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Motivated by the recent discovery of the Z2 quantum spin liquid state in the nearest neighbor
Heisenberg model on the kagome lattice, we investigate the “even-odd” effect occuring when this
state is confined to infinitely long cylinders of finite circumference. We pursue a dual analysis, where
we map the effective Z2 gauge theory from the kagome lattice to a frustrated Ising model on the dice
lattice. Unexpectedly, we find that the latter theory, if restricted to nearest neighbor interactions, is
insufficient to capture this effect. We provide an explanation of why further neighbor interactions are
needed via a high-temperature expansion of the effective Hamiltonian. We then carry out projective
symmetry group analysis to understand which second neighbor interactions can be introduced while
respecting the lattice symmetries. Finally, we qualitatively compare our results to numerics by
computing the dimerization operator within our theory. Systems with odd circumferences exhibit a
non-vanishing dimerization that decays exponentially with circumference.

PACS numbers:

I. INTRODUCTION

The kagome lattice with nearest neighbor antiferro-
magnetically coupled spins is one of the most frustrated
systems in two dimensions. A spin-1/2 system on this
model has been one of the most promising candidates to
realize a quantum spin (QSL) liquid ground state, where
there is no symmetry breaking at zero temperature due
to quantum fluctuations and geometric frustration1. A
long standing goal has been to identity an experimen-
tal realization of this system, and huge efforts have been
made to not only grow such materials, but also to under-
stand their ground states. For instance, single crystals of
Herbertsmithite2–4, which is composed of kagome planes
with Cu2+ as its magnetic centers, have been successfully
engineered, and since then, there have been numerous ex-
periments from neutron scattering5 to NMR to check for
a spin liquid ground state.

From the theoretical end, a plethora of papers have
numerically investigated the nearest neighbor Heisenberg
model on the kagome lattice. Earlier studies, based on
dimer model approaches as well as series expansions,
have suggested that the ground state is not a spin liq-
uid, but a valence bond solid6–10, a state that breaks
translational symmetry while respecting spin rotation
symmetries. Further studies have suggested the possi-
bility of the projected gapless U(1) Dirac spin liquid us-
ing variational Monte Carlo techniques11,12. However, a
recent numerical study13 has unveiled a possibility that
the ground state of this model harbors an exotic Z2 spin
liquid state14–21. In this work, done by using Density
Matrix Renormalization Group (DMRG) methods22,23,
it has been shown that finite spin gaps in both the sin-
glet and triplet sectors exist and that spin correlations
are uniform throughout the lattice. In addition, this
work has shown that there may be some spontaneously
translational symmetry breaking, which is deeply rooted
in the Lieb-Schultz-Mattis theorem24, in cylinders with

an odd circumference. Furthermore, following numeri-
cal studies25,26 further corroborated this claim via the
measurement of the topological entanglement entropy, a
universal quantity which has a specific non-zero value
of ln 2 for ground states with non-trivial topology27,28.
Through the combinational efforts of these two numeri-
cal studies, it has been widely accepted that the ground
state of the nearest neighbor Heisenberg model on the
kagome lattice indeed fosters the exotic Z2 spin liquid.

In this paper, we explore the effects of confining this
model onto infinite length cylinders with finite circum-
ferences. Specifically, we consider the effective Z2 gauge
theory on the kagome lattice and predict that these
systems with odd circumferences have a non-vanishing
dimerization. This “even-odd” effect was first considered
in Ref. 29 for quantum dimer models and then in Ref. 30
on the analysis of the J1 − J2 Heisenberg model on the
square lattice. In order to understand the origin of the
even-odd effect, it is instructive to discuss the effective Z2

gauge theory on the square lattice and adapt the follow-
ing argument from Ref. 30. We claim that this finite-size
effect is not a distraction from the physics, but rather an
intrinsic property of the Z2 QSL phase.

Consider the following Z2 gauge theory description of
the QSL31, given by the following Hamiltonian

H = −K
∑

plaquette

∏
〈ij〉∈plaq

σzij − h
∑
〈ij〉

σxij , (1)

and ∏
j

σxij = −1. (2)

Here, the sum is over all plaquettes of the square lat-
tice. These two equations describe the “odd Ising gauge
theory”, where it describes the deconfined quantum spin
liquid for K � h and an ordered state for K � h. Ref. 30
computes the dimerization operator and show that this
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is the quantity that exhibits the even-odd effect. Addi-
tionally, one can consider the following operator

Qx =

Ly∏
y=1

σxxy;x+1,y (3)

which is a string of σxs, centered around x, x + 1 that
wrap around the cylinder. While this is not exactly the
dimerization operator, one can heuristically argue that
this operator already breaks translational symmetry for
systems with an odd circumference. Here, Qx commutes
with the Hamiltonian, Eq. (5), and thus, is a constant of
motion. Imagine, for instance, a system with two open
ends. Then, with the aid of Eq. (2), we can rewrite Qx
as

Qx =

Ly∏
y=1

 ∏
|j−i|=1

σxij


i=(x,y)

= (−1)xLy , (4)

which can be derived inductively by considering the open
end at x = 1 first. Here, site i is fixed by the coordi-
nate (x, y), and the notation |j − i| = 1 represents all
nearest neighbors j of i. From this operator, we can see
that Qx = 1 always for an even Ly; however, Qx os-
cillates along the chain for odd Ly. This indicates that
the Z2 gauge theory “knows” globally that translational
symmetry is broken for odd Ly, even though all local
gauge-invariant observables appear näıvely translation-
ally symmetric (and indeed are in the two-dimensional
(2d) thermodynamic limit, in the deconfined phase).

