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Abstract 

 

We compare the merits of a hopping model and a mobility edge model in the description of the 

effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi 

energy of organic semiconductors. We consider the case of a composite electronic density of 

states (DOS) that consists of a superposition of a Gaussian DOS and an exponential DOS. Using 

kinetic Monte Carlo simulations, we apply the two models in order to interpret the recent 

experimental data reported for n-doped C60 films. While both models are capable of reproducing 

the experimental data very well and yield qualitatively similar characteristic parameters for the 

density of states, some discrepancies are found at the quantitative level.  
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1. Introduction 
 

In spite of recent progress made in controlling the system purity and morphology, most organic 

electronic thin-film devices still suffer from the presence of significant structural disorder and 

chemical defects. It was recently shown that a substantial density of localized (trap) states 

(~1015-1018 cm-3) is present even in the case of high-mobility organic single crystals such as 

rubrene and pentacene.1-5 Therefore, understanding how disorder affects the electrical properties 

of the system is important in the quest for new materials and devices with improved 

performance. 

 

In materials with significant disorder, charge transport is usually described in the framework of a 

hopping model in combination with, for instance, kinetic Monte Carlo (KMC) simulations, the 

concept of a transport level, effective-medium theory 6-11, or percolation theory.12-18 In the 

hopping regime, charge transport is governed by the thermally activated hopping of charge 

carriers within the manifold of localized states. An alternative to the hopping model is the 

mobility edge model.19, 20 In the latter, the electronic states are divided into two non-overlapping 

state distributions, one corresponding to localized (trap) states and the other to delocalized (band) 

states; the two distributions are separated by an energy level referred to as the mobility edge 

(ME). An additional assumption frequently made within the ME model is that, in contrast to the 

hopping model, the charge carriers in the localized states are completely immobile; thus, only the 

carriers that are thermally activated (a multi-trap-and-release mechanism) into the band states 

contribute to charge transport. 

 

An important ingredient of any transport model is the energy spectrum of the electronic system, 

commonly characterized by the density of states (DOS). In inorganic systems, the DOS of 

localized band-tail states presents an exponential shape.21-26 Although an exponential DOS has 

also been used to interpret the properties of disordered organic semiconductors,18, 27, 28 a 

Gaussian DOS was initially considered and is still more frequently employed for these 

systems;12, 13, 15, 29-32 the origin of this choice is that the absorption and fluorescence spectra of 

disordered organic solids usually display a Gaussian shape.12, 14, 33 In addition, hopping models 



4 
 

based on a Gaussian DOS predict that, at low carrier concentration, carrier mobility does not 

depend on charge concentration,12, 34 a feature observed for some polymers.35  

 

However, there is now increasing evidence from a number of investigations that in many organic 

systems the deep gap states exhibit an exponential distribution.1-5, 36-38 These studies also suggest 

that the shallow trap states, i.e., the states located closer to the ME (or the valence band or 

conduction band edge) deviate from an exponential shape. For instance, very recent results 

obtained by means of scanning Kelvin probe microscopy on a self-assembled monolayer field-

effect transistor (SAMFET) based on quinquethienyl molecules, reveal that the DOS consists of 

an exponential distribution of deep trap states with an additional group of localized shallow 

states that can be modeled via a Gaussian function.36 A DOS that can be represented as a 

superposition of an exponential distribution and a Gaussian distribution has also been recently 

extracted from the carrier-concentration dependence of the conductivity in C60 films.37 A similar 

model was used as well to interpret the current-voltage dependence in poly(phenylene vinylene) 

and in a polyfluorene-based copolymer.38, 39  

 

The purpose of the present work is to provide a detailed comparison of the hopping model and 

ME model in describing the effect of charge-carrier concentration on electrical conductivity, 

carrier mobility, and position of the Fermi level in the case of such a composite DOS. We apply 

our approach to explain the recent experimental data reported for n-doped C60 films.37  

 

2. Methodology 

  

We use a cubic supercell containing 50 × 50 × 50 lattice sites with an inter-site distance of 1 nm.  

