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We present a specially designed evolutionary algorithm for the prediction of surface reconstructions. This new
technique allows one to automatically explore all the low-energy configurations with variable surface atoms and
variable surface unit cells through the whole chemical potential range. The power of evolutionary search is
demonstrated by the efficient identification of diamond 2×1 (100) and 2×1 (111) surfaces with a fixed number
of surface atom and a fixed cell size. With further variation of surface unit cells, we study the reconstructions of
the polar surface MgO (111). Experiment has detected an oxygen trimer (ozone) motif (Plass et al, 1998). We
predict a new version of this motif which can be thermodynamically stable at extreme oxygen rich condition.
Finally, we perform a variable stoichiometry search for a complex ternary system: semi-polar GaN (1011) with
and without adsorbed oxygen. The search yields a non-intuitive reconstruction based on N3-trimers. These
examples demonstrate that an automated scheme to explore the energy landscape of surfaces will improve our
understanding of surface reconstructions. The method presented in this report can be generally applied to binary
and multi-component systems.

I. INTRODUCTION

At crystalline surfaces, especially in semiconductors, atoms
rearrange to form reconstructed configurations, which are dif-
ferent from those in the bulk crystals. Reconstructions play a
key role in surface properties, such as epitaxial crystal growth,
catalysis, etc. Determining the reconstruction of semiconduc-
tor surfaces is a long-standing problem. Despite progress in
experimental techniques, it is still hard to obtain the atomic-
scale details. Diffraction and microscopy can yield the peri-
odicity and symmetry1,2. However, the sampling space is as-
tronomically large, and solutions may defy intuition, even for
monoatomic systems: consider Si(111) 7×73–5. For binary
and more complex cases, a variable stoichiometry at the sur-
face adds a huge extra dimension. The problematic complex-
ity of surface structures is further compounded by a range of
synthesis techniques. Varying precursor compounds of pos-
sibly mixed gas, liquid, or solid phases, varying pressures
and temperatures during synthesis, varying annealing sched-
ules, etc., may allow a significant range of metastable surface
phases to survive. Thus experiments may correctly offer con-
flicting suggestions about structure. Therefore theory has a
role not just to attempt to predict true thermodynamically sta-
ble structures, but also to catalog potential metastable phases,
needed for guidance in interpretation of experiment.

From the computational perspective, the main difficulty lies
in the fact that the number of candidate structures is extremely
large. It is not possible to enumerate all the reasonable re-
construction models just from chemical intuition. There have
been a few efforts towards automatic prediction of the most
stable configuration for either a given stoichiometry6–8, or a
variable composition at constant chemical potential9. With
these structural models available, the thermodynamical phase
diagram can be constructed10. However, unbiased prediction
of reconstructions with variable stoichiometry in the whole
chemical potential range has not been attempted to our knowl-
edge. Here we demonstrate that the unbiased nature of an
evolutionary search is able to find unexpected structures that

compete thermodynamically with ones already suggested by
prior searches. In this paper, we propose a new method which
allows automatic exploration of all low-energy configurations,
with variable surface atoms and variable reconstruction cells
through the whole chemical potential range. We apply this
method to a series of systems: diamond (100) and (111), MgO
(111) and GaN (1011) surfaces with and without added oxy-
gen.

II. THEORETICAL BACKGROUND

A. Surface Energy and Chemical Potential

Relative stability among candidate surfaces is determined
by the formation energy Eformation

Eformation = Etot − Eref −
∑
i

niµi, (1)

where Etot and Eref are the total energy of the surface under
consideration and of the reference cleaved surface; ni and µi

are the number and chemical potential for each species, re-
spectively. The chemical potential is the energy to add or re-
move one atom from the system, assuming there is a reservoir
for each species to equilibrate with. The chemical potentials
must satisfy constraints. For a simple binary AB compound,
if µA is extremely high, the elmental phase A would condense
on the substrate AB. Therefore, the chemical potential of A
(or B) is upper bounded by the chemical potential of elemen-
tal A (or B),

µA ≤ µ0
A,

µB ≤ µ0
B.