We take a similar approach to study the Z2 gauge the-
ory on the kagome lattice. The main difference between
the work in Ref. 30 and our work is that the nearest
neighbor model, as above on the square lattice, is not
sufficient to capture the even-odd effect on the kagome
lattice. This is much clearer to see in the dual Hamil-
tonian on the dice lattice, where we employ both high-
temperature expansions and projective symmetry group
(PSG) analysis32 in Section. III. The need for further
neighbor interactions arises from the complicated struc-
ture of the dual lattice, which for this case is the dice
lattice that consists of three independent sublattices in
a hexagonal array. We give a heuristic argument in Sec-
tion III A to give the reader an intuition as to why such
an analysis is needed.

The remainder of this paper is organized as follows.
In Section II, we introduce the effective Z2 gauge theory
on the kagome lattice and map this model unto its dual
equivalent on the dice lattice. We discuss the relevant
symmetries and introduce our gauge choices on the dice
lattice. In Section III, we first use high-temperature ex-
pansions to show that further neighbor interactions are
required to obtaining the even-odd effect. Furthermore,
we explore this state in detail to compute the PSG of
this model to include symmetry-allowed second neighbor
interactions. We also present our main results in this
section and finally conclude in Section IV. The Appen-
dices include many derivations and calculations, such as
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FIG. 1: The kagome lattice (thick line) with its dual, dice
lattice (thin line). The kagome sites are labeled by i, j and the
dice sites by a, b. The dice lattice has three independent sites,
shown as circles (red), squares (green), and triangles (blue),
and has translational symmetries under u and v, as shown. It
also has a 6-fold rotational symmetry about the (red) circular
site, as well as a 3-fold reflection symmetry about the three
axes crossing the (red) circular site.

detailed PSG analysis needed for the second half of the
paper.

II. MODEL AND NOTATION

A. Ising gauge theory

Motivated by the analysis in Ref. 30, we discuss here
an effective Z2 gauge theory description of the QSL state
on the kagome lattice. Because we are mainly focused
on the behavior of the dimerization of this state, we can
integrate out the spinons, as Ref. 13 discussed that a
finite spin gap exists on this state. In doing so, we can
reduce the Hamiltonian to the following

H = −K
∑

plaquette

∏
〈ij〉∈plaq

σzij − h
∑
〈ij〉

σxij , (5)

where the σij live on the bonds (ij) of the kagome lattice.
This description is of the “odd” Ising gauge theory, where∏

j

σxij = −1. (6)

For K � h, the system is in a deconfined QSL state,
while for h � K, it is in an ordered, confined state.
We can consider the dimerization operator to understand
the translational symmetry breaking of this state as it is
confined to a finite circumference cylinder. We will com-
monly refer to this as the “even-odd” effect, as there will
be spontaneous symmetry breaking for an odd cylinder
and not for an even one. On symmetry grounds, we ex-
pect that 〈Dx

i 〉 ∝ 〈σxij〉. The goal is to compute this
expectation value and show that it is exactly this opera-
tor that breaks translational symmetry along the length
of the cylinder.
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B. Dual transverse field Ising model

To do so, we take a duality mapping, which provides a
more intuitive understanding of this effect. The duality
transformations of Eqs. (5,6) is done with the following

τxa =
∏

〈ij〉∈plaq.a

σzij (7)

σxij = Jabτ
z
a τ

z
b . (8)

Here, the site labels i, j denote sites on the kagome lattice
while a, b denote sites on the dice lattice, as shown in
Fig. 1. The 〈ij〉 are bonds associated with the dual site
a (e.g. the up triangle for the triangular (blue) site on
the dice lattice). Dual sites a, b are the bonds on the
dice lattice that intersects perpendicularly with a kagome
bond 〈ij〉. The factor Jab is introduced and must be
chosen to satisfy Eq. (6), which requires that its product
around the dual plaquette, or parallelogram, is equal to
-1, i.e. ∏

parallelogram

Jab = −1. (9)

Then, the dual odd Ising gauge Hamiltonian can be writ-
ten as follows

H = −h
∑
〈ab〉

Jabτ
z
a τ

z
b −K

∑
a

τxa . (10)

Notice that model is invariant under Z2 transformations,
namely,

Jab → sasbJab (11)

τza → saτ
z
a ,

where sa = ±1.

C. Symmetries

Before we dive into our gauge choices for Jab, we first
comment on the symmetries of the dice lattice. The
dice lattice has three independent sites per hexagonal
unit cell, shown in Fig. 1 as the 6-coordinated circular
(red) site and 3-coordinated square (green) and triangu-
lar (blue) sites. It is invariant under hexagonal transla-
tions, Tu, Tv as well as point symmetries, which include
π/3 rotations, Rπ/3, and three-fold reflections about the
circular (red) site. These reflection symmetries are not
independent, however, and we only need to consider one
of the three reflections. We give further details in Ap-
pendix B 1.

D. Gauge choices

In order to proceed, we need to choose a configura-
tion of Jab that satisfies Eq. (9). To treat quasi-one-
dimensional (1d) cylinders, we need a gauge choice that
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FIG. 2: Gauge choices for (a) twisted and (b) straight bound-
ary conditions. Here, W is the winding vector and a1 is the
infinite direction. The thick lines depict where Jab = −1 while
the thin lines show Jab = 1. Note that the lattice orientation
of (a) is at 90o from that of (b).

is as 1d as possible. A recent study of the 2d version
of this model33 investigated the vison confinement tran-
sitions between the Z2 gauge theory and valence bond
solid states. There, they considered a magnetic unit cell
that encompasses two legs of the kagome lattice, which
is unable to capture the even-odd effect. In this paper,
we consider two separate one-dimensional gauge choices,
one with “twisted” and the other with “straight” bound-
ary conditions. (In notations used in Ref. 13, this cor-
responds to XC-2 and YC geometries, respectively.) We
show our gauge choices in Fig. 2, where the lattice is infi-
nite along a1 and winds along the winding vector, W, for
both boundary conditions. The labels 1, ..., 6 denote the
sublattices within each magnetic unit cells. The thick
black lines show bonds where Jab = −1 while the thin
lines show bonds with Jab = 1. These gauge choices sat-
isfy the constraint that arises from the odd Ising gauge
theory, Eq. (9), where the product of Jab around each pla-
quette is equal to -1. In Fig. 2(a), we show the “twisted”
boundary conditions, where the cylinder has circumfer-
ence 3

2Ly (measuring parallel to the Cartesian y-axis),
where Ly is the number of unit cells stacked along W. On
the other hand, Fig. 2(b) shows the “straight” boundary

conditions, with cylinders of circumference
√

3Ly. We
will refer to our gauge choices by the same terms used for
the boundary conditions, i.e. we will speak of “twisted”
and “straight” gauge choices.

