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Abstract

We propose the existence, via analytical derivations, novel phenomenologies, and first-principles-

based simulations, of a new class of materials that are not only spontaneously optically active,

but also for which the sense of rotation can be switched by an electric field applied to them–

via an induced transition between the dextrorotatory and laevorotatory forms. Such systems

possess electric vortices that are coupled to a spontaneous electrical polarization. Furthermore,

our atomistic simulations provide a deep microscopic insight into, and understanding of, this class

of naturally optically active materials.
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I. INTRODUCTION

The speed of propagation of circularly-polarized light traveling inside an optically active

material depends on its helicity1,2. Accordingly, the plane of polarization of linearly polarized

light rotates by a fixed amount per unit length, a phenomenon known as optical rotation.

One traditional way to make materials optically active is to take advantage of the Faraday

effect, by applying a magnetic field. However, there are some specific systems that are

naturally gyrotropic, that is they spontaneously possess optical activity. Examples of known

natural gyrotropic systems are quartz3, some organic liquids and aqueous solutions of sugar

and tartaric acid1, the Pb5Ge3O11 compound4,5, and the layered crystal (C5H11NH3)2ZnCl4
6.

Finding novel natural gyrotropic materials has great fundamental interest. It may also lead

to the design of novel devices, such as optical circulators and amplifiers, especially if the

sign of the optical rotation can be efficiently controlled by an external factor that is easy to

manipulate.

When searching for new natural gyrotropic materials, one should remember the obser-

vation of Pasteur that chiral crystals display spontaneous optical activity, which reverses

sign when going from the original structure to its mirror image7. Hence it is worthwhile

to consider a newly discovered class of materials that are potentially chiral, and therefore

may be naturally gyrotropic. This class is formed by electrotoroidic compounds (also called

ferrotoroidics8). These are systems that possess an electrical toroidal moment, or equiva-

lently, exhibit electric vortices9. Such intriguing compounds were predicted to exist around

nine years ago10, and were found experimentally only recently11–15. One may therefore won-

der if this new class of materials is indeed naturally gyrotropic, and/or if there are other

necessary conditions, in addition to the existence of an electrical toroidal moment, for such

materials to be optically active.

In this work, we carry out analytical derivations, original phenomenologies and first-

principles-based computations that successfully address all the aforementioned important

issues. In particular, we find that electrotoroidic materials do possess spontaneous optical

activity, but only if their electric toroidal moment changes linearly under an applied electric

field. This linear dependence is further proved to occur if the electrotoroidic materials also

possess a spontaneous electrical polarization that is coupled to the electric toroidal moment,

or if they are also piezoelectric with the strain affecting the value of the electric toroidal
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moment. We also find that, in the former case, the applied electric field further allows the

control of the sign of the optical activity. Our atomistic approach also reveals the evolution

of the microstructure leading to the occurrence of field-switchable gyrotropy, and shows that

the optical rotatory strength can be significant in some electrotoroidic systems.

II. RELATION BETWEEN GYROTROPY AND ELECTRICAL TOROIDAL MO-

MENT IN ELECTROTOROIDIC SYSTEMS

Let us first recall that the gyrotropy tensor elements, gml, are defined via16:

gmk =
ω

2c
eijmγijk (1)

where eijm is the Levi-Civita tensor17, c is the speed of light, and ω is the angular frequency.

Note that this angular frequency is not restricted to the optical range. For instance, it

can also correspond to the 1-100 GHz frequency range. The γ tensor provides the linear

dependence of the dielectric permittivity on the wave vector k in the optically active material,

that is:

εik (ω,k) = ε
(0)
ik (ω) + iγiklkl (2)

Here, kl is the l-component of the wave vector; εik (ω,k) denotes the double Fourier trans-

form in time and space of the dielectric tensor, with the long-wavelength components being

denoted by ε
(0)
ik . Throughout this manuscript we adopt Einstein notation, in which one

implicitly sums over repeated indices (as it happens, e.g., for the l index in Eq. (2)).

Thus, the calculation of the gyrotropy tensor can be reduced to the calculation of the

tensor γ responsible for the spatial dispersion of the dielectric permittivity.