The charge-transport properties are simulated using the KMC technique. In our KMC 

simulations, the electron transfer rate ijν from site i to site j is described by the Miller-Abrahams 

model: 40 
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Here, ijij rr = ,  jiij rrr −= , and ir  is the position vector of site i; 0ν  represents the intrinsic 

attempt frequency; γ , the inverse of the localization radius; Bk , the Boltzmann constant; T ,  the 

temperature; ijijij rFEEE .+−=Δ ; and iE  denotes the electron energy at site i. Without loss of 

generality, the electric field, F , is applied in the negative x direction. Only electron hops 

between nearest neighbors on the lattice have been taken into account and periodic boundary 

conditions along all three directions have been applied.  

 

As shown in Fig. 1a, the energetic spectrum of the system is described by a superposition of: (i) a 

Gaussian distribution of states, centered around cE , with a total number of electronic states GN  

and a distribution width Gδ : 
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 and (ii) an exponential distribution of states: 
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where the total number of states and width are given by EN  and Eδ , respectively.  

 

In the KMC simulations, a random Gaussian or exponentially distributed value of energetic 

disorder taken from Eq. 2 or Eq. 3, respectively, is assigned to each lattice site. Each simulation 

starts with a random distribution of carriers whose number is given by the electron concentration,

eN . Only single electron occupancy on each lattice site is allowed. Since we are mainly 

interested in charge transport at very low to moderate carrier concentration, we neglect the effect 

of electrostatic interactions.  

 

We make use of the First Reaction Method 41, 42 in the KMC simulations. At each step of the 

KMC simulations, we compute the hopping rates for all possible hops of all electrons. The next 

hop is randomly selected from the derived hopping list. We find the hopping time, kτ , for the k-

th step in the KMC simulation from: 
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where N is the total number of sites, iL  is equal to unity if site i is occupied by an electron and 

zero otherwise, and X  is a random number uniformly distributed between 0 and 1 (note that the 

ijν  values are updated at each time step, and thus indirectly depend on the index k). We run each 

simulation for a time long enough that the system energy relaxes to a steady state value, leading 

to convergence of the electrical conductivity. At this time, we begin to record the time with 

which we compute conductivity and mobility: 
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where e  denotes the unit charge; σ , the effective electrical conductivity; μ , the effective 

charge mobility; kx , the x component of the selected hop at time kτ ; and FF = , the magnitude 

of the applied electric field.  

 

3. Results and Discussion 

 

It is instructive to consider first the dependence of the electrical conductivity, carrier mobility, 

and position of the Fermi level on charge density eN  for the case where the energy spectrum can 

be described solely by either an exponential or a Gaussian DOS. Figure 2 shows the KMC 

simulation results for conductivity, mobility, and Fermi energy performed at room temperature 

for several distribution widths ( TkB1=δ  to 4kBT with intervals of TkB1 ) assuming 
2110G EN N= = cm-3. These results, in accordance with the predictions of percolation theory,18 

reveal that in the case of an exponential DOS and low carrier concentration, the conductivity 

exhibits a super-linear dependence on charge density,18 T
T

eN
0

)(~σ (solid black lines) where 
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BkT δ=0  and Eδδ = , as illustrated in Fig. 2a. Figure 2a also indicates that for the same 

distribution width and at low carrier concentration, the conductivity using a Gaussian DOS is 

much larger than that for the exponential DOS.  However, in the case of the Gaussian DOS, the 

conductivity exhibits a less strong dependence on eN  than in the case of the exponential 

distribution. The significance of the effect that the DOS shape has on charge transport is more 

clearly seen from the dependence of the effective mobility on charge density (Fig. 2b). The 

difference is especially evident in the low charge-density limit where the mobility is seen to 

hardly depend on carrier concentration for a Gaussian DOS while it shows a strong dependence 

on eN  for an exponential DOS.  

