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Tight-binding model for graphene π-bands from maximally localized Wannier functions

Jeil Jung and Allan H. MacDonald
Department of Physics, University of Texas at Austin, USA

The electronic properties of graphene sheets are often understood by starting from a simple phenomenologi-
cal π-band tight-binding models. We provide a perspective on these models that is based on a study of ab initio
maximally localized Wannier wave functions (MLWF) centered at carbon sites. Hopping processes in graphene
can be separated into inter-sublattice contributions responsible for band dispersion near the Dirac point, and
intra-sublattice contributions responsible for electron-hole symmetry breaking. Both types of corrections to the
simplest near-neighbor model can be experimentally relevant. We find that distant neighbor hopping param-
eters increase the ratio of the full π-band width to the Dirac point velocity and flatten bands along the KM
Brillouin-zone edge. We propose a 5-parameter model which achieves a good compromise between simplicity
and accuracy, and an alternate 15 parameter model achieves better accuracy with some loss of simplicity.

PACS numbers: 73.22.Pr, 71.20.Gj,71.15.Mb,31.15.aq

I. INTRODUCTION

The electronic structure of graphene features π-orbital
bands close to the Fermi energy and σ -orbital bands associ-
ated with its honeycomb lattice sp2 bonding network.1 The
π and π∗ bands that are responsible for most observable
electronic properties of graphene are usually described using
tight-binding models obtained by fitting either to experiment
or to theoretical first principles bands.1–4 Many qualitative
features are correctly captured when only near-neighbor hop-
ping is retained, although more accuracy can be achieved by
increasing the number of parameters. For instance, the model
introduced many years ago by Wallace2 includes first and sec-
ond neighbor hopping terms. Another useful model retains
only nearest neighbor hopping, but introduces an additional
parameter to allow for a finite overlap between orbitals1 local-
ized on neighboring sites. Both improvements make it possi-
ble to account for the electron-hole asymmetry of graphene’s
band structure. More recent work3 based on the SIESTA5

ab initio simulation software has provided a model which in-
cludes up to the third nearest neighbor hopping terms with fi-
nite overlaps between neighboring localized orbitals and pro-
vides a better fit of the bands over a broader energy range.
An alternate and physically more transparent hopping tight-
binding model has been obtained using a similar scheme.4

More accurate tight-binding models are sometimes important
in understanding the electronic properties of grapheme sheets,
for example in deciding whether deviations from the near-
neighbor model should be ascribed to band or many-body ef-
fects.

In this paper we explore graphene tight-binding models
from the point of view of maximally localized Wannier6 func-
tions. The Wannier approach provides a physically intuitive
but fully rigorous representation of graphene’s π-bands.7 In
the Wannier representation the band Hamiltonian is succinctly
represented in terms of parameters with an intuitive physical
meaning as amplitudes for electron hopping from one site to
another; the more physically opaque overlap parameters of
some LCAO theories vanish exactly because of the orthonor-
mality of the Wannier basis set. There is however a gauge
freedom8 in Wannier function construction that can mod-

ify localization details and hopping parameters. One useful
and physically meaningful prescription is to construct maxi-
mally localized Wannier functions which minimize spread rel-
ative to localization centers.6 The numerical calculations we
present are based on the maximally localized Wannier func-
tion method implemented in the software package wannier909

which postprocesses Bloch wave functions obtained from first
principles calculations.

Our aim is to provide a tight-binding model for graphene
that accurately reproduces the first principles local density
approximation10 bands produced by plane-wave psedopoten-
tial calculations as implemented in Quantum Espresso.11 The
numerical values of the hopping parameters thus obtained pro-
vide a highly accurate tight-binding fit to the ab initio π ,
π∗ bands throughout the Brillouin zone. We explicitly dis-
cuss the role played by remote neighbor hopping terms in
these models, explaining how they are related to the Fermi
velocity value, and to the trigonal warping and particle-hole
symmetry breaking. Our paper is structured as follows. In
section II we briefly summarize some of the ideas behind
the Wannier function basis construction implemented in wan-
nier90, and explain some details of this particular application
of the maximally-localized Wannier method. In section III
we present several tight-binding model approximations to the
graphene π-bands model, some including up to seventeen dis-
tinct hopping parameter. We close the paper with a conclu-
sions and discussion section, in which we focus on the merits
of the recommended models.

II. MAXIMALLY LOCALIZED WANNIER FUNCTIONS IN
GRAPHENE FROM DFT CALCULATIONS

Bloch states in topologically trivial solids can always be ex-
panded in terms of localized Wannier orbitals. Because of the
arbitrary k-dependent Bloch-state phase, Wannier functions
are not unique. Our study is based on the wannier90 tool
developed by Marzari and collaborators9 which constructs
maximally localized Wannier functions (MLWF) that mini-
mize the spread of density probability around localization cen-
ters. We performed initial band-structure calculations using
the quantum espresso code11 with the ultrasoft C.pz-rrkjus
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FIG. 1: (Color online) a. Band structure of graphene obtained through Wannier interpolation of first principles LDA results for three different k-
point sampling densities. The potential was constructed from a common converged charge density obtained using a 36×36 mesh. Differences
between the coarser sampling bands and the reference 30×30 sampling bands are shown below using solid (dashed) lines for the π-conduction
(valence) bands. Note that the conduction band energy near the Brillouin-zone edge M point is most sensitive to the Wannier interpolation. b.
Tight-binding band structures for different hopping parameter sets. The bands of the commonly used minimal model (pink) that has nearest
neighbor hopping only is also shown for comparison. The minimal model hopping parameter chosen was t1 = −2.59 eV to match the Dirac
point velocity of the ab initio bands. The black solid lines plot the same reference bands as in the left panel, whereas the blue and red lines
represent the tight-binding model bands obtained from 3×3 sampling which results in 5 independent hopping parameters (see Tables I, IV),
and the 15-band model implied by by 6×6 sampling. Note that the 5 nearest neighbor tight-binding model gives more accurate band structures
than the 3×3 interpolated bands with a maximum error of about 2% of the bandwidth, whereas the 15 neighbor model is essentially identical
to the 6×6 interpolated bands. The five parameter model follows the ab-initio bands reasonably accurately over the full Brillouin zone using
a small number of parameters. The panel below plots differences relative to the reference bands. c. Surface plots for the maximally localized
π-band and σ bonding orbital Wannier functions. The red and blue regions indicate positive and negative values of the real part of the wave
function amplitudes. Adapted from Ref. [8].

pseudopotential which is based on the Perdew-Zunger12 local-
density-approximation (LDA)10 exchange-correlation poten-
tial parameterization. We used a kinetic-energy cutoff of
80 Ry for the plane-wave expansion and calculated the self-
consistent ground state using a 36×36×1 Monkhorst-Pack
mesh of k-points and a Fermi distribution edge fictitiously
smeared by 0.02 Ry. Starting from a self-consistent charge
density obtained in this way we evaluated up to 36 bands on
different sets of nkx × nky × 1 k-point grids. The required in-
put overlap matrices and projections were calculated using the
post-processing routine pw2wannier90 supplied with quan-
tum espresso. For the maximally localized Wannier function
calculation we used atom centered projections of the pz or-
bitals for the π , π∗-bands of graphene and bond centered s
orbitals for the bonding σ bands as initial guesses, and then
ran wannier90 to obtain optimized MLWFs, following proce-
dures similar to those explained in Refs. [8,9]. We fixed the
upper limit of the frozen energy window to be 1 eV above
the Dirac point for the disentanglement procedure and set the
maximum number of iterative steps to 300, which proved to

be more than sufficient to converge the MLWFs and works
particularly well for graphene. The Wannier function spread
for the pz orbitals are discussed in appendix A and their nu-
merical values gathered in Table III.