(2)

The A and B atoms are in equilibrium with the substrate,

µA + µB = GAB. (3)
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FIG. 1. Surface representation used in the evolutionary algorithm.

At T = 0 K, the Gibbs free energy GAB can be simplified to
the internal energies EAB.

These conditions lead to the range of the A component
chemical potential to be

EAB − µ0
B ≤ µA ≤ µ0

A. (4)

Therefore, Eq. (1) can be rewritten as only µA dependent

Eformation = Etot − Eref − nBEAB − µA(nA − nB). (5)

The surface phase diagram shows which reconstruction is
favored under a specific environment, i.e., temperature and
chemical potential or partial pressure of each component.
Each of these environmental conditions represents an inde-
pendent dimension in the phase diagram.

B. Evolutionary algorithm

We employ an evolutionary algorithm (EA) to explore the
surface structures. The algorithm is implemented in the US-
PEX package, which has been successfully applied to various
bulk materials11–14. We use a representation in which the sys-
tem has three parts: vacuum, surface and substrate. Vacuum
and substrate regions are pre-specified, while the surface re-
gion is optimized by the EA. The number of surface atoms
varies up to a predefined maximum number for a given thick-
ness of surface. To allow automatic exploration of reconstruc-
tions with different surface unit cells, the cell size is also vari-
able.

Our algorithm is constructed in the following way. It first
generates random structures with only the surface region be-
ing varied. These initial structures are then relaxed, and
ranked by fitness, based on the energy. Structures with bet-
ter fitness are more likely to be selected as parents to generate
new child structures. We considered three ways to produce
offspring.

(i) Heredity: Two structures are chosen from the previous
generation. They are randomly sliced at the same position in

the surface unit cell. Then pieces from both parent structures
are combined to generate the offspring.

(ii) Mutation: One structure is chosen as parent. Similar
to the implementation of softmutation in bulk crystals15, the
surface atoms are displaced according to the softest surface vi-
brational modes based on the bond-hardness model16,17. If the
structure cannot be softmutated anymore, we switch to the co-
ordinate mutation15, which is to randomly displace the surface
atoms by an amount drawn from a zero-mean Gaussian distri-
bution and biased by a specific measure of the local order18.

(iii) Transmutation: One structure is chosen as parent.
Some atoms are transmuted to another chemical species.

The offsprings, together with a few best structures from the
previous generation, comprise the next generation. This pro-
cess is repeated until no lower-energy structures are produced
for sufficiently many generations.

C. Fitness function

Our fitness function needs to indicate the relative stabil-
ity of structures with various surface stoichiometry and re-
construction cell sizes. We illustrate this in Fig. 2. First,
for two given surface configurations (I and II) which have
different numbers of atoms on the same substrate cell, their
relative energy difference depends on the chemical potential
µA according to Eq.( 5). As shown in Fig. 2a, surfaces I
and II should coexist at µA = µeq. Therefore, the stability
regime for the two surfaces can be fully established. Surface
I is stable when µmin ≤ µA ≤ µeq, while surface II is sta-
ble when µeq ≤ µA ≤ µmax. For any other unstable con-
figuration like surface III, the fitness can be viewed as the
minimum energy difference comparing with the stable con-
figuration, at all possible chemical potentials. The minimum
condition is reached when µA = µeq. For practical imple-
mentation it is useful to express this algebraically. We define
E0 = Etot − Eref − nBEAB as the µA-independent term in
Eq.(5). This approach was introduced by Qian et al19, and is
widely used20. Versions (a) and (b) of Fig. 2 contain equiva-
lent information. The stable structures appearing on the phase
diagram form a convex hull in energy-composition coordi-
nates. The slope of each section of the convex hull is either
the boundary chemical potential or the equilibrium chemical
potential where stable structures can coexist. We then choose
the fitness of a surface structure to be its distance to the con-
vex hull. The EA search then aims to optimize the convex
hull, similar to our previously proposed approach of variable
composition prediction for bulk crystals12,21. When different
sizes of surface cell (m × n) occur, the scale factor Ncell =
m × n should be taken into account and energies have to be
normalized.