 

We now turn to the dependence of the Fermi level on charge density. The Fermi level fE  is 

derived from: 

∫
+∞

∞−

= dEEEfEN fe ),()(ρ , (6) 

where  [ ]{ } 1)(exp1),( −−+= ff EEEEf β  represents the Fermi-Dirac distribution and 1)( −= TkBβ . 

Figure 2c shows the impact of DOS on the position of the Fermi level for different distribution 

widths ranging from TkB1=δ  to TkB4 .  The dependence of the Fermi energy on the charge-

carrier concentration is much more pronounced in the case of an exponential DOS than for a 

Gaussian DOS. The sharper increase in conductivity and Fermi level with charge density in the 

case of an exponential DOS can be attributed to a faster filling of the low-energy states. We note 

that, in the low charge-carrier concentration limit, the position of the Fermi level can be derived 

analytically and is given by:  
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for an exponential DOS 18, 43, 44 and by: 
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for a Gaussian DOS 45. Here, 0TkBE =δ , and Γ  is the gamma function. As is apparent from 

Eqns. 7 and 8 and illustrated in Fig. 2c, the evolution (slope) of the position of the Fermi level as 
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a function of the logarithm of charge density is determined by the width of the distribution in an 

exponential DOS and by temperature in a Gaussian DOS. 

 

With the knowledge gained from each individual DOS distribution, we now consider a more 

complex DOS consisting of a superposition of a Gaussian and an exponential DOS, as shown in 

Fig. 1a.  The results using a set of parameters similar to that derived for C60 films 37

20109.9 ×=GN cm-3, TkBG 5.2=δ , 0=cE , 1910=EN cm-3 and Gδ  ranging from TkB3  to TkB6  

are illustrated in Figs. 3 and 4. As seen from Fig. 3, it is only at low carrier concentration that the 

width of the exponential DOS significantly affects the transport properties and the position of the 

Fermi level. In a similar way, the width of the Gaussian DOS, as seen from Fig. 4, affects the 

charge-transport characteristics and the Fermi energy only at high carrier concentration, while it 

has limited impact on the charge-transport properties for low carrier concentrations.  

 

The effect of the ratio of the DOS concentrations ( GE NN ) on conductivity, carrier mobility, 

and Fermi energy is illustrated in Fig. 5.  The KMC simulations were performed assuming

TkBE 5=δ , TkBG 5.2=δ and different DOS concentrations ( 19105.0 ×=EN cm-3, 19100.1 × cm-3, 

19100.2 × cm-3, and 19100.4 × cm-3) with the constraint 2110=+ GE NN  cm-3. The results suggest 

that while the widths of the DOS define how the evolutions of conductivity, mobility, and Fermi 

energy depend on charge density in the low and high charge density regimes, the two DOS 

concentrations define the charge density at which these dependences intersect. As depicted in 

Fig. 5, changes in the two DOS concentrations do not affect the slopes (parallel line shift).  

Importantly, the KMC simulation results in Figs. 3-5 illustrate a clear transition in the slopes of 

the conductivity and carrier mobility as a function of carrier density; a similar transition is also 

observed for the Fermi level (Fig. 5c). This transition can be explained in the following way. At 

low carrier concentration, the deep states of the exponential DOS are quickly filled upon initial 

increase in carrier concentration, leading to a steep rise in the Fermi level and in conductivity. 

However, at higher carrier concentration, when the Fermi level reaches the point where the 

Gaussian DOS becomes larger than the exponential DOS, the transport properties and the 

position of the Fermi level become defined by the Gaussian DOS.  
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The results described above imply that the charge-transport characteristics at low carrier 

concentrations are controlled by the distribution of deep traps (exponential distribution), whereas 

these characteristics at high carrier concentrations are entirely governed by the distribution of 

states (in the Gaussian distribution) close to the conductive edge (conduction band). Our results 

also reveal that the electrical conductivity exhibits a transition from super-linear to linear 

dependence on carrier density at the value of eN  at which the Fermi level reaches the energy 

where the exponential DOS and Gaussian DOS are approximately equal.   