III. EVEN AND ODD EFFECT

In this section, we use tools developed in the previ-
ous section to study the even/odd effect. Given the two
gauge choices in Fig. 2, we start by considering the differ-
ences between systems with even and odd circumferences
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to see how we can break the translational symmetry of
this model. First, using high-temperature expansion, we
explain the reason why the nearest neighbor model is
insufficient and why further neighbor interactions are re-
quired to see such an effect. Then, we derive the PSG
for the nearest neighbor model, with further details pro-
vided in Appendices B 2,B 3, to add in interactions that
respects both the lattice and gauge symmetry. Finally,
we compare our results to the DMRG results from Ref. 13
by summing the spin-spin correlations on each triangle of
the kagome lattice.

A. High-temperature expansion

The dimerization expectation value of interest corre-
sponds in the dual picture to

〈Jabτza τzb 〉. (12)

We are interested in this quantity in the “trivial” phase
of the dual transverse field Ising model, and in how it
exhibits translational symmetry breaking in odd cylin-
ders. Though some symmetry breaking is expected to be
generic on the grounds of the Lieb-Schultz-Mattis the-
orem, it turns out that the nearest neighbor model of
Eq. (10) is non-generic in this regard for the kagome lat-
tice, and no symmetry breaking appears in the dimeriza-
tion without further neighbor coupling. This is in con-
trast to a similar analysis in Ref. 30. There, the analysis
was done on a square lattice, where it is adequate to
consider simply a nearest neighbor model.

Our goal in this subsection is to provide an intuitive
understanding to why the nearest-neighbor model fails
to exhibit dimerization, and how further neighbor cou-
pling remedies this deficiency. To do so, we make a sim-
plification of the model. We are in principle interested
really in the quantum transverse field problem defined
by Eq. (10), and in particular, in the behavior when the
system in two dimensions at zero temperature is in the
Z2 deconfined phase, which corresponds to the situation
K � h. In the Ising language, this is the “trivial” quan-
tum paramagnetic (with spins largely polarized along the
τx direction) phase of the Ising model. Clearly in the
Ising model, the trivial phase is smoothly connected to
the high temperature paramagnetic one. We expect all
universal properties of the model to be qualitatively the
same in both regimes. Thus, from the point of view of
the dual variables, we may as well replace the quantum
fluctuations induced by large K, which appears as the
transverse field in Eq. (10), with thermal fluctuations of
classical spins τza . This is convenient because strong ther-
mal fluctuations are technically relatively easy to treat
via a high temperature expansion, in comparison with
the quantum treatment necessary for the large transverse
field limit.

Thus, we take a high-temperature expansion of the

Hamiltonian

H = −h
∑
ab

Jabτ
z
a τ

z
b , (13)

where τza = ±1. In the subsequent discussions remaining
in this subsection, we drop the superscript z for simplic-
ity.

To start, we write the partition function that corre-
sponds to the Hamiltonian in Eq. (13)

Z = cosh(βh)
∑
τk=±1

∏
〈ab〉

[1 + xJabτaτb] (14)

where x = tanh(βh). This is derived in Appendix A,
where a quick refresher of the high-temperature expan-
sion on the Ising model is outlined. Notice that only
closed loops contribute to this partition function; open
loop contributions vanish under the sum over τk = ±1.
Each closed loop is weighted by the product of xJab for
all the links in the loop. This product is proportional to
the “flux” through the loop, and is clearly gauge invari-
ant, and also consequently translationally invariant, in
the thermodynamic (2d) limit. For instance, the small-
est loop is any plaquette (or parallelogram) of the dice
lattice and contributes a factor of −x4, since the product
of Jab on such a plaquette is equal to -1 in our theory.

Next, consider the following correlation function,

〈Jmnτmτn〉 =

∑
τk=±1

∏
〈ab〉 Jmnτmτn [1 + xJabτaτb]∑

τk=±1
∏
〈ab〉 [1 + xJabτaτb]

,

(15)

where we normalize, as usual, by the partition function
given in Eq. (14). This correlation function can be ob-
tained order by order in x in the high-temperature ex-
pansion. The expansion of the numerator also takes the
form of loops, and differs from that of the partition func-
tion by the fact that the loops in the numerator are re-
stricted to contain the specific bond (mn) which is being
measured. We see that the results are clearly gauge and
translationally invariant in 2d.

For the time being, we only consider twisted boundary
conditions and the corresponding gauge choice, since the
analysis for the straight case is extremely similar. On the
cylinder, the high temperature expansion is very similar
to the expansion in 2d, with the exception that in addi-
tion to “trivial” loops, which already occur in 2d, there
are “non-trivial” loops, which wind around the cylinder.
It is clear that the former, as in 2d, contribute always in
a translationally invariant manner. Let us consider the
non-trivial loops. The leading such contribution for small
x is the one of minimal length. In the numerator, this
must contain the bond (mn), as shown in Fig. 3, where
the sublattices of the magnetic unit cell is labeled 1, .., 6.

To look for translational symmetry breaking, we inves-
tigate the ratio of the correlation functions, e.g.