One advantage of the Wannier interpolation method is the
possibility in some systems of accurately parameterizing first
principles band structures across the entire Brillouin zone with
a small number of parameters that can be extracted from a
coarse k-point sampling.13 In the case of graphene a rather
limited 6× 6× 1 k-point sampling density with two atoms in
the unit cell already leads to Wannier interpolated bands that
are practically indistinguishable from the fully converged ab
initio bands obtained from interpolation of a 30×30 k-points
sampling calculation as shown in Fig. 1. Some discrepancies
are visible to the naked eye when we use a lower sampling
density of 3×3×1. The density of k-point sampling defines
the system size beyond which all properties are periodic, and
therefore limits the maximum number of physically meaning-
ful nearest neighbor hopping terms that can be used to repro-
duce the bands in the system. For a 3×3×1 sampling density
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FIG. 2: (Color online) a. Honeycomb lattice neighbors m as defined in Tables V and VI grouped by symmetry. The central site (0) in this
illustration is on the A (blue) sublattice and the three 1st near neighbors are on the B (red) sublattice. The inner and outer hexagons indicate the
hopping processes included in 5 and 15 neighbor tight-binding models. b. Hopping amplitude t(d) as a function of the real space distance d
between the carbon lattice sites for Wannier models implied by different k-point sampling densities. The inset highlights differences between
remote hopping amplitudes.

only 5 nearest neighbor hopping terms are properly defined
(see Table I).

III. π-BAND TIGHT-BINDING HAMILTONIANS

Because there is one π-electron per site, the π-band tight-
binding Hamiltonian is a 2×2 matrix:

H(k) =

(
HAA(k) HAB(k)
HBA(k) HBB(k)

)
. (1)

The Bloch function basis function for this Hamiltonian is re-
lated to the Wannier functions by

|ψkα〉 =
1√
N ∑

R
eik(R+τα ) |R+ τα〉 (2)

where α is the sublattice index, τα is the position of the sublat-
tice relative to the lattice vectors R and |R+ τα〉 is a Wannier
function. The matrix elements of the Hamiltonian are related
to the Wannier representation hopping amplitudes by

Hαβ (k) = 〈ψkα |H
∣∣ψkβ

〉
(3)

=
1
N ∑

RR′
eik(R′−R)tαβ (R−R′) (4)

where

tαβ (R−R′) =
〈

R+ τα | H | R′+ τ ′β
〉

(5)

represents tunneling from β to α sublattice sites located re-
spectively at R′+ τ ′β and R+ τα . It follows from inversion
symmetry that HAA(k) = HBB(k).

By grouping neighbor vectors related by symmetry, the
Hamiltonian matrix elements can be expressed as a sum over

neighbor indices n:

HAB(k) = ∑
n

tn fn(k) (6)

or

HAA(k) = ∑
n

t ′ngn(k) (7)

where tn = tABn and t ′n = t ′AAn are the common hopping of
members of the set of nth neighbors for a given sublattice and
fn(k) and gn are the corresponding structure factors obtained
by summing phase factors exp(i~k · ~R) over this set.14 Addi-
tional discussions on the role of distant hopping terms can
be found in appendix B. It is useful to distinguish neighbor
groups that are off-diagonal in sublattice from those that are
diagonal. The positions of the distant neighbors from a ref-
erence site 0 at the origin are shown in Fig. 2 where we use
the blue and red colors to distinguish A and B sublattices. We
have chosen a coordinate system in which the honeycomb’s
Bravais lattice has primitive vectors

~a1 = a(1,0) , ~a2 = a
(1

2
,

√
3

2

)
, (8)

where a = 2.46Å is the lattice constant of graphene. The self-
consistent LDA lattice constant we obtained was a = 2.44,
about 1% smaller, and yields a converged nearest neighbor
hopping of t = −2.99, see Table IV in appendix C, a value
about 2-3 % greater than the results quoted in table I. The
reciprocal lattice vectors are then

~b1 =
4π√
3a

(√3
2

,−1
2

)
, ~b2 =

4π√
3a

(0,1). (9)

We choose τα = (0,0) and τβ = (0,a/
√

3). Numerical val-
ues of the inter-lattice hopping parameters implied by dif-
ferent k-space sampling densities are plotted in Fig. 4 and
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We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =

�
HAA(k) HAB(k)

HBA(k) HBB(k)

�
(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-
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We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =

�
HAA(k) HAB(k)

HBA(k) HBB(k)

�
(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-
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We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =

�
HAA(k) HAB(k)

HBA(k) HBB(k)

�
(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-

2

We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =

�
HAA(k) HAB(k)

HBA(k) HBB(k)

�
(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-
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FIG. 3: (Color online) a. Band structure near the Dirac point obtained using the minimal model, 5 and 8 nearest neighbor hopping terms
extracted from the 30× 30 k-point sampling and the interpolated reference bands in solid black lines. The dotted horizontal lines represent
the energy cuts for the contour plots. b. Contour plots corresponding to the minimal model and seventeen nearest neighbor hopping terms at
energies 0.2, 0.4 and 0.6 eV. We have set the Dirac point at K = (0,0). c. Color surface plot of one of the diagonal terms that accounts for
particle-hole symmetry breaking calculated including 17 nearest neighbor hopping terms. We notice a mild negative parabolic correction near
K, more pronounced negative corrections near M and larger positive corrections near Γ.

where a = 2.46Å is the lattice constant of graphene. The re-
ciprocal lattice vectors are then

�b1 =
4π√
3a

�√3
2

,−1
2

�
, �b2 =

4π√
3a

(0,1). (8)

We choose τα = (0,0) and τβ = (0,a/
√

3).
The eigenvalues of graphene with inversion symmetry

where HAA(k) = HBB(k) satisfies the relation

E±(k) = |HAA(k)|± |HAB(k)| . (9)

From the above expression it is apparent that the diagonal term
|HAA(k)| is responsible for the particle-hole symmetry break-
ing of the bands, whereas the off diagonal term |HAB(k)| ac-
counts for the main features of the energy bands. The position
vectors with respect to the lattice centers for distant neighbor
contributions, their relative phases and each succesive contri-
butions to the Hamiltonian matrix element that adds a cor-
rection in the band dispersion are presented in table III. In
the following we comment on the explicit form of the band
distortion introduced by the inter-sublattice (AB) hopping re-
sponsible for the band dispersion and the intra-sublattice (AA
or BB) diagonal terms that account for the particle-hole sym-
metry breaking of the Hamiltonian. The role played by each
nth neighbor contribution in modifying the band dispersion is
best illustrated comparing with the minimal nearest neighbor
hopping tight-binding model, shown in Fig. 1 along the sym-
metry lines for the whole Brillouin zone and in Fig. 4 for the
low energy regime.

