
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Analytically tractable model of bad metals
S. Akhanjee and A. M. Tsvelik

Phys. Rev. B 87, 195137 — Published 28 May 2013
DOI: 10.1103/PhysRevB.87.195137

http://dx.doi.org/10.1103/PhysRevB.87.195137


BC12650

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

An analytically tractable model of bad metals

S. Akhanjee and A.M. Tsvelik
Department of Condensed Matter Physics and Materials Science,

Brookhaven National Laboratory, Upton, NY 11973-5000, USA

(Dated: May 16, 2013)

We discuss a model Kondo-type Hamiltonian representing an analytically tractable version of the
model used by Yin et.al., Phys. Rev. B86, 2399 (2012) to explain the non-Fermi liquid behavior of
iron chalcogenides and ruthenates in an intermediate energy range. We consider a regime where a
complete screening of the local degrees of freedom proceeds in two stages described by two charac-
teristic energy scales T orb

K >> E0. The first scale marks a screening of the orbital degrees of freedom
and the second one marks a crossover to the regime with coherent propagation of quasiparticles.
We present analytical results for the specific heat and magnetic susceptibility at T << T

orb

K .

PACS numbers: 71.27.+a, 75.30.Mb

I. INTRODUCTION

There is a significant number of metallic systems dubbed ”bad metals” where the energies at which quasiparticles
emerge as coherent objects are much lower than the characteristic scale of the interactions. In1,2 it was suggested
that in the compounds based on d and f -elements, the Hund’s interaction plays major role in delaying the onset of
coherence. Those authors considered models where electrons carry both orbital and spin indices using the Dynamical
Mean Field Theory (DMFT) and found that the coherence scale E0 was indeed low in comparison with the bandwidth
W or the Hund’s rule coupling JH . In the intermediate range E0 < T, ω <min(W,JH) the electronic self energy was
found to have a non-Fermi liquid form Σ ∼ ωb. In1 the exponent was found to be universal b = 1/2, in2 which used a
more realistic model b was non-universal. The latter result was found to fit the observed behavior of the mid-infrared
optical conductivity in the iron chalcogenides and ruthenates.
The starting point for2 is the Kondo lattice model where the localized d-electrons (6 electrons per site) give rise to

spin and orbital moments:

HK =
∑

k

ǫ(k)ψ+
jσ(k)ψjσ(k) + (1)

1

N

∑

r

eiqr
[

J1ψ
+
jσ(q + k)Xlj(r)ψlσ(k) + J2ψ

+
jσ(q + k)[XljS](r)σσσ′ψlσ′(k)− J3ψ

+
jσ(k + q)

(

σσσ′S(r)
)

ψjσ′ (k)
]

,

where N is the number of sites. The spin degrees of freedom are described by spin S = 2 operators acting on the spin
indices and the orbital sector is described by the Hubbard operators Xjl (j, l =1,...M). The symmetry of Hamiltonian
(1) is SU(M)×SU(2)×U(1). In iron pnictides and chalcogenides, a Fe-ion is surrounded by a tetrahedron of pnictogen
or chalcogen, and the resulting crystal field is weak in comparison to the Fe-pnictogen hybridization. As a result all d
orbitals have degeneracy, M = 5. In the ruthenates where the coordination of Ru-ion is octohedral the crystal field is
strong, yielding M = 3 because only the t2g orbital actively participates in the interaction. A detailed description of
the model can be found in the Supplementary material to2. Furthermore, a similar model with different parameters
was considered in3.
As we have mentioned above, model (1) was treated by DMFT2. In that approach local moments from different

sites have been considered as uncorrelated. As a result the Kondo lattice was treated as a single impurity problem
with a self-consistently renormalized density of states (DOS) of the band electrons. It turned out, however, that in the
given case the DOS at the chemical potential remains non-singular and hence the self-consistency had no qualitative
effect. Therefore the range of energies where the magnetic interactions between sites are still small can be treated as
a single impurity problem.
Additionally, the DMFT treatment established the existence of the intermediate regime marked by nontrivial power