D. Details of ab initio calculations

As a global optimization method, an EA search requires
hundreds or thousands of individual structural relaxations. In
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FIG. 2. Illustration of the fitness function used in the evolutionary al-
gorithm. a). Phase diagram as a function of µA. b). Phase diagram as
a function of (nA−nB). The vertices of the convex hull are the stable
structures appearing in the phase diagram. The slope of each section
of the convex hull is either the boundary chemical potential or the
equilibrium chemical potential where stable structures can coexist.

our calculation, relaxations were done using density func-
tional theory (DFT) within the generalized gradient approx-
imation (GGA)22 using the all-electron projector augmented
wave (PAW)23 method as implemented in the VASP code24.
We used the kinetic energy cutoff of 550 eV for the plane-
wave basis set and Brillouin zone sampling resolution of 2π ×
0.08 Å−1, which showed excellent convergence of the energy
differences, stress tensors and structural parameters. There
are different ways to construct the model. For structures with
some kind of mirror symmetry parallel to the surfaces, one can
build a symmetric model. The other way is to passivate one
surface, for example, by fractional hydrogens25. For a semi-
conductor this makes the passivated surface semiconducting,
with no surface states in the fundamental band gap. Dipole
corrections are added in form of a mid-vacuum discontinu-
ity in the electrostatic potential which cancel the interactions
between the slab and its periodic images26,27. For massive cal-
culations in EA search, we used passivated slab models. Each
typical slab contains 5-7 atomic layers and 10-12 Å of vac-
uum, with the top 2 layers being relaxed. For the post-process,
we select all high fitness candidate structures from EA search
to construct the surface stability phase diagram. To obtain ac-
curate surface energies, we expand the slab to 8-10 layers, and
the vacuum to 12-15 Å. Both symmetric models and passiva-
tion approaches were explored at this stage. Our tests suggest
that the surface energy is converged to better than 0.05 eV per
surface cell.

III. APPLICATIONS

In this section, we apply our method to several systems with
increasing complexity. First, we study diamond (100)/(111)
reconstructions by fixing both variables (number of surface
atoms and cell size). For the MgO (111) surface, we focus
on the particular stoichiometry (MgO) on the Mg-terminated
surface, and explore the possible low-energy reconstructions

with a cell size ranging from 1×1 to 2×2. Finally, we inves-
tigate the semi-polar GaN (1011) surfaces without and with
oxygen absorption, in which the search allows both variable
surface atoms and variable surface unit cells.

A. Diamond (100) and (111)

To test our method, we applied the EA search to study the
known 2×1 reconstructions of diamond (100) and (111) sur-
faces, which are the two most important surfaces for polycrys-
talline diamond from chemical vapor deposition (CVD)28. As
a benchmark, we fixed the number of surface atoms and cell
size in our searches. We tried 2 and 6 carbon atoms on a
2×1 surface cell. During the search, each structure was first
relaxed with the Brenner potential29 as implemented in the
GULP code30, and then more accurate energy evaluation was
performed at ab initio level with PBE functional22.

Our results are in excellent agreement with those reported
in previous literature28. Fig. 3 shows the best structures found
in the search. The cleaved diamond (100) surface, containing
one unsaturated carbon atom with two dangling bonds per unit
cell, is unstable. Stabilization is achieved via a reconstruc-
tion with surface atoms forming one π-bonded C-C dimer per
2×1 unit cell. This is correctly found by our EA search (Fig.
3a). The bulk terminated diamond (111) surface contains 2
unsaturated carbon atoms with 2 dangling bonds per 1×1 unit
cell. Pandey first proposed a chain model to explain the Si
(111) surface31, and it proved to be correct for diamond as
well28. Our search also confirmed this model, with surface
atoms forming Pandey chains along the [011] direction. From
the top view (Fig. 3b.), the Pandey chains further form an
extended 2D network, having the same period as the unre-
constructed (111) surface. From the side view, the surface
atoms together with the second layer, construct an alternating
5+7 ring pattern, which is different from the 6 ring pattern in
the bulk. The peculiar 5+7 ring topology also exists in 3D in
the recently established structure of a new allotrope of carbon
formed by cold compression of graphite32,33). This demon-
strates that either reduced dimensionality or extreme pressure
conditions can create a very different chemical environment,
leading to very complex reconstructions. Complete searching
of these systems’ landscapes is needed to find the new chem-
istry.