The inter-sublattice hopping terms are responsible of the
main features in the band dispersion, including the trigonal
distortions of the band structure. As we can see in Table
II the nearest neighbor and the third nearest neighbor hop-
ping vectors form triangles with opposite orientation that will
give rise to opposing trigonal distortions. We show in Fig. 6
the contour plots of each individual distant neighbor contribu-
tions. The nearest neighbor hopping with the largest hopping
value normally defines the bandwidth while the smaller third
neighbor hopping term introduces non-negligible changes in
the shape of the bands. More distant neighbor hopping terms
introduce more complex band distortions although their ef-
fect are less dominant due to the substantial decrease of the
hopping amplitude with increasing distance. The effects of
trigonal warping are manifested more clearly for higher car-
rier doping densities and it is reflected in the anisotropy of
the band dispersion around the Dirac cone that we illustrate in
Fig. 5 in the different dispersion behavior of the band energies
along the Γ−K and K −M directions and in the accompany-
ing contourplots.

The intra-sublattice hopping terms that account for the
particle-hole symmetry breaking in single layer graphene is
due to the k-point dependent diagonal terms in the Hamilto-
nian that we represent in Fig. 5b. There are at least six hop-
ping sites for a given nth-distant neighbor hopping whose re-
spective distortions in the bands are illustrated in Fig. 6. From
an inspection of Fig. 5b, 6 and the hopping terms gathered in
Table II we can observe that the 2nd distant hopping term cap-
tures correctly the positive correction of the bands near the Γ
points but fails to capture the features near M and K points.
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periodicity. The spreading of the wave functions gives an es-
timate for the orbital localization radius. It is found that the
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FIG. 1: (Color online) Left Panel: Band structure of graphene obtained through Wannier interpolation of the first principles LDA approximation
for different k-point sampling densities in the non-self-consistent calculation from a converged charge density obtained using a 36×36 mesh.
Already a 3×3 sampling gives fairly accurate interpolated bands and 6×6 results are almost undistinguishable to the k-point converged 30×30
interpolated reference bands represented with black solid lines. Right Panel: Tight-binding band structures for different cutoffs in the distant
hopping parameters. The minimal model bands with nearest neighbor hopping only represented in pink uses a hopping value of tAB1 = −2.58
eV chosen to match the Fermi velocity of the ab initio bands at the Dirac point. The black solid lines are the same reference bands as in the
left panel whereas the blue and red lines represent the tight-binding band structure obtained from the real space distant hopping parameters
extracted from the wannierization of the 30×30 wave functions truncated at 5 and 8 nearest neighbors respectively. The tight-binding bands
follow closely the ab initio ones when distant neighbors are included.

We perform the initial band-structure calculations using the
quantum espresso code,10 using a kinetic-energy cutoff of
80Ry is used for the plane-wave expansion of the valence
wavefunctions and the ultrasoft pseudopotential C.pz-rrkjus
with the Perdew-Zunger parametrization12 for Local Density
Approximation (LDA) .9 We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 36 bands for
different sets of nkx ×nky ×1 grid of k-points. The required in-
put overlap matrices and projections are calculated using the
post-processing routine pw2wannier.90 supplied with quan-
tum espresso. We use atom centered projections of pz orbitals
for the π , π∗-bands of graphene and bond centered s orbitals
for the bonding σ bands for the initial guesses and use wan-
nier90 is used to obtain the MLWF, using a procedure similar
to those outlined in references7,11. We have set the number
of iterative steps to 300 to minimize the gauge dependent and
gauge independent spreads which was more than enough to
obtain perfectly converged results.

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone for
large enough supercells even when a very coarse k-point sam-
pling is used. For example, in the case of a carbon nanotube

Ω 3×3 6×6 12×12 30×30
Ωpz 0.8237 0.9168 0.9571 0.9750
Ωσ 0.5223 0.5875 0.6074 0.6134
Ωtotal 3.2143 3.5960 3.7365 3.7900
ΩI 2.4951 2.8437 2.9844 3.0380
ΩD 0.0023 0.0096 0.0127 0.0138
ΩOD 0.7169 0.7427 0.7393 0.7382

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

the wannierization of a single Γ point calculation with 100
atoms in the unit cell allowed to obtain real space hopping
parameters that reproduced practically exactly the ab initio
bands obtained with 5 k-point sampling of a system with 20
atoms in the supercell.13 In the case of graphene a rather lim-
ited k-point sampling density of 6× 6× 1 with two atoms in
the unit cell already leads to Wannier interpolated bands that
are practically undistinguishable to the fully converged ab ini-
tio bands as shown in Fig 1. Some small discrepancies are
visible to the naked eye when we use a lower sampling den-
sity of 3× 3× 1. This sampling density can define properly
5 nearest neighbor hopping terms (see table II). A truncated
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We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =

�
HAA(k) HAB(k)

HBA(k) HBB(k)

�
(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-

2

We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =

�
HAA(k) HAB(k)

HBA(k) HBB(k)

�
(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-
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We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =

�
HAA(k) HAB(k)

HBA(k) HBB(k)

�
(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-
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We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =

�
HAA(k) HAB(k)

HBA(k) HBB(k)

�
(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-
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We perform the initial band-structure calculations us-
ing the quantum espresso code,[9] using a kinetic-energy
cutoff of 60Ry is used for the plane-wave expansion of
the valence wavefunctions and the ultrasoft pseudopoten-
tial C.pz-XXXXX for the Perdew-Zunger Local Density
Approximation.[12] We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 24 bands for
different sets of nkx × nky × 1 grid of k-points. The required
input overlap matrices and projections are calculated using
the post-processing routine pw2wannier90, [13] supplied with
quantum espresso. We use atom centered projections of pz
orbitals for the π , π∗-bands of graphene and bond centered
orbitals for the bonding σ bands for the initial guesses and
use wannier90 is used to obtain the MLWF, using a proce-
dure similar to those outlined in references [16, 17] as illus-
trated in Fig. X. We have set the number of iterative steps to
300 to minimize the gauge dependent and gauge independent
spreads.
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FIG. 1: (Color online) Left Panel: Band structure of graphene ob-
tained through Wannier interpolation of the first principles LDA ap-
proximation for different k-point sampling densities in the non-self-
consistent calculation from a converged charge density obtained us-
ing a 36× 36 mesh. Already a 3× 3 sampling gives fairly accurate
interpolated bands and 6× 6 results are almost undistinguishable to
the k-point converged 30 × 30 interpolated reference bands repre-
sented with black solid lines. Right Panel: The black solid lines are
the same reference bands as in the left panel whereas the blue and
red lines represent the tight-binding band structure obtained from the
real space distant hopping parameters extracted from the wannierized
bands represented on the left panel. The small discrepancies of these
bands with respect to the left-panel reflect the degree of accuracy in
the orthogonalization procedure between the pz and σ Wannier or-
bitals.