laws in the electron self energy. In all likelyhood this regime emerges as a crossover between the quantum critical
point (QCP) of the purely orbital Kondo model (J2 = 0) and the Fermi liquid strong coupling regime of the full
model (J2 6= 0). Indeed, at J2 = 0 the single impurity Kondo model decouples into two independent Kondo models
describing scattering in the orbital and the spin sectors. This decoupling occurs due to the fact that electronic
densities (”currents”) coupled to the orbital Xjl and spin operators Sa commute with each other. Both spin and
orbital Kondo models are overscreened and at strong Hund’s coupling, the sign of the exchange interaction in the
spin channel is ferromagnetic2. Therefore, at J2 = 0 the orbital Kondo model scales to the QCP characterized by
nontrivial exponents and the spin one scales to weak coupling. However, as soon as the coupling J2 is switched on,
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the renormalization group trajectories start to deviate from the critical point. Eventually the system becomes a Fermi
liquid. The corresponding energy scale is, of course, determined by J2.
Although the meaning of the numerical results by2 is sufficiently transparent, it would be advantageous to have a

simple model of bad metals where a qualitatively similar picture can be obtained analytically. Therefore, this is the
primary focus of the present paper, which is organized as follows: The model is described in Section II; in the same
section we present its solution and describe the low temperature thermodynamics. In Section III we briefly discuss
the general case (that is the single impurity version of model (1)). Lastly, we provide an overview of our results in
the conclusion.

II. A SOLVABLE SINGLE IMPURITY MODEL

Below we consider a single impurity version of model (1) where an analytical treatment is possible. This version
has four species of fermions with symmetry SU(2)×SU(2)×U(1) interacting with pseudospin T and spin S, both of
magnitude 1/2. The interaction has a form:

V = g1ψ
+(I ⊗ τa)ψT̂ a + 2g2ψ

+(σa ⊗ τb)ψŜaT̂ b + g3ψ
+(σa ⊗ I)ψŜa (2)

The Pauli matrices σa and τa act in the spin and the orbital sectors respectively, and obey the identites,

σaŜa − 1/2 = P̂spin, τaT̂ a + 1/2 = P̂orb, (3)

where Pspin, Porb are permutation operators acting in the corresponding sectors. Therefore, when g1 = g2 = g3
the interactions become P̂spinP̂orb = P̂SU(4), which yields the integrable SU(4) Coqblin-Schrieffer model4. At low
temperatures the latter model displays Fermi liquid behavior characterized by the complete screening of the impurity.
When the couplings are not equal to each other the model is not integrable (except for the case g2 = 0), but in all
likelyhood eventually reaches the regime of full screening.
We will be interested in the case g1 >> g2,3 when the orbital sector reaches the critical point first. As is well

known, for the single impurity problem, the dimensionality of the bulk is irrelevant as long as the density of states
(DOS) at the chemical potential is constant. It allows one to treat the bulk in the single impurity Kondo problem as a
one-dimensional theory of chiral fermions. Such a replacement carries many advantages enabling one to apply various
non-perturbative techniques available for one-dimensional theories, such as Bethe ansatz and non-Abelian bosonization
described in5,6. In the latter procedure one replaces the bulk Lagrangian of 1D fermions with U(1)×SU(2)×SU(2)
symmetry by an equivalent representation consisting of a U(1) bosonic theory describing charge fluctuations and
two SU2(2) Wess-Zumino-Novikov-Witten (WZNW) Lagrangians describing the spin and the orbital sectors. The
peculiarity of the N = M = 2 case is that the WZNW models are equivalent to models of Majorana fermions. The
net result is:

∑

k

ψ+
jσ(k)(∂τ − ǫk)ψjσ(k) = (4)

∫

∞

−∞

dx
[

∂xφ(i∂τ + ∂x)φ+
1

2
χa(∂τ − i∂x)χa +

1

2
ξa(∂τ − i∂x)ξa

]