〈J12τ1(r)τ2(r)〉
〈J45τ4(r)τ5(r)〉 , (16)
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FIG. 3: Local paths around the cylinder for the nearest-
neighbor model always come in pairs (shown in dark (blue)
and light (red) paths), which have the same value with differ-
ent signs. Therefore, we expect that the ratio nearest neigh-
bor correlations will always be equal 1 (e.g. 〈τ1τ2〉/〈τ4τ5〉 =
1). The sites labeled A,B,C identify with one another.

which requires only the analysis of the numerator. This
is sufficient to probe the translational symmetry breaking
of the model for the case of odd Ly.

However, because this lattice is composed of parallel-
ograms, it is always possible to form two paths to move
from one (red) circular site to another. These paths are
not equivalent and are of the opposite sign because of
the condition

∏
a Jab = −1 on each parallelogram. This

is depicted in Fig. 3, hich shows the two possible paths
contributing to the correlation 〈τ4(r)τ5(r)〉, both of the
order x5 on Ly = 3 system. These two paths have the
opposite sign and vanish under the sum in Eq. (15).

This demonstrates that the leading (in x) contribu-
tions to the dimerization vanish for the nearest-neighbor
model. Similar cancellations occur at higher orders. For
example, any longer loop which encircles the cylinder and
does not include compact closed sub-loops always occurs
with a partner of opposite sign. In particular, any path
containing exactly two sides of any parallelogram will
suffer such a cancellation, as these two sides can be ex-
changed with the opposite two, resulting in a new path
of opposite sign. The vast majority of paths encircling
the cylinder are of this type. In fact, we believe that
the cancellation, and consequent absence of dimerization,
persists to all orders in x, and is an exact result. However,
we have not proven this, owing to the complication of giv-
ing a general argument which also includes paths which
are “decorated” with many small closed loops. However,
numerical analysis of finite systems supports our claim.

In summary, we expect that a nearest neighbor model
does not break translational symmetry, i.e. the ratio

〈J12τ1(r)τ2(r)〉
〈J45τ4(r)τ5(r)〉 = 1. (17)

The absence of dimerization is an accidental effect ow-
ing to the destructive interference in the special geometry
of the dice lattice. We expect that further neighbor in-
teractions will restore the expected behavior. Guided by
the high temperature expansion, we seek to introduce in-
teractions which give a unique path contributing to lead-
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FIG. 4: For J2/J1 � 1, there is one unique path, in the
lowest order in x, that connects the (blue) triangular sites
together. Notice that in odd Ly, it breaks translational sym-
metry. These two paths are shown in dark (blue) and light
(red) lines.

ing order in x for non-trivial loops around the cylinder,
and hence do not suffer destructive interference. This
is accomplished, for instance, by allowing second neigh-
bor interactions that couple the same “type” of three-
coordinated sites together. In another words, the trian-
gular (blue) sites interact with each other and are in-
dependent of the square (green) sites, which themselves
interact with one another. If we allow these signs to be
staggered, we can consider the correlations, to the lowest
order in x, for odd Ly, (paths shown in Fig. 4),

〈J (2)
11 τ1(r + W)τ1(r)〉
〈J (2)

44 τ4(r + W)τ4(r)〉
. (18)

One can see graphically, from Fig. 4, that there is only
one path, in the lowest order in x, that connects sites 1
and 1 offset by the vector W. Given the second neigh-
bor couplings, schematically shown with “+” and “-” in
Fig. 4, cylinders with an odd circumference must break
translational symmetry. If these interactions are allowed
by symmetry, we can achieve a spontaneous translational
symmetry breaking, where for odd leg systems, we expect
the correlation function in Eq. (18) is −1 in the lowest
order in x.

B. PSG analysis

As mentioned above, we need further neighbor inter-
actions to achieve non-zero dimerization. However, if we
add in arbitrary second neighbor interactions, we can, by
hand, trivially break translational symmetry in the bulk.
Our goal is to add further neighbor interactions which do
not explicitly break any lattice symmetries, i.e. which in
two dimensions would preserve all physical symmetries
of the system. In the dual Ising Hamiltonian, however,
these symmetries are not manifest, due to the fact that
we had to make a gauge choice of the exchange interac-
tions Jab. The specific choice Jab clearly does not pre-
serve all lattice symmetries, and indeed there is no choice
which does.
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FIG. 5: Sum of spin-spin correlations on each triangle for (a)
twisted and (b) straight boundary conditions for cylinders
with odd circumference. Here, the correlations on the dark
(green) triangle are larger than that of the light (red) triangle.

As a consequence, a lattice symmetry operation must
be accompanied by a gauge transformation to preserve
the form of Jab. The combined operations of this type
form the projective symmetry group (PSG). We must
work out the PSG, and then carefully select further
neighbor interactions that respect it.

To formulate the PSG in more technical terms, we pos-
tulate that under a lattice symmetry operation, O, the
Ising spins transform according to

Oτza → sa′τ
z
a′ (19)

where sa′ = ±1 is the Ising gauge part of the operation,
and a → a′ describes the lattice transformation. Then,
in the Hamiltonian in Eq. (10),

Jabτ
z
a τ

z
b → Jabsa′sb′τ

z
a′τ

z
b′ ≡ J ′a′b′τza′τzb′ , (20)

where J ′a′b′ = Jabsa′sb′ . For the Hamiltonian to be invari-
ant, therefore, the interactions must satisfy J ′a′b′ = Ja′b′ ,
hence

Jab = Ja′b′sa′sb′ . (21)

Given the nearest-neighbor pattern of interactions shown
in Fig. 2, Eq. (21) determines the pattern of spin flips
sa′ needed to specify the PSG, for a given gauge choice
and a given lattice symmetry operation. Details of the
calculation of these spin flips is given in Appendix B 2.