Alternatively, one can use the following formula for the dielectric permittivity1,16:

εik (ω,k) = δik +
4πi

ω
σik (ω,k) = δik +

4πi

ω
(σ

(0)
ik (ω) + σiklkl) (3)

where δik is the Kronecker symbol and σik (ω,k) is the effective conductivity tensor in the

reciprocal space, at a given frequency1. σikl is the third-rank tensor associated with the

linear dependence of the effective conductivity tensor on the wave vector, and σ
(0)
ik is the

effective conductivity tensor at zero wave vector. Combining Eqs. (3) with Eq. (2) yields:

γikl =
4π

ω
σikl =

4π

ω
(σS

ikl(ω) + σA
ikl(ω)) (4)

3



where

σA
ijk =

1

2
(σijk − σjik) (5)

and

σS
ijk =

1

2
(σijk + σjik) (6)

Moreover, using the results of Ref.18 and working at nonabsorbing frequencies (i.e., frequen-

cies, such as GHz in ferroelectrics, for which the corresponding energy is below the band

gap of the material), one can write

σA
ijk = ic (ejklβil − eiklβjl) + ωξijk (7)

with

βij = iIm(χem
ij ) =−iIm(χme

ji ) (8)

and

ξijk =
1

2

[

dQkj

dEi

−
dQki

dEj

]

(9)

where Im stands for the imaginary part and Q is the quadrupole moment of the system19.

χme is the response of the magnetization, M, to an electric field E, while χem is the response

of the electrical polarization, P, to a magnetic field B, that is:

χme
ij =

dMi

dEj

and χem
ji =

dPj

dBi

(10)

Inserting Eq. (7) into Eq. (4) provides :

γijk =
4π

ω

[

c
(

ejklImχme
li − eiklImχme

lj

)

+ ωξijk
]

+ γS
ijk (11)

where γS
ijk = (4π/ω)σS

ijk is the contribution of the symmetric part of the conductivity to the

γ tensor. As a result, γS
ijk is non-zero only when the system is magnetized or possesses a

spontaneous magnetic order16.

Let us now focus on the magnetization, which can be written as19:

M =
1

2cV

∫

(r×J (r)) d3r (12)

where c is the speed of light, V is the volume of the system, r is the position vector, and

J (r) is the current density. We consider here the following contributions to this density:

J (r) = Ṗ(r) + c ∇×M0(r) (13)
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where the dot symbol refers to the partial derivative with respect to time. P(r) is the

polarization field, that is, the quantity for which the spatial average is the macroscopic

polarization. Similarly, M0(r) is the magnetization field, that is, the quantity for which the

spatial average is the part of the macroscopic magnetization that does not originate from

the time derivative of the polarization field20. By plugging this latter equality into Eq. (12),

we have:

M =
1

2cV

∫

(

r× Ṗ(r)
)

d3r +
1

2V

∫

(r×∇×M0(r)) d
3r =

1

2cV

∫

(

r× Ṗ(r)
)

d3r +M0

(14)

The analytical expression of this latter equation bears some similarities with the definition

of the electrical toroidal moment, G, that is9

G =
1

2V

∫

(r×P(r)) d3r , (15)

More precisely, taking the time derivative of G gives:

Ġ ≃
1

2V

∫

(

r× Ṗ(r)
)

d3r (16)

when omitting the time dependency of the volume (the numerical simulations presented

below indeed show that one can safely neglect this dependency when computing the time

derivative of the electric toroidal moment).

As a result, combining Eq. (16) and Eq. (14) for a monochromatic wave having an ω

angular frequency gives:

M−M0 ≃
1

c
Ġ = −

iω

c
G (17)

in electrotoroidic systems.