,

where ξa, χa (a = 1, 2, 3) are Majorana fermions transforming according to the adjoint representation of the SU(2)
group. The scalar bosonic field φ describes the charge sector which is decoupled from the impurity. Henceforth, we
set the Fermi velocity vF = 1 and thus ρ(ǫF ) = 1/2π. The total central charges of the left- and right-hand side of (4)
are, naturally, equal: 4= 1 + 3/2 + 3/2. It follows that the electron current operators can be expressed as

ψ+τaψ → i

2
ǫabcχbχc, ψ+σaψ → i

2
ǫabcξbξc (5)

ψ+τaσbψ → iχaξb (6)

As was shown in8, at the 2-channel Kondo model QCP the local pseudospin T a renormalizes into8

T̂ a → T orb
K

−1/2
ǫχa(0) (7)

where ǫ is a local zero energy Majorana mode residing on the impurity site x = 0 and T orb
K ∼Wg1 exp(−π/g1) is the

orbital Kondo temperature.



3

As a result we obtain the following effective Lagrangian describing the behavior at energies below T orb
K (the U(1)

part of the bulk Lagrangian is omitted):

L = g∗2(T
orb
K )1/2[ξb(0)Ŝb]ǫ+ i

g∗3
2
ǫabcŜ

aξb(0)ξc(0) +
1

2

∫

dxξa(∂τ − i∂x)ξa

+
[1

2

∫

dxχa(∂τ − i∂x)χa +
1

2
ǫ∂τ ǫ+ T orb

K

−1/2
ǫχ1(0)χ2(0)χ3(0)

]

, (8)

where g∗2 , g
∗

3 are renormalized values of the corresponding coupling constants. The term in the square brackets is the
critical point Lagrangian of the orbital 2-channel Kondo model. The last operator in the square brackets is irrelevant,
but it is included since it determines the impurity contribution to the specific heat9:

CV ∼ (T/T orb
K ) ln(T orb

K /T ). (9)

The most important part of (8) is the first term, which follows from the g2 term in Eq.(2) where we replaced the
fermionic bilinear by (6), the orbital operator T a by (7) and applied the fusion rule:

2g2ψ
+(σa ⊗ τb)ψŜaT̂ b → g∗2(T

orb
K )−1/2[χbξa](t+ η)[Ŝaχb](t)ǫ(t) ≈ g∗2

√

T orb
K 2πη

[ξaŜa]ǫ (10)

Since the interaction becomes retarded in the process of renormalization, we have assumed that the operators should
be time split by the amount η ∼ 1/T orb

K . As a result, at the QCP the operator in question becomes a relevant one10.
To solve model (8) we introduce a transformation

fa = 2iǫŜa, (11)

where fa are Majorana fermions, satisfying the Clifford algebra

[fa, f b]+ = 2δab. (12)

This transformation respects the Casimir operator S2 = 3/4. Since ǫ2 = 1, the inverse transformation is

Ŝa =
i

4
ǫabcf

bf c, ǫ = f1f2f3. (13)

The latter expression reproduces the commutation relations of spin operators. It is essential that fa’s replace com-
pletely ǫ, Sa and therefore field ǫ is no longer in use. Then the effective Lagrangian (8) becomes

L = ig∗2

√

T orb
K [ξb(0)f b] +

1

2

∫

dxξa(∂τ − i∂x)ξa +
1

2
fa∂τf

a (14)

+
[1

2

∫

dxχa(∂τ − i∂x)χa +
g3
2
[f bξb(0)][f cξc(0)] + T orb

K

−1/2
f1f2f3χ1(0)χ2(0)χ3(0)

]

. (15)

The impurity thermodynamics is determined by the Green’s functions of the f -operators. In the zeroeth order in g3

and T orb
K

−1/2
, one obtains these functions by diagonalizing the quadratic part of the Lagrangian given by (14). The

most convenient way to proceed is to write down the Lagrangian for the Fourier components of f and ξ(0):