We also examined 4 and 12 carbon atoms on a 2×2 cell,
but only with the Brenner potential. Although Brenner poten-
tial gives wrong energy ranking, the true ground states were
also found as low-energy configurations in the search. With
this encouragement, we proceed to the case of more than one
atomic types and variable stoichiometry.

B. MgO (111)

Magnesium oxide is one of the most abundant materials in
planetary mantles, and also an archetypal ionic crystal with a
rocksalt type (B1) structure. However, surfaces of B1-MgO
present a challenging problem, especially for the polar (111)
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FIG. 3. Schematic image of (a) diamond (100) 2×1 reconstruction (red dashed line: face of conventional cube); (b) diamond (111) 2×1
reconstruction. 2×1 surface unit cells are highlighted by white rectangle.

surface. An ideal bulk termination of MgO (111) surface
contains alternating planes of Mg2+ and O2− ions, allow-
ing a surface dipole along the [111] direction, leading to ex-
tremely unstable surface configuration. To stabilize this polar
(111) surface, there must be valence compensation to cancel
the surface dipole, achieved either by rearrangement of sur-
face species or adsorption of some foreign species. Ciston et
al.34,35 investigated the coverage by hydroxyl (OH), combin-
ing transmission electron microscopy (TEM) and DFT cal-
culations. They proposed several models of water-driven re-
constructions. Regarding reconstruction of the clean surface,
Wolf36 proposed a 2×2 reconstruction of B1-NaCl (111) sur-
face based on valence-neutral octupolar units where 3/4 ions
of the top layer and 1/4 ions of the second layer are missing,
thus forming O1-Mg3-O4 (O-terminated) or Mg1-O3-Mg4

(Mg-terminated) surface stoichiometry. However, octopolar
reconstructions are not fully consistent with the experimental
data. Finocchi et al37 found a Mg-terminated phase (desig-
nated as α-Mg phase) with a 2×2 repeating unit to be favored
in O-poor conditions. They further proposed a combination
of O-oct and α-Mg which could fit the diffraction data. Us-
ing transmission high energy electron diffraction (THEED),
Plass et al38 reported another major class of reconstructions
on MgO (111), which is based on cyclic oxygen trimer units
(2×2,

√
3×
√
3, 2
√
3×2
√
3). DFT calculations39 indicate that

2×2 O-octopolar reconstruction is dominantly stable at a wide
oxygen chemical potential range. α-Mg is favored under Mg-
rich conditions. However, the cyclic ozone-2×2 is calculated
to have much higher surface energy in the whole chemical po-
tential range. The huge disagreement between simulation and
experiment suggests that the structural model might need to
be revised.

We used an EA search for the MgO (111) surface with fixed
surface stoichiometry Mg1O1 per 1×1 cell on the given sub-

strate (O-terminated), and a variable cell size (from 1×1 to
2×2). Our search yields a low-energy reconstruction based
on the O3 trimer unit. As shown in Fig. 4d, the topmost sur-
face is a periodic arrangement of trimers and single oxygen
atoms, which is very similar to the model suggested by the
Plass38. However, our search found a configuration with en-
ergy lower by -0.026 eV per 1×1 cell. The side view of the
this reconstruction (Fig. 4e) indicates that in each repeat unit,
one Mg atom in the second layer jumps to the topmost layer,
and thus leaves a Mg vacancy, displaying the same Mg3 stoi-
chiometry plane per 2×2 cell as in the O-octupolar model and
the α-Mg model. The extra Mg atom in the top layer con-
nects neighbouring O3-trimers, forming periodic O3-Mg-O3

chains. Thus we call it Mg-O3-2×2.