Plugging this latter equation in Eq. (10) then gives:

χme
ij = χ

me(0)
ij −

iω

c

dGi

dEj

(18)

where χ
me(0)
ij is the magnetoelectric tensor related to the derivative of M0 with respect to

an electric field. Therefore

Im (χme
ij − χ

me(0)
ij ) = −

ω

c

dGi

dEj

(19)

This relation between the imaginary part of the magnetoelectric susceptibility and the field

derivative of the electrical toroidal moment is reminiscent of the connection discussed in

Ref.22 between the linear magnetoelectric response and the magnetic toroidal moment.
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Inserting Eqs. (19) and (9) into Eq. (11) then provides:

γijk =γS
ijk +

4πc

ω

(

ejklImχ
me(0)
li − eiklImχ

me(0)
lj

)

+4π

[

eikl
dGl

dEj

− ejkl
dGl

dEi

+
1

2

(

dQkj

dEi

−
dQki

dEj

)]

(20)

Combining this latter equation with Eq. (1), and recalling that γS
ijk is a symmetric tensor

while eijm is antisymmetric (which makes their product vanishing), gives:

gmk =4π
(

δmkImχ
me(0)
ll − Imχ

me(0)
mk

)

+
4πω

c

[(

dGm

dEk

−
dGl

dEl

δmk

)

+
1

4
eijm

(

dQkj

dEi

−
dQki

dEj

)]

(21)

Choosing a specific gauge20 and neglecting quadrupole moments (simulations reported

below show that spontaneous and field-induced quadrupole moments can be neglected for

the ferrotoroidics numerically studied in Section IV) lead to the reduction of Eq. (21) to:

gmk =
4πω

c

[(

dGm

dEk

−
dGl

dEl

δmk

)]

(22)

This formula nicely reveals that optical activity should happen when electrical toroidal

moment linearly responds to an applied electric field.

III. NECESSARY CONDITIONS FOR GYROTROPY IN ELECTROTOROIDIC

SYSTEMS

According to Eq. (22), an electrotoroidic system possessing non-vanishing derivatives of

its electrical toroidal moment with respect to the electric field automatically possesses natu-

ral optical activity. Let us now prove analytically that the occurrence of such non-vanishing

derivatives requires additional symmetry breaking in electrotoroidic systems, namely that an

electrical polarization or/and piezoelectricity should also exist, as well as couplings between

electrical toroidal moment and electric polarization and/or strain.

For that, let us express the free energy of an electrotoroidic system that exhibits couplings

between electrical toroidal moment G, polarization P, and strain η as:

F = F0 + ζijklGiGjηkl + λijklGiGjPkPl + qijklPiPjηkl − hiGi (23)

where hi = (∇× E)i is the field conjugate of Gi.
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The equilibrium condition, ∂F/∂Gn = 0, implies that

∂F0/∂Gn + (ζnjkl + ζjnkl)Gjηkl + (λnjkl + λjnkl)GjPkPl = hn (24)

which indicates that hn depends on both the polarization and strain.

As a result, the change in electrical toroidal moment with electric field can be separated

into the following two contributions:

dGi

dEj
=

(

dGi

dEj

)(1)

+

(

dGi

dEj

)(2)

(25)

with
(

dGi

dEj

)(1)

=
dGi

dhn

∂hn

∂Pl

dPl

dEj

= χ
(G)
in

∂hn

∂Pl

χ
(P )
lj (26)

and
(

dGi

dEj

)(2)

=
dGi

∂hn

∂hn

∂ηkl

dηkl
dEj

= χ
(G)
in

∂hn

∂ηkl
dklj (27)

Here

χ
(G)
in =

dGi

dhn

(28)

is the response of the electrical toroidal moment to its conjugate field,

χ
(P )
ij =

dPi

dEj

(29)

is the electric susceptibility, and

dijk =
dηij
dEk

(30)

is a piezoelectric tensor.

The remaining derivatives appearing in Eqs. (26) and (27) can be found from Eq. (24):

(

∂hn

∂Pl

)

= (λnjlm + λnjml + λjnlm + λjnml)GjPm (31)

and
(

∂hn

∂ηkl

)

= (ζnjkl + ζjnkl)Gj (32)

Equations (25)-(32) reveal that there are two scenario for the occurence of natural op-

tical activity in electrotoroidic systems. In the first scenario, the system possesses a finite

polarization that has a bilinear coupling with the electrical toroidal moment (see Eqs. (26),

(31), and (23)). In the second scenario, the electrotoroidic system is also piezoelectric, and

electrical toroidal moment and strain are coupled to each other (see Eqs. (27), (32), and

7



(23)). An example of the latter can be found in Reference23, where a pure gyrotropic phase

transition leading to a piezoelectric, but non-polar, P212121 state (that exhibits sponta-

neous electrical toroidal moments) was discovered in a perovskite film. Next, we describe

the theoretical prediction of a material where the former scenario is realized.