Convergence as a function of k-point sampling

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone even
when calculated with a very coarse k-point sampling. For ex-
ample, in the case of a carbon nanotube [18] a rather limited
k-point sampling density of 3×3×1 was enough to define the
distant hopping terms the Wannier functions that would yield
an excellent agreement with the first principles bands. The
density of k-point sampling defines the system size and there-
fore limits the maximum number of nearest neighbor hopping
terms used to reproduce the bands in the system. This is be-
cause the Wannier functions as implemented in an ab initio
code with a finite density of k-points will have a decreasing
density tail from its localization center until it starts to grow
again and fully reappear at a distant lattice site determined by
the system’s periodicity. Therefore, the values of the hopping
parameters depend on the choice of the k-point sampling al-
though in the case of graphene the dependence with respect
to the sampled k-point density as shown in Table I is found
to be not very strong. We can exploit the fact that a coarser
sampling of the k-points can provide an optimum interpola-
tion of the bands in the Brillouin zone using a relatively small
number of distant neighbor hoppings.

Ω 3×3 6×6 12×12 30×30
Ωpz 0.9374 1.0269 1.0558 1.0697
Ωσ 0.5126 0.5805 0.6020 0.6084
Ωtotal 3.4128 3.7955 3.9177 3.9647
ΩI 2.6908 3.0583 3.1882 3.2374
ΩD 0.0039 0.0102 0.0115 0.0125
ΩOD 0.7181 0.7269 0.7180 0.7148

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

TIGHT-BINDING METHOD FOR THE π-ORBITAL BANDS
HAMILTONIAN

The two bands Hamiltonian of graphene for the π orbitals
can be written as

H(k) =
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HAA(k) HAB(k)

HBA(k) HBB(k)
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(1)

represented in the basis of Bloch functions

|ψkα� =
1√
N ∑

R
eik(R+τα ) |R+ τα� (2)

where α is the sublattice index and τα is the position of the
sublattice relative to the lattice vectors R. The matrix ele-
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FIG. 3: (Color online) a. Band structure near the Dirac point obtained using the minimal model, 5 and 8 nearest neighbor hopping terms
extracted from the 30× 30 k-point sampling and the interpolated reference bands in solid black lines. The dotted horizontal lines represent
the energy cuts for the contour plots. b. Contour plots corresponding to the minimal model and seventeen nearest neighbor hopping terms at
energies 0.2, 0.4 and 0.6 eV. We have set the Dirac point at K = (0,0). c. Color surface plot of one of the diagonal terms that accounts for
particle-hole symmetry breaking calculated including 17 nearest neighbor hopping terms. We notice a mild negative parabolic correction near
K, more pronounced negative corrections near M and larger positive corrections near Γ.

where a = 2.46Å is the lattice constant of graphene. The re-
ciprocal lattice vectors are then

�b1 =
4π√
3a

�√3
2

,−1
2

�
, �b2 =

4π√
3a

(0,1). (8)

We choose τα = (0,0) and τβ = (0,a/
√

3).
The eigenvalues of graphene with inversion symmetry

where HAA(k) = HBB(k) satisfies the relation

E±(k) = |HAA(k)|± |HAB(k)| . (9)

From the above expression it is apparent that the diagonal term
|HAA(k)| is responsible for the particle-hole symmetry break-
ing of the bands, whereas the off diagonal term |HAB(k)| ac-
counts for the main features of the energy bands. The position
vectors with respect to the lattice centers for distant neighbor
contributions, their relative phases and each succesive contri-
butions to the Hamiltonian matrix element that adds a cor-
rection in the band dispersion are presented in table III. In
the following we comment on the explicit form of the band
distortion introduced by the inter-sublattice (AB) hopping re-
sponsible for the band dispersion and the intra-sublattice (AA
or BB) diagonal terms that account for the particle-hole sym-
metry breaking of the Hamiltonian. The role played by each
nth neighbor contribution in modifying the band dispersion is
best illustrated comparing with the minimal nearest neighbor
hopping tight-binding model, shown in Fig. 1 along the sym-
metry lines for the whole Brillouin zone and in Fig. 4 for the
low energy regime.

The inter-sublattice hopping terms are responsible of the
main features in the band dispersion, including the trigonal
distortions of the band structure. As we can see in Table
II the nearest neighbor and the third nearest neighbor hop-
ping vectors form triangles with opposite orientation that will
give rise to opposing trigonal distortions. We show in Fig. 6
the contour plots of each individual distant neighbor contribu-
tions. The nearest neighbor hopping with the largest hopping
value normally defines the bandwidth while the smaller third
neighbor hopping term introduces non-negligible changes in
the shape of the bands. More distant neighbor hopping terms
introduce more complex band distortions although their ef-
fect are less dominant due to the substantial decrease of the
hopping amplitude with increasing distance. The effects of
trigonal warping are manifested more clearly for higher car-
rier doping densities and it is reflected in the anisotropy of
the band dispersion around the Dirac cone that we illustrate in
Fig. 5 in the different dispersion behavior of the band energies
along the Γ−K and K −M directions and in the accompany-
ing contourplots.

The intra-sublattice hopping terms that account for the
particle-hole symmetry breaking in single layer graphene is
due to the k-point dependent diagonal terms in the Hamilto-
nian that we represent in Fig. 5b. There are at least six hop-
ping sites for a given nth-distant neighbor hopping whose re-
spective distortions in the bands are illustrated in Fig. 6. From
an inspection of Fig. 5b, 6 and the hopping terms gathered in
Table II we can observe that the 2nd distant hopping term cap-
tures correctly the positive correction of the bands near the Γ
points but fails to capture the features near M and K points.
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periodicity. The spreading of the wave functions gives an es-
timate for the orbital localization radius. It is found that the
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FIG. 1: (Color online) Left Panel: Band structure of graphene obtained through Wannier interpolation of the first principles LDA approximation
for different k-point sampling densities in the non-self-consistent calculation from a converged charge density obtained using a 36×36 mesh.
Already a 3×3 sampling gives fairly accurate interpolated bands and 6×6 results are almost undistinguishable to the k-point converged 30×30
interpolated reference bands represented with black solid lines. Right Panel: Tight-binding band structures for different cutoffs in the distant
hopping parameters. The minimal model bands with nearest neighbor hopping only represented in pink uses a hopping value of tAB1 = −2.58
eV chosen to match the Fermi velocity of the ab initio bands at the Dirac point. The black solid lines are the same reference bands as in the
left panel whereas the blue and red lines represent the tight-binding band structure obtained from the real space distant hopping parameters
extracted from the wannierization of the 30×30 wave functions truncated at 5 and 8 nearest neighbors respectively. The tight-binding bands
follow closely the ab initio ones when distant neighbors are included.