Another interesting reconstruction appearing in our search
is a 2×1 reconstruction containing the peroxo species [O2]2−.
This motif has the same surface stoichiometry as Mg-O3-2×2;
its surface energy is 0.23 eV per 1×1 cell higher. Although
not favored in (111) surface, it might exist in some other sur-
faces, such as the (100) surface40). This type of motif can
provide a hint for experimental growth of the crystal MgO2,
which is calculated to be stable at high pressure41. It indi-
cates that novel chemistry under extreme conditions (such as
high pressures) might be also achieved by careful exploiting
of reduced dimensionality.

Using an established way to correct for errors of the GGA
functional, the calculated DFT energy of the O2 molecule is
considered to have a upward shift of about 1.05 eV42. Includ-
ing this empirical correction, we construct the phase diagram
according to Eq. 5. The phase diagram is very similar to the
diagram presented in Ref.39, except that the proposed mod-
els in our search have significantly lower energy than previ-
ously models with the same surface stoichiometry (Mg1O1).
In particular, the Mg-O3-2×2 reconstruction is calculated to
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FIG. 4. Side views (top, two layers only) and top views (bottom)
of MgO (111) surfaces. (a) Unreconstructed surface; (b) 2×2 O-
terminated octupolar model; (c) 2×2 α-Mg model; (d) 2×2 O3

model; (e) 2×2 Mg-O3 model; and (f) 2×1 O2 model. The α-Mg
model can be derived by simply removing the topmost O atom from
O-terminated octupolar model. Large spheres: magnesium; small
spheres: oxygen. The topmost O3 trimers in (d), O3-Mg-O3 chains
in (e) and peroxo O2 species in (f) are highlighted by different colors.

be stable at a narrow range of chemical potential when O is ex-
tremely rich (µ(O)-µ(O2) ≥ 0.06 eV). Given that the low en-
ergy feature, it is very likely that these reconstructions could
be observed under certain experimental protocols.

C. GaN (1011) with and without oxygen

Applications so far use only fixed stoichiometry searches.
To prove the possibility of automated exploring the whole sto-
ichiometric space, we perform a study on the semipolar GaN
(1011) surfaces, which allows both variable surface atoms
and variable cell size (restricted to a 2 × 2 or smaller surface
cell). We also study the reconstructions on the semipolar GaN
(1011) surfaces in the presence of oxygen.

Fig. 6a gives the convex hull diagram from our EA search,
and the five corresponding stable structures. Compared to the
cleaved surface (Fig. 6c), structure S1 has two Ga adlayers.
Structure S2 has one Ga adlayer. Structure S3 has the top N
and half of the second N removed. Structure S4 has only the

FIG. 5. Zero temperature phase stability diagram for the proposed
reconstructions on MgO (111) surface.

top N removed. Structure S5 has an additional N at the bridg-
ing position of the two top N atoms. The first 4 structures have
been found by Akiyama et al43. Structure S5 with N3 trimers,
was not reported before and is not intuitively obvious. This
demonstrates the power of the automated searching by the
EA. An analogous Se-trimer feature has been predicted to be
stable on ZnSe (100) reconstructions at Se-rich conditions44.
Compared to the cleaved surface, the stable structures can be
constructed through either vacancies or adatoms. No more
complicated reconstructions have been found. For the Ga-rich
conditions, there are many intermediate structures between
structure S1 and S2, lying very close to the convex hull (see
Fig. 6). This can be explained by the weak directionality of
the Ga-Ga bonds. These structures may appear under finite
temperatures. For the N-rich conditions, however, most struc-
tures are much higher above the convex hull, due to the strong
covalent bonding nature of N-N interactions.

The features possessed by the stable configurations are: i)
Ga layers; ii) N vacancies; iii) N trimers. Another common
feature is N2-dimers44. These do not lie on the convex hull,
but frequently appear as energetically competitive in our EA
search.