Then, we require that additional further neighbor in-
teractions also satisfy Eq. (21) with the same spin flips
sa. Out of the five possible further neighbor interactions
up to lattice spacing 2, there are only two symmetry al-
lowed interactions consistent with the PSG. We consider
only one of them here, in which an interaction of the

Ly

t = 10, m = 8

3 5 7 9 11-20

-15

-10

-5

0

ln
(|η

−
1
|)

Friday, November 16, 2012

FIG. 6: Here, we show the ratios of the (green) dark to (red)
light triangles in Fig. 5. The ratio decays exponentially as a
function of Ly, meaning that in the 2d limit, we recover the
Z2 QSL, and the correlations throughout the lattice become
uniform. The solid (red) line is a linear fit that yields a slope
of 1.9(7).

same strength connects the same three-coordinated lat-
tice sites (triangular (blue) to triangular). With a proper
choice of signs, this interaction satisfies the PSG. These
signs are determined and given in Appendix B 3.

C. Computing correlations

We are now in a position to compute the dimerization
operator. Standard Landau reasoning implies that the
universal parts of quantities which have the same sym-
metry are proportional. Hence,

〈SiSj〉 = 〈Dij〉 ∝ 〈σij〉 = 〈Jabτza τzb 〉 (22)

In the following discussions, we work in a path integral
formulation in the τza basis, where τza → φa is now soft-
ened to take continuous values. The action that corre-
sponds to Eq. (10) is

S =
∑
ω,q

φ(a)ω,q
[
(ω2 +m2)I − Jq

]
φ
(b)
−ω,−q. (23)

Here, the sum over a, b = 1, ..., 6 is implicit, where the site
indices are labeled in Fig. 1. Jq is the Fourier transform
of the interaction matrix Jab, which is shown explicitly
in Appendix D for both boundary conditions. We have
introduced a Matsubara frequency ω as well as a mass
m. Using this formalism, we are now in a position to
compute the correlation function

〈Jab φ(a)φ(b)〉, (24)

by using the methods outlined in Appendix C.
We compare to the results of Ref. 13 by summing

the spin-spin correlations for each triangle for both the
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boundary conditions. For the case of even Ly, we obtain
uniform correlations throughout the lattice: for instance,
for the twisted boundary conditions, we cannot distin-
guish the triangle encompassing site 1 from that of site
4. However, for the case of odd Ly, we obtain similar
patterns to the DMRG results where there is some stripe
order distinguishing the even x from the odd x, which ul-
timately translates to a dimerization pattern that spon-
taneously break translational symmetry. This is shown
in Fig. 5, where we graphically indicate the sum of corre-
lations on each triangle on systems with odd circumfer-
ences. To compute the correlations, we have set the mass
m = 8 and the relative strength of the second neighbor
interactions as t = 10. Additionally, we define a ratio of
these correlations as

η ≡
∑
ab∈even triangle〈Jab φ(a)φ(b)〉∑
ab∈odd triangle〈Jab φ(a)φ(b)〉

(25)

and plot this as a function of odd Ly in Fig. 6. Notice
that the ratio of the correlations decay exponentially in
the circumference, such that we recover the Z2 gauge
theory in the two-dimensional limit. In addition, given a
set of parameters, m, t, both boundary conditions yield
the same correlations and hence, the same η. This is
because both conditions have exactly the same second
neighbor interactions, where the details are provided in
Appendix B 3.

IV. CONCLUSION

In this paper, we explored the even/odd effects of the
Z2 gauge theory on the kagome lattice. Using a dual
formalism, we used arguments from high temperature
expansion as well as projective symmetry group analy-
sis to include further neighbor interactions to the dual
Hamiltonian. Finally, we calculated and summed the
correlation functions on the triangles of the kagome lat-
tice and obtain an ordering pattern similar to results in
Ref. 13. This confirms the consistency of the dimeriza-
tion observed in Ref. 13 with a Z2 quantum spin liquid
state in the thermodynamic limit.

After this work was completed, during the writing of
this paper, we became aware of related work by Wan
and Tchernyshyov, which was recently posted in Ref. 34.
They use a different Z2 gauge theory, which is based on
a quantum dimer model approximation of the original
kagome Heisenberg model, and obtain similar results for
the dimerization (as well as other results not obtained
here). The approaches are complimentary, and the agree-
ment between dimerization patterns attests to the ro-
bustness of this finite size phenomena in Z2 spin liquid
states.
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Appendix A: High temperature expansion

Here, we give a quick refresher of the high temperature
expansion of the Ising model. We start by simplifying
the partition function in the following way (we drop the
superscript z for clarity)

Z =
∑
τk=±1

eβh
∑

〈ab〉 Jabτaτb =
∑
τk=±1

∏
〈ab〉

eβhJabτaτb

=
∑
τk=±1

∏
〈ab〉

∞∑
n=0

(βhJabτaτb)
n

n!
(A1)

=
∑
τk=±1

∏
〈ab〉

[ ∞∑
n=0

(βhJabτaτb)
2n

(2n)!
+

∞∑
n=0

(βhJabτaτb)
2n+1

(2n+ 1)!

]

Since (Jabτaτb)
2n = 1 for all n ∈ Z+ (τ2a = 1, J2

ab = 1),

Z =
∑
τk=±1

∏
〈ab〉

[cosh(βh) + sinh(βh)Jabτaτb] (A2)

= cosh(βh)
∑
τk=±1

∏
〈ab〉

[1 + tanh(βh)Jabτaτb]

= cosh(βh)
∑
τk=±1

∏
〈ab〉

[1 + xJabτaτb] ,

where x = tanh(βh).

Appendix B: Projective symmetry group

In this appendix, we give details of the projective
symmetry group (PSG) analysis done for the model in
Eq. (10). Recall that this is only necessary to work out
the second neighboring interactions, which was required
by the heuristic argument given in Sec. III A. We first
start by giving the independent symmetries of the dice
lattice. Then, we move onto discussing the procedures to
obtain the PSG for the nearest neighbor model and con-
clude with a brief discussion about which second nearest
neighbors are allowed within our theory.

