmetry points with peaks at I' and
valleys around M and K. These effects require at least up to
fifth nearest neighbor hopping terms for a qualitatively cor-
rect description. The fifteen parameter model based on 6 X 6
sampling provides an essentially exact reproduction of the ab
initio LDA bands.

The models presented here provide a tight-binding platform
for graphene electronic property studies which have ab ini-
tio accuracy. The improved accuracy relative to the mini-
mal model is valuable, especially for applications in which
high-energy features of the bands must be accurately cap-
tured. Examples that come to mind include optical ab-
sorption in visible and near-infrared regimes!> and putative
superconductivity!®~'® in systems with Fermi energies at the
van Hove singularities.

Of course, the tight-binding model is only as accurate as
the ab initio LDA calculation that it approximates. Our use of
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FIG. 4: (Color online) Leading low-energy graphene continuum
model band parameters implied by different Wannier interpolations.
For the three models considered these plots show the dependence
on hopping-parameter truncation at different neighbor shells. Cypy,
Capo, and Cyyo are respectively the velocity, trigonal warping, and
particle-hole symmetry breaking parameters for continuum k- P mod-
els and are defined in Egs. (12-13) and (15-16). The dashed horizon-
tal line in the Cyp; plot is the minimal model tight-binding model fit
to the ab-initio LDA band structure Dirac point velocity. The five
neighbor model obtained from 3 x 3 k-point sampling Wannier in-
terpolation produces accurate values of the coefficients for the Fermi
velocity and parabolic off diagonal correction.

the LDA approximation is intentional since we wish to con-
struct bands that have a realistic bonding structure, but want as
far as possible to construct a model which does not already re-
flect the peculiar 7-band'~?! exchange and correlation effects
which increase Fermi velocities in low-carrier density systems
when disorder is weak and reshape®” Dirac cones. It is well
known, for example, that many-body physics is necessary in
particular to explain the divergence of the Fermi level quasi-
particle velocity at vanishing carrier density??, photoelmission
satellites>® and the plasmaron features near the Dirac point
in ARPES spectra when the carrier density is finite.”* Many-
body effects must be accounted for separately because their
influence depends on the observable under study, in addition
to being dependent on carrier-density and disorder. For many
low-energy phenomena, the influence of interactions can often
be accounted for simply by renormalizing the Fermi velocity,
or equivalently by renormalizing hopping parameters. Many
body velocity enhancements are likely responsible for the fact
that near-neighbor hopping parameters that are obtained by
fitting to experimental data are normally larger than those of
our tight-binding models.

The present analysis suggests that the minimal near-
neighbor tight-binding model often used for graphene pro-

vides an adequate description of many properties not because
hopping really is very short-ranged, and instead because the
low-energy bands depend only on the Dirac-point velocity.
Presumably the same is true of inter-layer hopping terms. The
range of inter-layer hopping processes plays a key role in as-
sessing the influence of relative layer alignment>~2% on the
electronic structure of graphene on graphene and graphene
on boron nitride. The maximally-localized Wannier approach
should prove equally valuable for those closely related elec-
tronic structure problems.
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Appendix A: Wannier Function Spread

Wannier functions constructed from an ab initio calculation
with a finite density of k-points have a density which is local-
ized near points separated by a distance inversely related to
the coarseness of the k-point mesh. The spread of the Wan-
nier wave functions around their centers provides estimates of
atomic orbital size. A mean-square characteristic is defined
by?

Q=Y(r-5)) =+, (A1)

n

where n is the index of each Wannier function and ¥, its cen-
ter. Here €; is a gauge invariant contribution to the spread-
ing that remains fixed for a given choice of band subspace,
whereas Q can be minimized through iterative unitary trans-
formations as explained in reference [9]. The dependence
of orbital spreading on k-point sampling density is weak in
the case of graphene, as we show in Table III, which hints
that a relatively coarse sampling of the k-points produces a
physically realistic model. The slow increase of the Wannier-
function spread with k-point mesh density may reflect the
strong dependence of interlayer-sublattice phase on momen-

tum near the band-crossing Dirac point.?!

3x3 6x6 12x12 30 x 30
Q). 0.8237 0.9168 0.9571 0.9750
Qs 0.5223 0.5875 0.6074 0.6134
Qoral 3.2143 3.5960 3.7365 3.7900
Qy 2.4951 2.8437 2.9844 3.0380

TABLE III: Evolution of wave function spread with k-point sampling
density given in A2. We attribute the increase in spread with k-point
density to the strong dependence of wave function on momentum
near the Dirac point.