 

We now turn to the discussion of the ME model. We first consider the case where the states 

below the ME are solely described by either a half-Gaussian or an exponential DOS (see Fig. 

1b).  As mentioned above, according to the ME model,19, 20, 46 the total charge density ( eN ) is 

split into mobile ( Mn ) and immobile ( In ) carriers. In this model, only mobile charges contribute 

to the overall current and thus to the conductivity. On the basis of the ME model, we obtain the 

conductivity from: 

0μσ Men= , (9) 

where 0μ  is the mobility of mobile charges. In this case, Eq. 6 reads: 
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in which )(Eg  represents the DOS of the states localized below the ME and UT NE =)(ρ , the 

DOS of the band states above the ME. Without loss of generality, we assume that the ME is 

positioned at 0=CE . The conductivity and mobility are then given by: 
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The conductivity, carrier mobility, and Fermi level position are obtained by numerically solving 

Eqns. 10-12. The results are shown in Figs. 6a-c and 6d-f for Gaussian and exponential DOS, 

respectively. Along with the numerical results, we also report in Fig. 6 the analytical results 
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obtained in the limit of low carrier concentration (see Appendix A). Interestingly, the trends 

obtained for conductivity, mobility, and Fermi energy are very similar to those obtained using 

the hopping model (Fig. 2), despite the fact that the localized states in the ME model are not 

directly contributing to transport. This similarity can be rationalized in the following way. In the 

hopping model, although all states are formally involved in the transport process, charge 

transport, irrespective of the shape of the DOS distribution, effectively takes place via a so-called 

transport level 13, 16, 17 onto which the carriers should be thermally excited. The activation energy 

rapidly decreases as the carrier concentration increases. In the ME model, however, only charge 

carriers thermally excited above the ME contribute to the conductivity. Again the activation 

energy is function of the charge density and rapidly decreases as the carrier concentration 

increases. This means that the transport level in the hopping model is simply replaced by the 

band states in the ME model. Overall, both models at low and moderate charge carrier 

concentrations lead to the same trends in the electrical transport properties and position of the 

Fermi level as a function of charge density.  

 

It is also useful to note that Eqns. 10-12 in the limit of low charge density can be solved 

analytically; the description is given in Appendix A. In similarity to the hopping model, the 

conductivity at low carrier concentration in the ME model exhibits a super-linear dependence on 

charge density ( T
T

eN
0

)(~σ ) for an exponential DOS (Eq. A2) and a linear dependence ( eN~σ ) 

for a Gaussian DOS (Eq. A8). It is also important to note that the ME model predicts, as for the 

hopping model, that the range of carrier concentration over which the dependence is linear 

decreases with the increase in Gδ  (see Fig. 6a).  

 

In analogy to inorganic semiconductors, the control of charge carrier concentration in organic 

semiconductors can be achieved by means of molecular doping 47-52. Here, we apply both 

hopping and ME models to interpret the recent experimental data reported for n-doped C60 

films.37 We note that the carrier concentration in these experiments is derived via a well-

controlled n-type doping of the films whereby it can be assumed that each dopant provides one 

electron to the system; therefore, the electron concentration can be given in terms of the molar 

ratio (MR) of the dopant vs. host. The results obtained from the KMC simulations and from the 
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ME model 19, 20, 46 are shown in Fig. 7 along with experimental data. For the sake of comparison 

with the experimental data, axes representing both the dopant MR and the charge density are 

given in Fig. 7. The parameters derived from the fitting to the experimental data, of the results of 

the hopping model using KMC simulations and those of the ME model for conductivity are 

given in Table 1. Note that in the ME model, we construct the band-tail states using a 

superposition of a half-Gaussian and an exponential distribution. We attribute the overall fitting 

distribution widths of 2 to 5 kBT, indicated in Table 1, to structural defects and chemical 

impurities 1, previously reported for small organic molecules 3, 53, 54. A recent study 55 has also 

shown that the level of such chemical impurities can be reduced, to some extent, by material 

purification. Figure 7a demonstrates that both models are capable of reproducing the dependence 

of conductivity on charge-carrier concentration over the range of temperatures from 140 to 400 

K. Using the parameter set ( GN , EN , Gδ , and Eδ ) obtained above, we also computed the 

dependence of the Fermi level on charge density, )( ef NE , and compared it to the evolution 

observed in the UPS measurements.37 As seen from Fig. 7b, a good match between the KMC 

simulation results and the experimental data is again obtained for both models.  