IV. PREDICTION AND MICROSCOPIC UNDERSTANDING OF GYROTROPY

IN ELECTROTOROIDIC SYSTEMS

The system we have investigated numerically is a nanocomposite made of periodic squared

arrays of BaTiO3 nanowires embedded in a matrix formed by (Ba,Sr)TiO3 solid solutions

having a 85% Sr composition. The nanowires have a long axis oriented along the [001]

pseudo-cubic direction (chosen to be the z-axis). They possess a squared cross-section of

4.8x4.8 nm2 in the (x,y) plane, where the x- and y-axes are chosen along the pseudo-cubic

[100] and [010] directions, respectively. The distance (along the x- or y-directions) between

adjacent BaTiO3 nanowires is 2.4 nm.

We choose this particular nanocomposite system because a recent theoretical study24,

using an effective Hamiltonian (Heff) scheme, revealed that its ground state possesses a

spontaneous polarization along the z-direction inside the whole composite system, as well

as electric vortices in the (x,y) planes inside each BaTiO3 nanowire, with the same sense of

vortex rotation in every wire. Such a phase-locking, ferrotoroidic and polar state is shown in

Fig. 1a. It exhibits an electrical toroidal moment being parallel to the polarization. Figure

1a also reveals the presence of antivortices located in the medium, half-way between the

centers of adjacent vortices.

In the present study, we use the same Heff as in Ref.24, combined with molecular dynamics

techniques, to determine the response of this peculiar state to an ac electric field applied

along the main, z-direction of the wires. In our simulations, the amplitude of the field was

fixed at 109 V/m and its frequency ranged between 1GHz and 100GHz. The sinusoidal

frequency-driven variation of the electric field with time makes therefore this field ranging

in time between 109 V/m (field along [001]) and -109 V/m (field along [00-1]). The idea

here is to check if the electrical toroidal moment has a linear variation with this field at

these investigated frequencies, and therefore if the investigated system can possess nonzero

gyrotropy coefficients (see Eq.(22)).
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In this effective Hamiltonian method, developed in Ref.25 for (Ba,Sr)TiO3 (BST) com-

pounds, the degrees of freedom are: the local mode vectors in each 5-atom unit cell (these

local modes are directly proportional to the electric dipoles in these cells), the homogeneous

strain tensor and inhomogeneous-strain-related variables26. The total internal energy con-

tains a local mode self-energy, short-range and long-range interactions between local modes,

an elastic energy and interactions between local modes and strains. Further energetic terms

model the effect of the interfaces between the wires and the medium on electric dipoles

and strains, as well as take into account the strain that is induced by the size difference

between Ba and Sr ions and its effect on physical properties. The parameters entering the

total internal energy are derived from first principles. This Heff can be used within Monte-

Carlo or Molecular dynamics simulations to obtain finite-temperature static or dynamical

properties, respectively, of relatively large supercells (i.e., of the order of thousands or tens

of thousands of atoms). Previous calculations25,27–30 for various disordered or ordered BST

systems demonstrated the accuracy of this method for several properties. For instance,

Curie temperatures and phase diagrams, as well as the subtle temperature-gradient-induced

polarization, were well reproduced in BST materials. Similarly, the existence of two modes

(rather than a single one as previously believed for a long time) contributing to the GHz-

THz dielectric response of pure BaTiO3 and disordered BST solid solutions were predicted

via this numerical tool and experimentally confirmed.