1. Symmetries of the dice lattice

In the main text, we mentioned that there were three
reflection symmetries on the dice lattice about the circu-
lar (red) site. While this is true, these three reflection
symmetries are not all independent – namely, they can
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FIG. 7: The basis directions are shown in (red) arrows and
are labeled x, y. The faded dotted lines are the axes of each
gauge choice. The sites that surround the (red) circular sites
are labeled 1, ..., 6. The (purple) open circle that enclose the
three inequivalent sites is the unit cell for the dice lattice that
have coordinates (m,n) in their own respective bases. As
before, we show the frustrated bonds, i.e. where Jab = −1, in
thick (black) lines while the unfrustrated bonds, Jab = 1 in
thin lines. Notice that the two geometries (a,b) are at 90os
from each other and have the same initial gauge description,
given in Eq. (B2).

be generated using rotations and a single reflection sym-
metry. Consider Fig. 1. There is reflection symmetry
through the vertical line going through the circular site,
which we will call Py, through an upward sloping line,
P+, and through a downward sloping line, P−.

I = R2
π/3P+Py, (B1)

I = R−2π/3P−Py,

where I is the identity operator, and R−1θ = R−θ. Using
these identities, we can conclude that the dice lattice is
invariant under 2 point symmetries, rotation and reflec-
tion about a single axis, as well as 2 translations, labeled
u,v in Fig. 1.

2. Nearest neighbor PSG

The two gauge choices have different winding vectors,
where one “twists” the original lattice while the other
“straight” vector does not. The shorter, winding direc-
tion is denoted by W, and the infinite direction by a1.
Let (m,n) denote the coordinates of the circular (red)
site: mx̂+ nŷ. We label the 6 neighbors of each circular
(red) site from 1, ..., 6 as shown in Fig. 7, and set the
circular site as the origin. Then, the gauge description,
Jab, can be written as Jαmn, where α = 1, ..., 6 labels the
6 neighbors and (m,n) describe the coordinates of the
center circular (red) site. Again, taking the thick lines as

Original Ty Tx Rπ/3 P25

(123456) (123456) (123456) (612345) (321654)

(m,n) (m,n+ 1) (m+ 1, n) (m+ n,−m) (−m− n, n)

TABLE I: Transformation of sites and coordinates under lat-
tice operations for the cylinder with twisted boundary condi-
tions. Here, P25 is reflection symmetry about the axes con-
necting sites 2 and 5.

Original Ty Tx Rπ/3 P25

(123456) (123456) (123456) (612345) (321654)

(m,n) (m,n+ 1) (m+ 1, n) (m+ n,−m) (n,m)

TABLE II: Transformation of sites and coordinates under lat-
tice operations for the cylinder with straight boundary con-
ditions. Here, P25 is reflection symmetry about the axes con-
necting sites 2 and 5.

Jab = −1 and the thin lines as Jab = 1, we can describe
both of these gauge choices as follows

J1
mn = J2

mn = J3
mn = 1 (B2)

J4
mn = J6

mn = (−1)m

J5
mn = −(−1)m.

The idea of the PSG scheme is to first transform the lat-
tice and gauge structure under lattice symmetries. Then
work out the pattern of spin flips, using Eqs. (21,B2),
that restores our original gauge choices.

We first observe how the site indices and coordinates
(m,n), in Fig. 7, change under lattice transformations.
As mentioned in the previous subsection, we consider two
translations (x, y in their respective gauge choices), a
single π/3 rotation and a reflection about the axis con-
necting sites 2 and 5, which we denote as P25. Tables I,II
show how the site indices as well as the positions of these
sites change under these transformations. The first row
shows how the site indices permute in case of a lattice
transformation. Take for instance, Rπ/3, which is π/3
rotations about the (red) circular site. From Fig. 7, it
is clear that site 6 takes the place of site 1, 1 of 2, etc.
This is tabulated by (123456) → (612345). The second
row shows how the position of the unit cell changes un-
der these operations. For instance, translations under y
takes the coordinate (m,n)→ (m,n+ 1).

Next, we solve for sa′sb′ using Eq. (21), where the orig-
inal Jab is given by Eq. (B2). These are tabulated in Ta-
ble III for the twisted boundary condition and in Table IV
for the straight boundary condition. For each spin flip,
sa = ±1, we label its position (m,n) using the unit cell
in Fig. 7, and the type (p, b, g) for the (red, blue, green)
or (circle, triangle, square) sites respectively. Take, for
instance, translations along x, where the coordinates of
each site changes to (m+ 1, n). Given Eq. (B2), because
the Jab on sites 1, 2, 3 do not depend on the coordinate
m, the product of spin flips on the (red) circular site
and sites 1, 2, 3 are equal to 1. However, the Jab on sites
4, 5, 6 are dependent on m and the product of the spin
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Site Spin flips Ty Tx Rπ/3 P25

1 spmns
b
mn 1 1 (−1)m+n 1

2 spmns
g
m−1,n+1 1 1 1 1

3 spmns
b
m−1,n 1 1 1 1

4 spmns
g
m−1,n 1 -1 (−1)m (−1)n

5 spmns
b
m,n−1 1 -1 −(−1)n (−1)n

6 spmns
g
mn 1 -1 −(−1)n (−1)n

TABLE III: PSG for nearest neighbor interactions on the
cylinder with twisted boundary conditions.