We perform the initial band-structure calculations using the
quantum espresso code,10 using a kinetic-energy cutoff of
80Ry is used for the plane-wave expansion of the valence
wavefunctions and the ultrasoft pseudopotential C.pz-rrkjus
with the Perdew-Zunger parametrization12 for Local Density
Approximation (LDA) .9 We obtain the self-consistent ground
state using a 30×30×1 Monkhorst-Pack mesh of k-points and
a fictitious Gaussian smearing in the Fermi distribution of
0.02Ry for the Brillouin-zone integration. Then starting from
the self-consistent charge density we obtain up to 36 bands for
different sets of nkx ×nky ×1 grid of k-points. The required in-
put overlap matrices and projections are calculated using the
post-processing routine pw2wannier.90 supplied with quan-
tum espresso. We use atom centered projections of pz orbitals
for the π , π∗-bands of graphene and bond centered s orbitals
for the bonding σ bands for the initial guesses and use wan-
nier90 is used to obtain the MLWF, using a procedure similar
to those outlined in references7,11. We have set the number
of iterative steps to 300 to minimize the gauge dependent and
gauge independent spreads which was more than enough to
obtain perfectly converged results.

One powerful use of the Wannier interpolation method is
the possibility of reproducing to a high degree of accuracy the
first principles band structure in the entire Brillouin zone for
large enough supercells even when a very coarse k-point sam-
pling is used. For example, in the case of a carbon nanotube

Ω 3×3 6×6 12×12 30×30
Ωpz 0.8237 0.9168 0.9571 0.9750
Ωσ 0.5223 0.5875 0.6074 0.6134
Ωtotal 3.2143 3.5960 3.7365 3.7900
ΩI 2.4951 2.8437 2.9844 3.0380
ΩD 0.0023 0.0096 0.0127 0.0138
ΩOD 0.7169 0.7427 0.7393 0.7382

TABLE I: Evolution of wave function spreading with increasing k-
point sampling density.

the wannierization of a single Γ point calculation with 100
atoms in the unit cell allowed to obtain real space hopping
parameters that reproduced practically exactly the ab initio
bands obtained with 5 k-point sampling of a system with 20
atoms in the supercell.13 In the case of graphene a rather lim-
ited k-point sampling density of 6× 6× 1 with two atoms in
the unit cell already leads to Wannier interpolated bands that
are practically undistinguishable to the fully converged ab ini-
tio bands as shown in Fig 1. Some small discrepancies are
visible to the naked eye when we use a lower sampling den-
sity of 3× 3× 1. This sampling density can define properly
5 nearest neighbor hopping terms (see table II). A truncated
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FIG. 3: (Color online) a. Band structure estimates near the Dirac point obtained using the minimal model, using 5 hopping parameters extracted
from the from 3×3 calculation, and using 8 hopping parameters extracted from 6×6 k-point sampling, compared to the interpolated reference
bands in solid black lines. The dotted horizontal lines represent the energy cuts for the contour plots in c. b. Absolute value of quasiparticle
velocities υ = ∂E/h̄∂k for the minimal model, the five nearest neighbor model, and the reference ab initio bands. The dotted horizontal line
at υ = 0.838 · 106 m/s specifies the Fermi velocity at the Dirac point. The solid lines represent conduction bands quasiparticle velocities and
the dashed lines correspond to valence band velocities. Note that the velocity vanishes in both conduction and valence bands at the�k = M
van Hove singularity point. Allan: The directions of the K in these plots should be indicated somehow in the figure. c. Contour lines of
the energy bands in a. for the minimal and reference band model for 0.2, 0.4 and 0.6 eV. d. Color scale plot of HAA(k) calculated using 17
nearest neighbor hopping terms. Allan: gamma,k, and m should be changed to a light color for visibility. The combined effect of second
and fifth nearest neighbor hopping terms is able to account for the negative inverted parabolic correction near K, the more pronounced negative
corrections near M and large positive corrections near Γ.

where the CAA0 is constant which plays no role in most physi-
cal properties and CAA2 is responsible for particle-hole break-
ing. We find that

CAA0 = −3t2 +6t5 −3t6 −6t10 +6t12 +6t15 −6t17 (12)

CAA2 =
3a2

4
(t2 −6t5 +4t6 +14t10 −18t12 −6t15 +26t17).

(13)

The Dirac velocity and trigonal warping are specified at low
energies by the following expansion

HAB(kD +k) �CAB1ke−iθk +CAB2k2ei2θk , (14)

where

CAB1 =

√
3a
2

(t1 −2t3 − t4 +5t7 +4t8 −7t9 −5t11

− 2t13 +4t14 −11t16) (15)

CAB2 =
a2

8
(t1 +4t3 −13t4 − t7 +16t8 +11t9 +25t11

− 52t13 −46t14 +47t16). (16)

The values of these coefficients implied by different possible
tight-binding models are summarized in Fig. 5. We see there
that, in addition to providing a good characterization of the
overall shape of the bands, the 5 neighbor tight-binding model

accurately characterizes the three most important parameters
for continuum model theories that are valid at low energies. A
15 nearest neighbor tight-binding model is able to accurately
capture all the features of an LDA calculation.

IV. CONCLUSIONS AND DISCUSSIONS

We have presented highly accurate tight-binding models
based on maximally localized Wannier functions that can cap-
ture the relevant features of the bands in the entire Brillouin
zone as well as the low energy regime. The tight-binding
model we present here based on distant hopping terms and
orthogonal localized Wannier orbitals is superior in both ac-
curacy and transparency of the physical interpretation with
respect to previous proposals based on one or two nearest
neighbor hopping terms and use localized orbitals with a fi-
nite overlap between neighboring sites. On the one hand the
inter-sublattice corrections due to trigonal and higher order
distortions beyond the nearest neighbor tight-binding model,
that become noticeable when we access high density carrier
doping regimes. The contribution of distant hopping terms
have a rather strong effect in renormalizing the Fermi velocity
at the Dirac point which suggests that the overlap of the Wan-
nier functions located at the carbon sites decay more slowly
than initially expected, an observation consistently with the
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FIG. 3: (Color online) a. Band structure estimates near the Dirac point obtained using the minimal model, using the five hopping parameter
model extracted from the from 3×3 calculation, and using the 15 hopping parameter model extracted from 6×6 k-point sampling, compared
to the interpolated reference bands in solid black lines. The dotted horizontal lines show the energy cuts used for the contour plots in c. b.
Absolute value of quasiparticle velocities υ = ∂E/h̄∂k for the minimal model, the five nearest neighbor model, and the reference ab initio
bands. The dotted horizontal line at υ = 0.838 · 106 m/s specify the Fermi velocity at the Dirac point. The solid lines represent conduction
bands quasiparticle velocities and the dashed lines correspond to valence band velocities. Note that the velocity vanishes in both conduction
and valence bands at the~k = M van Hove singularity point. c. Contour lines of the energy bands in a. for the minimal and reference band
model for 0.2, 0.4 and 0.6 eV. d. Color scale plot of HAA(k) calculated using 17 nearest neighbor hopping terms. The combined effect of
second and fifth nearest neighbor hopping terms is able to account for the negative inverted parabolic correction near K, the more pronounced
negative corrections near M and large positive corrections near Γ.