The electron counting (EC) rule45–47 emerges from the
study of semiconductor surfaces. This rule, although not ex-
act, is very useful in comparing surface energies, estimating
surface charges and guessing surface reconstructions. It states
that the surface structures with filled dangling bonds on the
electronegative elements and empty dangling bonds on the
electron positive elements are the lowest in energy. The sur-
face then is likely to be semiconducting. Surfaces not satisfy-
ing this rule will be metallic and higher in energy. None of the
stable reconstructions found here satisfy the electron counting
rule. Large reconstructions may satisfy the EC rule. Indeed,
Lee and Kim48 demonstrated that low-energy semiconducting
surfaces can be achieved by large reconstructions, complying
with the EC rule by constructing models based on N dimer
and dimer-vacancy. Due to the limitation of computational
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FIG. 6. (a) Energies of GaN (1011) surface reconstructions explored by the EA search; (b) the corresponding zero temperature phase stability
diagram up to 2 × 2 supercell reconstructions. Side view and top view of (c) the cleaved GaN (1011) surface and its lower-energy recon-
structions found by the EA search; (d) S1 configuration: (1×1) Ga-bilayer; (e) S2 configuration: (1×1) Ga-monolayer; (f) S3 configuration:
(2×1)-1.5 N vacancy; (g) S4 configuration: (2×1)-1 N vacancy; (h) S5 configuration: (2×1) N-trimer. Large spheres, gallium; small spheres,
nitrogen.

power, we are only able to predict the reconstructions up to 2
× 2 surface cells. But our results provide a good starting point
for predicting large reconstructions.

Let us now employ the same method to search for recon-
structions of GaN (1011) surfaces with added oxygen. The
formation energy can be defined as

Eformation = E0 − µ(Ga)[n(Ga)− n(N)]− µ(O)n(O). (6)

The oxygen chemical potential µ(O) is a new variable. It has
no lower bound, but would possibly reach the upper bound by
the constraints based on the possible O2, NxOy molecular gas
and Ga2O3 solid:

2µ(O) ≤ G(O2),

2µ(Ga) + 3µ(O) ≤ G(Ga2O3),

xµ(Ga) + yµ(O) ≤ G(NxOy).

(7)

Therefore, the convex hull has two dimensions in n(O) and
[n(Ga) − n(N)]. Fig. 7a shows the two-dimensional phase
diagram in space of µ(O) and [µ(N) − µ(Ga)], transformed
from the convex hull found in our EA search. The two new
major reconstructions are structure S6 and S7. Compared to
the cleaved surface, structure S6 has half of the top N re-
moved, half of the top N and all of the second N replaced

by O. Structure S7 has the top two N replaced by O. Similar
reconstructions for the (1011) surface have been reported49.
These reconstructions are favored because of the strong Ga-O
bond and the electron counting rule. For example, the simple
cleaved surface has 3 nitrogen dangling bonds per surface cell.
Because each N dangling bond needs 3/4 electron to become
filled, the surface needs 9/4 electrons per surface unit cell to
satisfy the electron counting rule. For structure S7, substi-
tuting 2 N with 2 O introduces 2 extra electrons, making the
electron counting rule almost satisfied.

IV. CONCLUSIONS

In summary, we present a specially designed method to au-
tomatically explore low energy surface reconstructions with
variable surface atoms and reconstruction cells. The power
of this approach is illustrated by application to diamond
(100)/(111) surfaces. Applying to MgO (111) and GaN-O
(1011) surfaces, we find several new low-energy reconstruc-
tion models. All of the systems investigated in this paper
show quite complex surface reconstruction behaviors, indi-
cating that an automated search around the potential energy
landscape can be very helpful for us to understand surface
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FIG. 7. (a) Phase diagram of the GaN (1011) surface with oxygen
present up to 2 × 2 supercell reconstructions. Important reconstruc-
tions are labeled from S1 to S7. Structures S1 to S5 are shown in
Fig. 6. Side view and top view of structures S6 and S7 are shown
in (b) and (c). Large balls, gallium; small gray balls, nitrogen; small
red balls, oxygen.

chemistry. We demonstrate our method of predicting surface
reconstruction based on evolutionary approach can be gener-
ally applied to any binary and even multi-component systems.
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