L0 =
∑

ω

[1

2
ξa(−ω, 0)G−1

0 (ω, x = 0)ξa(ω, 0) + i
√

E0/2ξ
a(−ω)fa(ω) +

iω

2
fa(−ω)fa(ω)

]

(16)

where

G0(ω, x = 0) =

∫

dk

2π

1

iω − k
= − i

2
sign(ω)

is the Green’s function of the bulk fermion at x = 0 and E0 = 1
2 [g

∗

2 ]
2T orb

K . The net result is

(

〈〈f(ω)f(−ω)〉〉 〈〈f(ω)ξ(−ω, 0)〉〉
〈〈ξ(ω, 0)f(−ω)〉〉 〈〈ξ(ω, 0)ξ(−ω, 0)〉〉

)

= − 1

|ωn|+ E0

(

isignωn −i
√

E0/2

i
√

E0/2 iωn/2

)

, (17)
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FIG. 1: Temperature dependence of the magnetic susceptibility (20).

From the form of (17) is clear that E0 is the crossover energy scale to the Fermi liquid regime.
The nonquadratic terms in (15) provide subleading corrections to the scaling and hence are irrelevant in the infrared.

The corresponding corrections can be calculated by the perturbation theory using Green’s functions (17). For instance,
the ferromagnetic exchange interaction g3 reduces the value of E0 so that the new scale Eeff is given by:

E
1/2
eff = E

1/2
0 − 2g3

√
2iT

∑

ω

〈f(ω)ξ(−ω, 0)〉,

E
1/2
eff ≈ E

1/2
0

1− g3/π ln[T orb
K /max(T,Eeff )]

. (18)

The onset of Fermi liquid is delayed till the new scale E∗ determined by T = 0 limit of equation (18):

E∗[1− g3
π

ln(T orb
K /E∗)]2 = E0 (19)

which can be significantly smaller than E0 if the ferromagnetic exchange is strong. Otherwise the weak temperature
dependence of Eeff will give logarithmic corrections to the scaling considered below. In the first approximation the
thermodynamics is still determined by (20,22) with E0 replaced by Eeff (T ) determined by (18). The last term in
(15) containing six fermionic operators is even less singular at T << T orb

K .
In the first approximation one can neglect the temperature dependence of Eeff given by (18) and replace it by E0.

The temperature dependence of the magnetic susceptibility (displayed on Fig. 1) is given by the formula11

<< ŜzŜz >>= χ(T, ω = 0) =
2

π

∫

∞

0

ωE0

(ω2 + E2
0)

2
tanh(ω/2T )dω

=
1

πE0

[

1− (2πT/E0)
2 +

2πT

E0
ψ′

(

E0/2πT + 1/2
)]

, (20)

which at T > 0.3E0 can be approximated with high accuracy as

χ(T ) ≈ 1

4(T + 0.59E0)
(21)

The spin sector contribution to the specific heat is

C =
3T

4πE0

∫

∞

0

dxx2

[x2(T/E0)2 + 1] cosh2(x/2)
=

3T

4πE0

[

1− E0

2πT
ψ′

(

E0/2πT + 1/2
)]

. (22)

We see that at T << E0 the susceptibility is constant and the specific heat is linear in T. Hence at energies smaller
than E0 the impurity spin is fully screened.
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FIG. 2: Temperature dependence of the spin sector contribution to the specific heat (22).

A. Spin-orbit coupling

Our model (2) can be easily augmented by inclusion of the spin-orbit coupling:

HSO = ΛTS. (23)

At the 2-channel QCP we replace T as in (7) to get

HSO → i
Λ

√

T orb
K

ǫχaSa (24)

This term combines with (10) such that now the impurity spin interacts with a linear combination of the orbital and
spin Majoranas:

cosαχa + sinαξa, tanα = g∗2T
orb
K /Λ, (25)

with the coupling constant

Ṽ = (Λ2/T orb
K + (g∗2)

2T orb
K )1/2. (26)

Thus, we see that the spin-orbit coupling does not bring any qualitative changes.