listed in tables V and I. The translation vectors for each group
of neighbors, the associated structure factors, and their ex-
pansions near the band-crossing Brillouin-zone corner points
kD = (4π/3a,0) are listed in Tables V, VI.

Because of the inversion symmetry property HAA(k) =
HBB(k), the π-band energies of graphene are given by

E±(k) = |HAA(k)|± |HAB(k)| . (10)

It follows that the velocity at the Dirac point is determined
by |HAB(k)|, i.e. by the inter-sublattice hopping contribu-
tion to the Hamiltonian, and that particle-hole symmetry is
broken whenever |HAA(k)| 6= 0, i.e. whenever there is an
intra-sublattice contribution. As summarized in Table V, for
all inter-sublattice hopping processes fn(k) vanishes at the
Brillouin-zone corner kD = (4π/3a,0) and has a leading cor-
rection proportional to qexp(−iθ~q). Here ~q is wave vector
measured from the Brillouin-zone corner. The intra-sublattice
processes on the other hand have no linear in q terms and are
isotropic to second order in q. The sub-leading term in the ex-
pansion of the inter-sublattice terms behaves like q2 exp(2iθ~q).

The low energy~k ·~p model implied by a given tight-binding
parameterization is obtained by performing a Taylor expan-
sion of the bands near the Dirac point K. Intra-sublattice pro-
cesses contribute to the diagonal elements of the~k ·~p Hamil-
tonian whereas inter-sublattice processes contribute to the off-
diagonal matrix elements. For the off-diagonal elements for
which the Dirac velocity and trigonal warping are specified at

low energies we have

Hαβ (kD +k) ' Cαβ1ke−iθk +Cαβ2k2ei2θk , (11)

involving sums of fn terms for matrix elements connecting
sites αβ =AB. The explicit form of the expansion coefficients
are given by

Cαβ1 =

√
3a
2

(−t1 +2t2 + t3−5t4−4t5 +7t6 +5t7

+ 2t8−4t9 +11t10) (12)

Cαβ2 =
a2

8
(t1 +4t2−13t3− t4 +16t5 +11t6 +25t7

− 52t8−46t9 +47t10). (13)

where we have abbreviated the notation by denoting tn = tαβn
removing the αβ subscripts.

For the diagonal elements responsible for particle-hole
symmetry breaking as summarized in Table VI we have

Hαβ (kD +k) ' C′αβ0 +C′αβ2 k2 (14)

and their form is given by

C′αβ0 = −3t ′1 +6t ′2−3t ′3−6t ′4 +6t ′5
+ 6t ′6−6t ′7 (15)

C′αβ2 =
3a2

4
(t ′1−6t ′2 +4t ′3 +14t ′4

− 18t ′5−6t ′6 +26t ′7). (16)
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AB n m N0 dn/a tn,3×3 tn,6×6 tn,12×12 tn,30×30

1 1 3 1√
3

-3.00236 -2.94015 -2.92774 -2.92181

2 3 3 2√
3

-0.22464 -0.26199 -0.27586 -0.27897

3 4 6
√

7
3 0.05205 0.03172 0.02807 0.02669

4 7 6
√

13
3 -0.00830 -0.00727 -0.00885

5 8 3 4√
3

-0.02463 -0.01812 -0.01772

6 9 6
√

19
3 0.00096 0.00463 0.00675

7 11 3 5√
3

0.00467 -0.00227 -0.00262

8 13 6
√

28
3 -0.00724 -0.00088 0.00019

9 14 6
√

31
3 0.00562 0.00044 -0.00068

10 16 6
√

37
3 -0.00230 -0.00237

AA n m N0 dn/a t ′n,3×3 t ′n,6×6 t ′n,12×12 t ′n,30×30

1 2 6 1 0.20509 0.21813 0.22377 0.22378
2 5 6

√
3 0.06912 0.04357 0.04555 0.04813

3 6 6 2 -0.02379 -0.02406 -0.02402
4 10 12

√
7 0.00538 0.00313 0.00263

5 12 6 3 0.00783 0.00296 0.00111
6 15 6 6√

3
-0.01429 -0.00110 0.00018

7 17 12
√

39
3 -0.00066 -0.00008

TABLE I: Hopping amplitudes in eV units implied by four different
k-point sampling densities. Intra-sublattice and inter-sublattice am-
plitudes are grouped separately. The two models on the left, with
five and fifteen parameters respectively, provide good compromises
between accuracy and simplicity.

for matrix elements connecting the sites αβ = AA,BB for
intra-sublattice hopping parameters involving sums of gn
terms. We have used the primes, both for the expansion co-
efficients as well as the hopping terms, to remark they in-
volve expansions of gn terms rather than fn. More distant
hopping processes make a relatively smaller contribution to
CAA2 as expected. Thus, the continuum model Hamiltonian
near kD = (4π/3a,0) in terms of the effective parameters can
be written as

Hcont
kD

(k) = k2C′AA2I+ kCAB1 (cos(θk)σx + sin(θk)σy)

+ k2 CAB2 (cos(2θk)σx− sin(2θk)σy) (17)

where σx and σy are Pauli matrices. The values of the pa-
rameters for expansion near the Dirac point are given in ta-
ble II, both for the experimental lattice constant and a slightly
smaller self-consistent LDA value.

The values of the~k ·~p parameters corresponding to differ-
ent tight-binding models are summarized in Fig. 4. We see
there that, in addition to providing a good characterization of
the overall shape of the bands, the 5 neighbor tight-binding
model accurately characterizes the three most important con-
tinuum model band parameters. The main advantage of the 15
parameter model is that it provides a more accurate descrip-
tion of the conduction band van Hove singularity.

exp. a = 2.46 Å LDA a = 2.439 Å
5 n.n. 15 n.n. 5 n.n. 15 n.n.