Appendix B: Role of distant neighbor hopping terms

The role played by remote neighbors in modifying the band
dispersion is best illustrated by comparing with the minimal
nearest neighbor model bands, plotted in Fig. 1 and magnified
near the Dirac point in Fig. 3. The inter-sublattice hopping
terms are responsible for the main features in the band disper-
sion, including the trigonal distortions near the Dirac point.
The nearest neighbor amplitude has the largest value and al-
ready captures the bands qualitatively. As we can see in Table
II the third neighbor hopping process is responsible for a sub-
stantial reduction in the trigonal distortion produced by first
neighbor hopping. In Fig. 4 we plot equal magnitude con-
tours for individual remote neighbor contributions. The more
remote neighbors play a less essential role because of hopping
amplitude decreases. The strength of trigonal warping is re-
flected by the difference in band dispersion around the Dirac
cone between the I'— K and K — M directions, as illustrated
in Fig. 3.
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FIG. 5: a. Individual neighbor shell contributions to the band Hamil-
tonian. The role of inter-sublattice hopping terms is illustrated using
conduction band surface and contour-plots for the bands obtained
for neighbor sheels 1, 3, 4, and 7 with the hopping parameter set
to t,4p = 1 eV. More distant neighbors give features that vary more
rapidly in momentum space. b. Similar plots for intra-sublattice con-
tributions from neighbor shells 2,5,10, and 17. We have indicated
with red arrows those sites labeled with an asterisk in Table VI.

The intra-sublattice hopping terms that account for the
particle-hole symmetry breaking are examined in Fig. 3b.
There are at least six hopping sites for a given n'"-distant
neighbor hopping whose contributions to the bands are illus-
trated in Fig. 4. From an inspection of Figs. 3d, 4 and the
hopping terms gathered in Tables I, IV we can observe that the
2@ distant hopping term alone captures correctly the positive
correction to the bands near the I', but fails to capture features
near M and K points. The 5" neighbor hopping is respon-
sible for dips of the diagonal terms near M and K and also
plays an important role in reversing the sign of the leading
parabolic particle-hole correction term near K. We conclude
that all main features in the bands can be captured by a five
neighbor tight-binding model.



Appendix C: Tight-Binding Model at the LDA lattice constant

The results we have reported in the main text were cal-
culated using the experimental lattice constant of a = 2.46A
in graphene. The self-consistent LDA lattice constant of
a = 2.4394, gives rise to a value that is 0.85% smaller and
thus the resulting changes are expected to be negligibly small.
The new set of hopping parameters are similar to those in Ta-
ble II and are listed here for sake of completeness

AB n m N° du/a 148,353 lapnoxe lapni2zx12 laBn30x30
1 1 3 % -3.07504 -3.01006 -2.99727 -2.99251
2 3 3 % -0.23442 -0.27298 -0.28745 -0.28983
3 4 6 \/g 0.05350 0.03278  0.02903  0.02791
4 7 6 4/ 1—33 -0.00884 -0.00775 -0.00877
5 8 3 % -0.02594 -0.01925 -0.01870
6 9 6 1—39 0.00095 0.00490 0.00621
7 11 3 % 0.00485 -0.00252 -0.00256
8 13 6 2—38 -0.00752 -0.00087 -0.00018
9 14 6 4/ % 0.00591 0.00047 -0.00033
10 16 6 % -0.00246 -0.00264
AA 0 m N dyfa tia thee ez 3ok
1 2 6 1 0.21264 0.22614 0.23205 0.23206
2 5 6 V3 0.07326  0.04584 0.04780 0.04969
3 6 6 2 -0.02478 -0.02518 -0.02499
4 10 12 V7 0.00564 0.00337 0.00285
5 12 6 3 0.00826 0.00308 0.00204
6 15 6 % -0.01492 -0.00114 -0.00014
7 17 12 ?’3*9 -0.00072 -0.00029

TABLE IV: Same as the table I but calculated using a self-consistent
lattice constant of a = 2.4394 about 1% smaller than the experimen-
tal value a = 2.46A. gathering the hopping terms between the p,
orbitals as a function of distance for different sampling of k-point
densities, where we distinguish the inter-sublattice hopping giving
rise to the band dispersion and intra-sublattice hopping that accounts
for particle-hole symmetry breaking.
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