Site Spin flips Ty Tx Rπ/3 P25

1 spmns
g
mn 1 1 (−1)m+n 1

2 spmns
b
mn 1 1 1 1

3 spmns
g
m−1,n+1 1 1 1 1

4 spmns
b
m−1,n 1 -1 (−1)m (−1)m+n

5 spmns
g
m−1,n 1 -1 −(−1)n (−1)m+n

6 spmns
b
m,n−1 1 -1 −(−1)n (−1)m+n

TABLE IV: PSG for nearest neighbor interactions on the
cylinder with straight boundary conditions.

a b c d e f

1-3 2-4 3-5 4-6 5-1 6-2

TABLE V: Connections for the 2nd neighbor interactions. For
instance, a corresponds to the interaction between sites 1 and
3.

flips, since Jm+1,n = −Jm,n for each of these sites, is
equal to -1. On the other hand, because the Jab do not
depend on coordinate n, translation in the y-direction
does not affect the gauge structure. The spin flip pat-
terns for the other two point symmetries are computed
in a similar fashion. While it may be possible to solve
for each sm,n, it turns out that it is unnecessary to do so
because to compute the next nearest interactions, we use
the fact that s2mn = 1 for all (p, b, g) and coordinates.

3. Including second nearest neighbor interactions

We consider further neighbors up to lattice spacing
2. There are a total of 5 type of interactions, of which
only 2 are allowed by PSG. We consider one of these
interactions, which connects the same three-coordinated
lattice sites (e.g. sites 1 and 3 in Fig. 7). The relative
strength of the interaction with respect to the nearest-
neighbor coupling is denoted by t; however, the relative
signs of these interactions must be chosen to be consistent
with the PSG. The connections of this interaction are
shown in Table V. These signs will be labeled as αmn,
where α = a, b, c, d, e, f and m,n denotes the position of
the red site. Here, we take the form αmn = (−1)gα(m,n)

and require that the strength of the couplings are equal,

Original Ty Tx Rπ/3 P25

(abcdef) (abcdef) (abcdef) (fabcde) (afedcb)

(m,n) (m,n+ 1) (m+ 1, n) (m+ n,−m) (−m− n, n)

TABLE VI: PSG for nearest neighbor interactions on the
cylinder with twisted boundary conditions.

Original Ty Tx Rπ/3 P25

(abcdef) (abcdef) (abcdef) (fabcde) (afedcb)

(m,n) (m,n+ 1) (m+ 1, n) (m+ n,−m) (n,m)

TABLE VII: PSG for nearest neighbor interactions on the
cylinder with straight boundary conditions.

i.e.

J2nd,α
mn /J = t αmn. (B3)

We can use the PSG equations from Sec. B 2 to compute
gα(m,n) for each interaction α.

We now give a detailed description of our proce-
dures. Because both boundary conditions follow the
same transformations under translations, we consider
one of them here. Under y-translation, the interactions
(abcdef) → (abcdef) and the coordinates change from
(m,n) → (m,n + 1). Let us concentrate for exam-
ple, on the a interaction, which is between (blue) tri-
angular sites located at (m,n) and (m − 1, n). We use
Eq. (21), where the original Jab = amn and the trans-
formed Ja′b′ = am,n+1. The transformations of each of
these interactions under various lattice symmetries are
tabulated in Tables (VI,VII). Then, since s2mn = 1,

Jab/Ja′b′ = amn/am,n+1 = sbmns
b
m−1,n (B4)

= sbmn(spmn)2sbm−1,n

= (sbmns
p
mn) (sbm−1,ns

p
mn)

= 1× 1 = 1

In going from the third to the fourth line, we used
the nearest neighbor PSG in Tables (III,IV) to get the
products in the parentheses in the third line. Using sim-
ilar techniques, we can solve for the ratios of interac-
tions (abcdef) and their respective gα(m,n). These are
tabulated in Tables (VIII,IX). There, since the ratios
of the interactions are equal to 1 under y-translation,
the interactions, α, do not have any n dependence, i.e.
gα(m,n) = gα(m). Using the x-translations, however,
one can obtain either gα(m) = 2 or m. Then, using ei-
ther rotations or reflection, solve for the relative signs
between the 6 interactions, and make sure that it stays
consistent with the nearest neighbor PSG. It turns out
that both of these boundary conditions produce the same
results of (abcdef) interactions.

amn = dmn = 1 (B5)

bmn = fmn = (−1)m (B6)

cmn = emn = −(−1)m (B7)
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where we have chosen the sign amn = +1 (since we can
only get the relative signs of each interaction through
this analysis). Notice again that these signs are only

dependent on the coordinate m, which is expected since
the original gauge choices in Eq. (B2) are only dependent
on m as well.

Interaction Spin flips Ty Tx Rπ/3 P25

1-3 sbmns
b
m−1,n amn/am,n+1 = 1 amn/am+1,n = 1 amn/fm+n,−n = (−1)m+n amn/a−m−n,n = 1

2-4 sgm−1,n+1s
g
m−1,n bmn/bm,n+1 = 1 bmn/bm+1,n = −1 bmn/am+n,−n = (−1)m bmn/f−m−n,n = (−1)n

3-5 sbm−1,ns
b
m,n−1 cmn/cm,n+1 = 1 cmn/cm+1,n = −1 cmn/bm+n,−n = −(−1)n cmn/e−m−n,n = (−1)n

4-6 sgm−1,ns
g
m,n dmn/dm,n+1 = 1 dmn/dm+1,n = 1 dmn/cm+n,−n = −(−1)m+n dmn/d−m−n,n = 1

5-1 sbm,n−1s
b
m,n emn/em,n+1 = 1 emn/em+1,n = −1 emn/dm+n,−n = −(−1)m emn/c−m−n,n = (−1)n

6-2 sgmns
g
m−1,n+1 fmn/fm,n+1 = 1 fmn/fm+1,n = −1 fmn/em+n,−n = −(−1)n fmn/b−m−n,n = (−1)n

TABLE VIII: PSG for 2nd nearest neighbor interactions on the cylinder with twisted boundary conditions.