C′AA2 ( eV·Å2) -0.951 -0.537 -1.01 -0.572
CAB1 (eV·Å) 5.55 5.50 5.62 5.57
CAB2 (eV·Å2) -3.46 -3.44 -3.50 -3.48

TABLE II: Expansion coefficients for the effective two-dimensional
continuum model Hamiltonian near the Dirac point kD = (4π/3a,0).
The CAB1 term is related with the Fermi velocity through υF =
CAB1/h̄. Both the 5 and 15 parameter models give a satisfactory
agreement in the main parameters that define the effective continuum
model. Although the particle-hole symmetry breaking term given
by C′AA2 shows the largest discrepancy between both models they
have a relatively small effect due to their small values compared to
the other two terms. The results between the experimental and self-
consistent LDA lattice constant that are different by less than 1%
introduce marginal changes in the obtained parameters.

IV. CONCLUSIONS AND DISCUSSIONS

We have discussed graphene π-band tight-binding models
derived from maximally localized Wannier functions, assess-
ing the degree to which they reproduce the Dirac velocity, trig-
onal warping, and particle-hole-symmetry breaking parame-
ters that appear in continuum models of graphene, and their
overall accuracy within an eV of the Dirac point. We find
that a relatively convenient five near-neighbor tight binding
model with three inter-sublattice and two intra-sublattice hop-
ping parameters obtained from a rather coarse 3× 3 k-point
momentum-space sampling already provides a substantial im-
provement relative to the commonly used minimal model with
only near-neighbor hopping. Accuracy is further improved
near the conduction band van Hove singularity by using a
fifteen parameter model which retains nine intra-sublattice
hopping processes and six inter-sublattice hopping processes.
These two models are superior in both accuracy and in the
transparency of their physical interpretation compared to pre-
viously proposed refinements of the minimal model.

Intra-sublattice particle-hole symmetry breaking effects are
most prominent near symmetry points with peaks at Γ and
valleys around M and K. These effects require at least up to
fifth nearest neighbor hopping terms for a qualitatively cor-
rect description. The fifteen parameter model based on 6× 6
sampling provides an essentially exact reproduction of the ab
initio LDA bands.

The models presented here provide a tight-binding platform
for graphene electronic property studies which have ab ini-
tio accuracy. The improved accuracy relative to the mini-
mal model is valuable, especially for applications in which
high-energy features of the bands must be accurately cap-
tured. Examples that come to mind include optical ab-
sorption in visible and near-infrared regimes15 and putative
superconductivity16–18 in systems with Fermi energies at the
van Hove singularities.

Of course, the tight-binding model is only as accurate as
the ab initio LDA calculation that it approximates. Our use of
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FIG. 4: (Color online) Leading low-energy graphene continuum
model band parameters implied by different Wannier interpolations.
For the three models considered these plots show the dependence
on hopping-parameter truncation at different neighbor shells. CAB1,
CAB2, and CAA2 are respectively the velocity, trigonal warping, and
particle-hole symmetry breaking parameters for continuum~k ·~p mod-
els and are defined in Eqs. (12-13) and (15-16). The dashed horizon-
tal line in the CAB1 plot is the minimal model tight-binding model fit
to the ab-initio LDA band structure Dirac point velocity. The five
neighbor model obtained from 3× 3 k-point sampling Wannier in-
terpolation produces accurate values of the coefficients for the Fermi
velocity and parabolic off diagonal correction.

the LDA approximation is intentional since we wish to con-
struct bands that have a realistic bonding structure, but want as
far as possible to construct a model which does not already re-
flect the peculiar π-band19–21 exchange and correlation effects
which increase Fermi velocities in low-carrier density systems
when disorder is weak and reshape22 Dirac cones. It is well
known, for example, that many-body physics is necessary in
particular to explain the divergence of the Fermi level quasi-
particle velocity at vanishing carrier density22, photoelmission
satellites23 and the plasmaron features near the Dirac point
in ARPES spectra when the carrier density is finite.24 Many-
body effects must be accounted for separately because their
influence depends on the observable under study, in addition
to being dependent on carrier-density and disorder. For many
low-energy phenomena, the influence of interactions can often
be accounted for simply by renormalizing the Fermi velocity,
or equivalently by renormalizing hopping parameters. Many
body velocity enhancements are likely responsible for the fact
that near-neighbor hopping parameters that are obtained by
fitting to experimental data are normally larger than those of
our tight-binding models.

The present analysis suggests that the minimal near-
neighbor tight-binding model often used for graphene pro-

vides an adequate description of many properties not because
hopping really is very short-ranged, and instead because the
low-energy bands depend only on the Dirac-point velocity.
Presumably the same is true of inter-layer hopping terms. The
range of inter-layer hopping processes plays a key role in as-
sessing the influence of relative layer alignment25–28 on the
electronic structure of graphene on graphene and graphene
on boron nitride. The maximally-localized Wannier approach
should prove equally valuable for those closely related elec-
tronic structure problems.
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by the Welch Foundation TBF1473, and by DOE (DE-FG03-
02ER45958, Division of Materials Science and Engineering)
grant. We gratefully acknowledge assistance and computa-
tional resources from the Texas Advanced Computing Center.
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Appendix A: Wannier Function Spread

Wannier functions constructed from an ab initio calculation
with a finite density of k-points have a density which is local-
ized near points separated by a distance inversely related to
the coarseness of the k-point mesh. The spread of the Wan-
nier wave functions around their centers provides estimates of
atomic orbital size. A mean-square characteristic is defined
by8

Ω = ∑
n
〈(r− r̄n)

2〉= ΩI + Ω̃, (A1)

where n is the index of each Wannier function and r̄n its cen-
ter. Here ΩI is a gauge invariant contribution to the spread-
ing that remains fixed for a given choice of band subspace,
whereas Ω̃ can be minimized through iterative unitary trans-
formations as explained in reference [9]. The dependence
of orbital spreading on k-point sampling density is weak in
the case of graphene, as we show in Table III, which hints
that a relatively coarse sampling of the k-points produces a
physically realistic model. The slow increase of the Wannier-
function spread with k-point mesh density may reflect the
strong dependence of interlayer-sublattice phase on momen-
tum near the band-crossing Dirac point.21

3×3 6×6 12×12 30×30
Ωpz 0.8237 0.9168 0.9571 0.9750
Ωσ 0.5223 0.5875 0.6074 0.6134
Ωtotal 3.2143 3.5960 3.7365 3.7900
ΩI 2.4951 2.8437 2.9844 3.0380

TABLE III: Evolution of wave function spread with k-point sampling
density given in Å2. We attribute the increase in spread with k-point
density to the strong dependence of wave function on momentum
near the Dirac point.