III. A MODEL WITH GENERIC SYMMETRY

As mentioned earlier, a single impurity version of model (1) is not solvable. However, it is still possible and
worthwhile to make some qualitative statements about it. Consider model (1) with U(1)×SU(N)×SU(M) symmetry.
An analog of decomposition (4) in this case is (see, for example,5,6,12):

M
∑

j=1

N
∑

σ=1

∑

k

ψ+
jσ(k)(∂τ − ǫk)ψjσ(k) = (27)

∫

∞

−∞

dx∂xφ(i∂τ + ∂x)φ+
2π

N +M

∫

dx
[

: JaJa : + : F aF a :
]

,

where Ja (a = 1, ...N2 − 1) and F a (a = 1, ...M2 − 1) are currents from SU(N)M and SU(M)N Kac-Moody algebras
defined as

Ja =

M
∑

j=1

ψ+
jασ

a
αβψjβ , F a =

N
∑

σ=1

ψ+
jατ

a
jkψkα (28)
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with σa, τa being generators of the corresponding groups. For general N 6=M the quadratic forms of currents cannot
be expressed as models of free fermions as it happens for N = M , where they can be written in terms of Majorana
fermions transforming in the adjoint representation of the SU(N) group. Neither does it work for the cross term in
(2). Instead we have

ψ+τaσbψ → ΦaΛb, (29)

where Φ,Λ are Wess-Zumino primary fields from the adjoint representations of the SU(M) and SU(N) groups respec-
tively. Their conformal dimensions are

hΦ =
M

N +M
, hΛ =

N

N +M
. (30)

The QCP corresponds to the overscreening of the SU(N) sector. The corresponding Kondo scale is T orb
K =

Wg
M/N
1 exp(−2π/Ng1). At the QCP one operator Φ creates an average with the impurity spin leaving behind a

zero mode, fashioned along the lines of (7,10). As a result, the operator perturbing the critical SUN (M) WZNW
model is Λb coupled to the SU(M) impurity spin. Its scaling dimension is N/(N +M) < 1 and hence it is relevant.
Thus, we can be confident that the model scales to strong coupling, which is presumably a Fermi liquid, but the
details of this are not known. Consequently, the corresponding energy scale marking the crossover to Fermi liquid is

E0 ∼ g
1/(1−hΛ)
2 T orb

K (31)

IV. CONCLUSION AND ACKNOWLEDGEMENTS

We have presented an analytically tractable single impurity Kondo model where the impurity carries both spin
and pseudospin S = T =1/2 and the bulk electrons carry both spin and orbital indices. Our original motivation for
considering this model was its relevance to the problem of ”bad” metals, as formulated in1,2,3. As we have already
mentioned, according to DMFT, the single impurity problem describes both thermodynamics and the electron self
energy within a range where the intersite correlations are relatively weak. Although the experimentally relevant
models have different values of S, we have chosen S = 1/2 to obtain analytic results.
Furthermore, we have considered the most interesting regime when the orbital moment is screened first and the

coupling between spin and orbital channels is weak. Therefore, the screening of the orbital moment leads to a non-
Fermi-liquid quantum critical point (QCP) which is destabilized by the interaction term mixing spin and orbital
channels. If the corresponding coupling constant g2 is small, there is a wide crossover regime between the unstable
two-channel Kondo model QCP at high energies and coherent Fermi liquid at low energies. The ratio of these two
energy scales is ∼ g22 .
It is quite likely that the nonuniversal exponents in the self energy2 discussed in the Introduction are crossover

effects. To illustrate this point one needs to calculate the self energy; we plan to do it in a subsequent paper.
AMT is grateful to G. Kotliar, S. Lukyanov, R. M. Konik and P. Coleman for inspirational discussions and to A.

James for help with the numerical calculations. The work was supported by the US DOE under contract number
DE-AC02-98 CH 10886.
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