Figures 2(a) and 2(b) report the evolution of the z-component of the electrical toroidal

moment, Gz, and of the polarization, Pz, respectively, as a function of the electric field, for

a frequency of 1GHz at a temperature of 15K. In practice, Gz is computed within a lattice

model24, by summing over the electric dipoles located at the lattice sites rather than by

continuously integrating the polarization field of Eq. (15) over the space occupied by the

nanowires. The panels in Fig. 1 show snapshots of important states occurring during these

hysteresis loops, in order to understand gyrotropy at a microscopic level. A striking piece

of information revealed by Fig. 2 (a) is that Gz linearly decreases with a slope of −1.6 e/V

when the applied ac field varies between 0 (state 1) and its maximum value of 109 V/m

(state 2). Such variation therefore results in positive g11 and g22 gyrotropy coefficients that

are both equal to 0.94× 10−7 for a frequency of 1GHz, according to Eq. (22) (that reduces

here to g11 = g22 = − ω
cε0

dGz

dE
in S.I. units, since there are no x- and y-components of the

toroidal moment and since the field is applied along z in the studied case). Interestingly,
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we found that the aforementioned slope of −1.6 e/V stays roughly constant over the entire

frequency range we have investigated (up to 100GHz). As a result, Eq. (22) indicates that

g11 = g22 should be proportional to the angular frequency ω of the applied ac field, and that

the meaningful quantity to consider here is the ratio between g11 and this frequency. Such

ratio is presently equal to 5.9×10−16 per Hz. Moreover, the rate of optical rotation is related

to the product between ω/c and the gyrotropy coefficient according to Ref.16. As a result,

the rate of optical rotation depends on the square of the angular frequency because of Eq.

(22), as consistent with one finding of Biot in 18122. Here, the ratio of the rate of optical

rotation to the square of the angular frequency is found to be four orders of magnitude larger

than that measured in “typical” gyrotropic materials, such as Pb5Ge3O11
4,5. As a result,

the plane of polarization of light will rotate by around 1.2 radians per meter at 100GHz (or

by 1.24× 10−4 radians per meter at 1GHz), when passing through the system.

Figure 2b indicates that the observed decrease of Gz is accompanied by an increase of the

polarization, which is consistent with our numerical finding that increasing the field from

0 to 109 V/m reduces the x- and y-components of the electric dipoles inside the nanowires

(that form the vortices) while enhancing the z-component of the electric dipoles in the

whole nanocomposite (i.e., wires and medium). Interestingly, the antivortices in the medium

progressively disappear during this linear decrease of Gz and increase of Pz, as shown in Figs

1. Figures 2 also show that decreasing the electric field from 109 V/m (state 2) to ≃ -0.031

× 109 V/m (state 3) leads to a linear increase of the electric toroidal moment (yielding the

aforementioned values of g11 and g22), while the z-component of the polarization decreases

but still stay positive.

Further increasing the magnitude of negative electric fields up to ≃ -0.094 × 109 V/m

results in drastic changes for the microstructure: dipoles in the medium now adopt negative

z-components (state 3), then sites at the interfaces between the medium and the wires also

flip the sign of the z-component of their dipoles (states 3 and α). During these changes,

the overall polarization rapidly varies from a significant positive value along the z-axis to

a slightly negative value (Fig. 2b), while Gz is nearly constant, therefore rendering the

gyrotropic coefficients null. Then, continually increasing the strength of the negative ac

field up to ≃ -0.48 × 109 V/m leads to the next stage: dipoles inside the wires begin to

change the sign of their z-components (states β, 4 and γ) until all of the z-components of

these dipoles point down (state 5). During that process, Pz becomes more and more negative,
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while the electrical toroidal moment decreases very fast but remains positive (indicating that

the chirality of the wires is unaffected by the switching of the overall polarization).

Once this process is completed, further increasing the magnitude of the applied field along

[001̄] up to -109 V/m (state 2′), leads to a linear decrease of the electrical toroidal moment.

Interestingly, this decrease is quantified by a slope dGz/dE that is exactly opposite to the

corresponding one when going from state 1 to state 2. As a result, the g11 and g22 gyrotropic

coefficients associated with the evolution from state 5 to state 2′ are now negative and equal

−0.94× 10−7 at 1GHz.