Appendix B: Role of distant neighbor hopping terms

The role played by remote neighbors in modifying the band
dispersion is best illustrated by comparing with the minimal
nearest neighbor model bands, plotted in Fig. 1 and magnified
near the Dirac point in Fig. 3. The inter-sublattice hopping
terms are responsible for the main features in the band disper-
sion, including the trigonal distortions near the Dirac point.
The nearest neighbor amplitude has the largest value and al-
ready captures the bands qualitatively. As we can see in Table
II the third neighbor hopping process is responsible for a sub-
stantial reduction in the trigonal distortion produced by first
neighbor hopping. In Fig. 4 we plot equal magnitude con-
tours for individual remote neighbor contributions. The more
remote neighbors play a less essential role because of hopping
amplitude decreases. The strength of trigonal warping is re-
flected by the difference in band dispersion around the Dirac
cone between the Γ− K and K − M directions, as illustrated
in Fig. 3.

a

1, 8 4, 9, 14, 16 7, 133, 11

−3

k
(1

/
a
)

0

3

b

2, 6, 12

−3

k
(1

/a
)

0

3

17105, 15

FIG. 5: a. Individual neighbor shell contributions to the band Hamil-
tonian. The role of inter-sublattice hopping terms is illustrated using
conduction band surface and contour-plots for the bands obtained
for neighbor sheels 1, 3, 4, and 7 with the hopping parameter set
to tnAB = 1 eV. More distant neighbors give features that vary more
rapidly in momentum space. b. Similar plots for intra-sublattice con-
tributions from neighbor shells 2,5,10, and 17. We have indicated
with red arrows those sites labeled with an asterisk in Table VI.

The intra-sublattice hopping terms that account for the
particle-hole symmetry breaking are examined in Fig. 3b.
There are at least six hopping sites for a given nth-distant
neighbor hopping whose contributions to the bands are illus-
trated in Fig. 4. From an inspection of Figs. 3d, 4 and the
hopping terms gathered in Tables I, IV we can observe that the
2nd distant hopping term alone captures correctly the positive
correction to the bands near the Γ, but fails to capture features
near M and K points. The 5th neighbor hopping is respon-
sible for dips of the diagonal terms near M and K and also
plays an important role in reversing the sign of the leading
parabolic particle-hole correction term near K. We conclude
that all main features in the bands can be captured by a five
neighbor tight-binding model.
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Appendix C: Tight-Binding Model at the LDA lattice constant

The results we have reported in the main text were cal-
culated using the experimental lattice constant of a = 2.46Å
in graphene. The self-consistent LDA lattice constant of
a = 2.439Å, gives rise to a value that is 0.85% smaller and
thus the resulting changes are expected to be negligibly small.
The new set of hopping parameters are similar to those in Ta-
ble II and are listed here for sake of completeness

AB n m N0 dn/a tαβn,3×3 tαβn,6×6 tαβn,12×12 tαβn,30×30

1 1 3 1√
3

-3.07504 -3.01006 -2.99727 -2.99251

2 3 3 2√
3

-0.23442 -0.27298 -0.28745 -0.28983

3 4 6
√

7
3 0.05350 0.03278 0.02903 0.02791

4 7 6
√

13
3 -0.00884 -0.00775 -0.00877

5 8 3 4√
3

-0.02594 -0.01925 -0.01870

6 9 6
√

19
3 0.00095 0.00490 0.00621

7 11 3 5√
3

0.00485 -0.00252 -0.00256

8 13 6
√

28
3 -0.00752 -0.00087 -0.00018

9 14 6
√

31
3 0.00591 0.00047 -0.00033

10 16 6
√

37
3 -0.00246 -0.00264

AA n m N0 dn/a t ′n,3×3 t ′n,6×6 t ′n,12×12 t ′n,30×30

1 2 6 1 0.21264 0.22614 0.23205 0.23206
2 5 6

√
3 0.07326 0.04584 0.04780 0.04969

3 6 6 2 -0.02478 -0.02518 -0.02499
4 10 12

√
7 0.00564 0.00337 0.00285

5 12 6 3 0.00826 0.00308 0.00204
6 15 6 6√

3
-0.01492 -0.00114 -0.00014

7 17 12
√

39
3 -0.00072 -0.00029

TABLE IV: Same as the table I but calculated using a self-consistent
lattice constant of a = 2.439Å about 1% smaller than the experimen-
tal value a = 2.46Å. gathering the hopping terms between the pz
orbitals as a function of distance for different sampling of k-point
densities, where we distinguish the inter-sublattice hopping giving
rise to the band dispersion and intra-sublattice hopping that accounts
for particle-hole symmetry breaking.
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González, and E. Rotenberg, Phys. Rev. Lett. 104, 136803 (2010).
17 Rahul Nandkishore, and Andrey V. Chubukov, Phys. Rev. B 86,

115426 (2012);

18 M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale,
Phys. Rev. B 86, 020507(R) (2012).

19 J. Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B
59, R2474 (1999); Phys. Rev. Lett. 77 3589 (1996); Nucl. Phys.
B 424, 595 (1994); J. Low. Temp. Phys. 99, 287 (1994). M. A.
H. Vozmediano, M. P. Lopez-Sancho, T. Stauber, and F. Guinea,
Phys. Rev. B 72, 155121 (2005); F. Guinea, A.H. Castro Neto,
and N.M.R. Peres, Eur. Phys. J. Special Topics 148, 117 (2007).

20 Y. Barlas, T. Pereg-Barnea, M. Polini, R. Asgari, and A. H. Mac-
Donald, Phys. Rev. Lett. 98, 236601 (2007); G. Borghi, M. Polini,
R. Asgari and A. H. MacDonald, Solid State Comm. 149 1117
(2009); A. Principi, M. Polini, R. Asgari, and A.H. MacDonald,
Solid State Comm. 152, 1456 (2012).

21 J. Jung and A. H. MacDonald, Phys. Rev. B 84, 085446 (2011).
22 D.C. Elias, R.V. Gorbachev, A.S. Mayorov, A.A. Zhukov, P.

Blake, L.A. Ponomarenko, I.V. Grigorieva, K.S. Novoselov, F.
Guinea, and A.K. Geim, Nature Physics, 7, 701 (2011).

23 J. Lischner, D. Vigil-Fowler, and S. G. Louie, Phys. Rev. Lett.
110, 146801 (2013).

24 A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari,
A. H. MacDonald, E. Rotenberg, Science 328 999 (2010); A. L.
Walter, A. Bostwick, K.-J. Jeon, F. Speck, M. Ostler, T. Seyller, L.
Moreschini, Y. J. Chang, M. Polini, R. Asgari, A. H. MacDonald,
K. Horn, and E. Rotenberg, Phys. Rev. B 84, 085410 (2011).

25 P. Poncharal, A. Ayari, T. Michel, and J.-L. Sauvajol, Phys. Rev.
B 78, 113407 (2008).

26 S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov,
Phys. Rev. B 81, 165105 (2010).

27 Z. F. Wang, Feng Liu, and M. Y. Chou, Nano Lett., 12, 3833
(2012).

28 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei,
K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard and J. Hone,
Nature Nanotech. 5, 722 (2010).