Interaction Spin flips Ty Tx Rπ/3 P25

1-3 sgmns
g
m−1,n+1 amn/am,n+1 = 1 amn/am+1,n = 1 amn/fm+n,−n = (−1)m+n amn/an,m = 1

2-4 sbmns
b
m−1,n bmn/bm,n+1 = 1 bmn/bm+1,n = −1 bmn/am+n,−n = (−1)m bmn/fn,m = (−1)m+n

3-5 sgm−1,n+1s
g
m−1,n cmn/cm,n+1 = 1 cmn/cm+1,n = −1 cmn/bm+n,−n = −(−1)n cmn/en,m = (−1)m+n

4-6 sbm−1,ns
b
m,n−1 dmn/dm,n+1 = 1 dmn/dm+1,n = 1 dmn/cm+n,−n = −(−1)m+n dmn/dn,m = 1

5-1 sgm−1,ns
g
mn emn/em,n+1 = 1 emn/em+1,n = −1 emn/dm+n,−n = −(−1)m emn/cn,m = 1

6-2 sbm,n−1s
b
mn fmn/fm,n+1 = 1 fmn/fm+1,n = −1 fmn/em+n,−n = −(−1)n fmn/bn,m = (−1)m+n

TABLE IX: PSG for 2nd nearest neighbor interactions on the cylinder with straight boundary conditions.

Appendix C: Computing correlation functions

Here, we compute the Green’s function from the action
given in Eq. (23), which is

S =
∑
ω,q

φω,qG
−1
q,ωφ−ω,−q, (C1)

where G−1q,ω = (ω2 + m2)I − Jq. At zero temperature,
the sum over ω becomes an integral. Then, the goal is to
compute the Green’s function to obtain the correlation
functions. We proceed by writing the Green’s function
in the following way

Gq =

∫
ω

[
(ω2 +m2)I − Jq

]−1
, (C2)

where Gq is a function of q. We can diagonalize Jq for
a given q, i.e. Jq|q〉 = εq|q〉. Notice that this cannot
be analytically diagonalized for a general Jq, especially
since the matrix is 6 by 6 in our case. We can, however,
numerically diagonalize the matrix Jq as U−1q JqUq = Dq,
where U is a matrix of eigenvectors independent of ω, and
Dq is the diagonal matrix consisting of eigenvalues that
correspond to Uq. Then, we can use this to integrate

through ω (we omit the subscript q for clarity)

U−1GqU =

∫
ω

U−1
[
(ω2 +m2)I − Jq

]−1
U (C3)

=

∫
ω

[
U−1(ω2 +m2)IU − U−1JqU

]−1
=

∫
ω

[
(ω2 +m2)I − εqI

]−1
=

∫
ω

1

(ω2 +m2)− εq
I

=

[
1

2
√
m2 − εq

]
.

We can finally solve for the Green’s function to get the
correlation function in Eq. (22)

Gq = U

[
1

2
√
m2 − εq

]
U−1, (C4)

where Gq is a 6 by 6 matrix, where the indices label the
sublattice, shown in Fig. 2.

Appendix D: Interaction matrices

Here, we show the Fourier transformed interaction ma-
trices necessary to compute the correlation function in
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Eq. (24). The first subsection shows that of the twisted
boundary conditions while the second shows that of the
straight boundary conditions. Notice that including only
the nearest neighbor interaction gives rise to three, dou-
bly degenerate flat bands. Including second neighbor in-
teractions, discussed in Appendix B 3, introduces curva-
ture to these flat bands.

1. Twisted boundary conditions

In this section, we show the interaction matrices of the
Z2 gauge theory with twisted boundary conditions. The
indices 1, ..., 6 are labeled in Fig. 2(a). The interaction
matrices are as follows:

J (1)
q =



0 −1 + γ1 0 0 γ1 0

−1 + γ∗1 0 1 γ∗1γ2 0 γ2 + γ∗1γ2
0 1 0 0 −1 + γ1 0

0 γ1γ
∗
2 0 0 1 + γ1 0

γ∗1 0 −1 + γ∗1 1 + γ∗1 0 −1

0 γ∗2 + γ1γ
∗
2 0 0 −1 0


, J (2)

q = t



−κ1 0 0 κ2 0 0

0 0 0 0 0 0

0 0 −κ1 0 0 κ3
κ∗2 0 0 κ1 0 0

0 0 0 0 0 0

0 0 κ∗3 0 0 κ1


,

where

γ1 = eiq·W

γ2 = eiq·a1

κ1 = e−iq·W + eiq·W

κ2 = 1 + eiq·a1 + eiq·W − e−iq·(W−a1)

κ3 = 1 + eiq·a1 − eiq·W + e−iq·(W−a1)

and t = J2/J1. Here, the vectors are shown in Fig. 2(a),

where W = (
√

3/2,
√

3) and a1 = (2
√

3, 0).

2. Straight boundary conditions

In this section, we show the interaction matrices of
the Z2 gauge theory with twisted boundary conditions.
The indices 1, ..., 6 are labeled in Fig. 2(b). The nearest
neighbor interactions are given as follows

J (1)
q =



0 0 −1 0 0 γ2 + γ1γ2
0 0 1 + γ∗1 0 0 γ2
−1 1 + γ1 0 1− γ1 1 0

0 0 1− γ∗1 0 0 1

0 0 1 0 0 −1 + γ1
γ∗2 + γ∗1γ

∗
2 γ∗2 0 1 −1 + γ∗1 0


, J (2)

q = t



κ6 0 0 κ4 0 0

0 κ6 0 0 κ5 0

0 0 0 0 0 0

κ∗4 0 0 −κ6 0 0

0 κ∗5 0 0 −κ6 0

0 0 0 0 0 0


,

where

κ4 = −1 + eiq·W + eiq·a1 + eiq·(a1+W)

κ5 = 1 + e−iq·W + eiq·(W−a1) − eiq·a1

κ6 = 2 cos(q ·W).

Here, the vectors are shown in Fig. 2(b), where W =

(0,
√

3) and a1 = (3, 0).
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