 

4. Conclusions 

 

We have compared the performance of a hopping model and a ME model in describing the effect 

of charge-carrier concentration on conductivity, mobility, and Fermi level for a composite DOS 

that consists of a superposition of Gaussian and exponential distributions. Our results indicate 

that the two models lead to similar trends. In both instances, the charge-transport characteristics 

at low carrier concentration are controlled by the distribution of deep traps (exponential 

distribution); at high concentration, these characteristics are entirely governed by the distribution 

of shallow states (Gaussian distribution). As a result, the charge-transport characteristics show a 

transition between two different regimes (a super-linear to linear dependence of electrical 

conductivity on total carrier concentration eN ) at a value of eN  where the Fermi level reaches the 

energy at which the exponential and Gaussian DOS are approximately equal.   
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We have applied our approach to interpret the recent experimental data reported on n-doped C60 

films.37 Our results indicate that both models can reproduce very well the experimental 

dependence of electrical conductivity, carrier mobility, and Fermi energy on charge 

concentration. However, from a quantitative standpoint, some discrepancies arise between the 

values of the parameters extracted from the simulations. For instance, the total density of 

exponential states estimated using the ME model and the hopping model are 211002.0 ×=EN

cm-3 and 211001.0 × cm-3, respectively. A similar difference is also obtained for 21108.0 ×=GN  

cm-3 (for the sake of comparison, only the states below the reference energy, 0=cE , are taken 

into account) and 21105.0 ×  cm-3 using the ME and hopping model, respectively. These 

discrepancies arise from the two different pictures of carrier transport indicating that the 

suitability of either model for prediction of the charge-transport properties, in particular the 

electrical conductivity and charge-carrier mobility, requires more experimental data from a wide 

range of materials.  

 

To summarize, we have shown that in the range of low and moderate charge carrier 

concentrations that is, up to carrier concentrations on the order of 1017 cm-3, both the hopping 

and ME models predict similar charge transport characteristics, even in the case of a composite 

DOS. Therefore, it appears that either model can be utilized to obtain a qualitative description of 

the distribution of trap states. However, the fact that the ME model can reproduce the 

experimental data related to electrical transport is not by itself evidence of the existence of band 

states. In general, a number of other experimental data, for instance via measurements of the Hall 

effect, electron spin resonance, or thermoelectric measurements, and those obtained at high 

charge density are needed in order to gain an in-depth understanding of the nature of the DOS 

over the whole range of energies. 
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Appendix A: Low charge carrier concentration limit 

 
Exponential DOS. Using Eq. 10, we obtain: 
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Since at low charge concentration the Fermi level satisfies the condition 1)( >>− TkE Bf ,18, 43, 44 

the contribution of the second term in Eq. A1 (delocalized states) becomes negligible. As a 

result, fE  is given by Eq. 7, which is similar to that in the hopping model. Using Eqns. 7 and 9, 

we find the conductivity to correspond to: 
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Similarly, the mobility is obtained from: 
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Eqns. A2 and A3 are similar to those found within the hopping model using the percolation 

approach.18 

 

Gaussian DOS.  Replacing the exponential distribution below the ME by a Gaussian distribution 

in Eq. A1, we find: 
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Taking into account that in the low concentration limit 0<<fE  and 1)( >>− TkE Bf , we 

obtain: 
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where the constant C is given by: 
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Here, erf denotes the error function and )( TkBGδα = . From Eq. A5, the Fermi level is given 

by: 
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Using Eqns. 11, 12, and A7, the conductivity and mobility are written as: 
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Table 1. Parameters obtained from fitting the hopping and ME models to the experimental data 37 

reported for n-doped C60 films. 