Finally, Figures 1 and 2 indicate that varying now the ac field from its minimal value of

-109 V/m to its maximal value of 109 V/m leads to the following succession of states: 2′, 5,

1′, 3′, α′, β ′, 4′, γ′, 5′ and 2, where the ′ superscript used to denote the i′ states (with i=2, 3,

4, 5, α, β and γ) indicates that the corresponding states have z-components of their dipoles

that are all opposite to those of state i (for instance, state β ′ has z-components of the dipoles

being positive in the medium while being negative in the wires, as exactly opposite to state

β). During this path from state 2′ to state 2, the gyrotropic coefficients g11 and g22 can be

negative (from state 2′ to state 3′) or positive (from state 5′ to state 2), depending on the

sign of the polarization.

Such possibility of having both negative and positive gyrotropic coefficients in the same

system originates from the fact that the polarization can be down or up, and is consistent

with Eqs. (31), (26) and (22). As a result, one can turn the polarization of light either in

clockwise or anticlockwise manner in electrotoroidic systems, via the control of the direction

of the polarization by an external electric field – which induces the switching between the

dextrorotatory and laevorotatory forms of these materials (see states 1 and 1′). Such control

may be promising for the design of original devices31,35.

Figure 3 shows how the gyrotropic coefficient g11 depends on temperature. One can clearly

see that g11 significantly increases as the temperature increases up to 240K. As indicated

in the figure, the temperature behavior of g11 is very well fitted by A/
√

(TC − T )(TG − T ),

where A is a constant, TC = 240K is the lowest temperature at which the polarization

vanishes and TG = 330K is the lowest temperature at which the electric toroidal moment

is annihilated24. In order to understand such fitting, let us combine Eqs (22), (26) and (31)
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for the studied case, that is:

g11 = −
4πω

c

dG3

dE3

= −
4πω

c
χ
(G)
3n

∂hn

∂Pl

χ
(P )
l3 = −

4πω

c
(λn3l3 + λn33l + λ3nl3 + λ3n3l)χ

(G)
3n G3P3χ

(P )
l3

(33)

The usual temperature dependencies of the order parameter and its conjugate field imply

that G3 and P3 should be proportional to
√

(TG − T ) and
√

(TC − T ), respectively, while

their responses, χ
(G)
3n and χ

(P )
l3 , should be proportional to 1/(TG − T ) and 1/(TC − T ),

respectively. This explains why the behavior of g11 as a function of T is well described by

A/
√

(TC − T )(TG − T ).

V. SUMMARY

In summary, we propose the existence of a new class of spontaneously optically active

materials, via the use of different techniques (namely, analytical derivations, phenomenolo-

gies and first-principles-based simulations). These materials are electrotoroidics for which

the electric toroidal moment changes linearly under an applied electric field. Such linear

change is demonstrated to occur if at least one of the following two conditions is satisfied:

(1) the electric toroidal moment is coupled to a spontaneous electrical polarization; or (2)

the electric toroidal moment is coupled to strain and the whole system is piezoelectric. We

also report a realization of case (1), and further show that applying an electric field in such

a case allows a systematic control of the sign of the optical rotation, via a field-induced

transition between the dextrorotatory and laevorotatory forms. We therefore hope that our

study deepens the current knowledge of natural optical activity and will be put in use to

develop novel technologies.
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Figure Captions.

FIG. 1. (color online) Dipole arrangement in the (x,y) plane of the studied nanocomposite

for the states playing a key role in the occurrence of gyrotropy. The four wires are made of

pure BaTiO3, and the medium is mimicked to be formed by BST solid solutions having a

85% Sr composition. See text for the labels and meanings of the different panels.

FIG. 2 (color online) Predicted hysteresis loops in the studied nanocomposite at 15K, for

a frequency of 1GHz. Panel (a) and (b) show the electrical toroidal moment and polarization,

respectively, as a function of the value of the ac electric field. In these panels, the number

and symbols inside parenthesis refer to the states displayed in FIG. 1.

FIG. 3. (color online) Temperature behavior of the g11 gyrotropic coefficient in the

nanocomposite studied in the manuscript. The solid lines represent the fit of the data by

A/
√

(TC − T )(TG − T ).
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