 

 

Fitting parameters Hopping model ME model 

NG (cm-3) 0.99×1021 1.6×1021

NE  (cm-3) 0.01×1021 0.02×1021

NU  (cm-3)            - 0.8×1021

δG/kBT 2.5 1.8

δE/kBT 5 3.9

T (K) 298 298

F (V cm-1) 12795 -

ν0 (S
-1) 7×1012 -

μ0 (cm2V-1S-1) - 1.5
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Figure 1. (a) Energetic disorder described by superimposing two distributions, a Gaussian DOS 

(black), )(EGρ , centered at cE , and an exponential DOS (blue), )(EEρ , positioned below cE . 

(b) Description of the DOS in the ME model using a superposition of an exponential (blue) and a 

half-Gaussian (black) distribution below the ME, and a uniform distribution (red), )(EUρ , above 

the ME. 
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Figure 2. KMC simulation results for (a) conductivity and (b) mobility of charge carriers and (c) 

analytical results for Fermi level position vs. charge density eN  for materials with a Gaussian 

(solid lines, Gδδ = ) or an exponential (dashed lines, Eδδ = ) DOS. Different distribution widths 

δ  are considered, from TkB1  to TkB4 , corresponding to blue to red, with 2110== EG NN cm-

3. Solid black lines in panel a, illustrate analytical results for the conductivity, T
T

eN
0

)(~σ .18 
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Figure 3. KMC simulation results for (a) conductivity and (b) mobility and (c) analytical results 

for Fermi level position vs. charge density eN  for a superposition of Gaussian and exponential 

DOS, assuming 20109.9 ×=GN cm-3, TkBG 5.2=δ , 1910=EN cm-3 for different Eδ  ranging from 

TkB3  to TkB6 , from blue to red.  
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Figure 4. KMC simulation results for (a) conductivity and (b) mobility and (c) analytical results 

for Fermi level position vs. charge density eN , with fixed TkBE 5=δ  for different Gδ  ranging 

from TkB5.1 to TkB5.4 , from blue to red (the GN  and EN  values are the same as in Fig. 3: 

20109.9 ×=GN cm-3; 1910=EN cm-3). 
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Figure 5. KMC simulation results for (a) conductivity and (b) mobility; and (c) analytical results 

for Fermi level position vs. charge density eN  with fixed TkBE 5=δ  and TkBG 5.2=δ  for 

different exponential DOS concentrations, EN , ranging from 19105.0 × cm-3 to 19104×  cm-3, 

from blue to red, with 2110=+ EG NN cm-3. 
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Figure 6. Analytical results of (a,d) conductivity, (b,e) carrier mobility, and (c,f) Fermi level 

position vs. charge density eN  obtained from the ME model using a Gaussian distribution 

(colored solid lines in a, b, and c) or an exponential distribution (colored dashed lines in d, e, and 

f) of band-tail states below the ME. Different distribution widths EG δδδ ==  are considered and 

vary from TkB1  to TkB4 , from blue to red, respectively, with 2110== GE NN  cm-3 and 

22102×=UN  cm-3 eV-1. The range of agreement between the analytical results and the 

asymptotic limits at low charge concentration (solid black lines), obtained in Appendix A and 

shown in panels a-c, decreases with δ  for a Gaussian DOS. 
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Figure 7. Comparison of (a) conductivity and (b) Fermi level position obtained from experiment 

(filled squares), the ME model (dashed lines), and the hopping model (solid lines) versus the 

dopant molar ratio (MR) at three temperatures, 400 K, 296 K, and 140 K, corresponding to the 

red, purple, and blue curves, respectively. In panel a, error bars for the experimental data are 

shown by horizontal line segments. In panel b, the experimental data as well as the HOMO 

energy (EHOMO) were extracted from UPS measurements 37. 
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