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We investigate the dynamical and steady-state spin response of the nonequilibrium Anderson
model to magnetic fields, bias voltage, and temperature using a numerically exact method combin-
ing a bold-line quantum Monte Carlo technique with the memory function formalism. We obtain
converged results in a range of previously inaccessible regimes, in particular the spin dynamics for
a range of temperatures down to the crossover to the Kondo domain. We provide predictions for
novel nonequilibrium phenomena, including non-monotonic temperature dependence of observables
at high bias voltage and oscillatory quench dynamics at high magnetic fields.

Strongly correlated open quantum systems appear in
a wide variety of physical situations, including quan-
tum dots in semiconductor heterostructures1,2, molecu-
lar electronics3,4 and the dynamics of cold atoms5. These
systems consist of a finite, interacting region coupled to a
continuous set of non-interacting “bath” or “lead” states
which may be maintained at differing thermodynamic
states. It is natural to describe open systems in terms
of quantum impurity models, which have been used in
the description of magnetic impurities in metals6, the
adsorption of atoms on a surface7 and as auxiliary prob-
lems in the dynamical mean field approximation to ex-
tended lattice systems8. More recently, they have also
been of interest in the nonequilibrium context of meso-
scopic transport9,10 and nano-systems coupled to broad
leads2.

While attempts are being made to connect nonequilib-
rium physics to equilibrium concepts11, the nonequilib-
rium steady state properties of correlated quantum sys-
tems continue to present a formidable challenge to our
theoretical understanding. The main difficulty is that
a rigorous evaluation of the long-time and steady state
properties requires an accurate time propagation, start-
ing from some known initial state and reaching all the
way to the steady state. When this relaxation occurs
quickly, a range of powerful semi-analytical12–14 and nu-
merical methods15–25 are applicable. However, dynamics
in strongly correlated systems may exhibit a separation
of timescales—for example, the spin-relaxation dynam-
ics in the Kondo regime of a quantum dot are orders of
magnitude slower than those of the corresponding charge
relaxation. Existing theoretical methods are unable to re-
solve these timescales reliably in the general case (though
progress in analytical methods26–28 can teach us much
about generic aspects of the problem).

In this Letter we show that a combination of bold-
line diagrammatic Monte Carlo methods24,29 and the
memory-function approach25 enables us to significantly
extend the time regime accessible and can, in some cases,
access steady state information within the Kondo regime

(though not deep within the strong-coupling regime).
The method is numerically exact and provides unbiased
error estimates. While the calculations presented here
are for the single impurity Anderson model, a minimal
model for strong interactions in the presence of baths,
the methodology is applicable to any quantum impurity
model30.

The Anderson impurity model is defined by the Hamil-
tonian

H = HS +HB + V, (1)

where HS describes the interacting system (or dot) part,
HB the non-interacting bath (or leads) part, and V the
system–bath coupling part:

HS =
∑
i=↑↓

εid
†
idi + Ud†↑d↑d

†
↓d↓, (2)

HB =
∑

k,i=↑↓

εika
†
ikaik, (3)

V =
∑

k,i=↑↓

tikdia
†
ik + t∗ikaikd

†
i . (4)

Here ↑ and ↓ represent electronic spin, the di and d
†
i are

fermionic system operators for dot states with energy εi,
aik and a†ik are fermionic lead operators with energy εik
and the tik are coupling constants. k is an index iterating
over the lead states. The relevant aspect of the εik and
tik are encoded in Γ (ε) ≡ 2π

∑
k |tk|

2
δ (ε− εik).

Refs.31–33 have shown that the reduced density matrix
σ (t) = TrB {ρ (t)} (ρ (t) being the full density matrix
and TrB {...} denoting a trace over all bath degrees of
freedom) of any system of the form of Eq. (1) exactly
obeys the Nakajima–Zwanzig–Mori equation

i~
dσ (t)

dt
= LHSσ (t)+ϑ (t)− i

~

ˆ t

0

dτ κ (τ)σ (t− τ) . (5)

Here, the Liouvillian superoperator LHSA ≡ [HS , A] de-
notes a commutation with the system Hamiltonian HS ,
with the same notation defining LV and LH ; ϑ (t) is an
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initial correlation term which vanishes for factorized ini-
tial conditions ρ (0) ≡ ρB ⊗ σ (0); and ρB is the initial
bath density matrix. κ is known as the memory kernel
and may be obtained by solving34

κ (t) = i~Φ̇ (t)− Φ (t)LS +
i

~

ˆ t

0

dτΦ (t− τ)κ (τ) ,(6)

where the superoperator Φ (t) ≡ TrB

{
LV e

− i
~LHtρB

}
must in general be obtained from a many body com-
putation whose expense rapidly increases as t increases.
Evaluation of Φ (t) for t up to a cutoff time tc allows
an exact evaluation of κ (t < tc). Setting κ (t > tc) = 0
defines the cutoff approximation, whose convergence may
be monitored from the dependence of results on tc as tc is
increased. In the case of the Anderson impurity model,
Ref.25 has shown that if one is only interested in eval-
uating the diagonal elements of the density matrix, all
the supermatrix elements Φij,qq′ ≡ (|i〉 〈j|)† Φ |q〉 〈q′| of
Φ having i 6= j or q 6= q′ can be set to zero, with the
remaining elements determined by:

Φii,qq = δi0

(
ϕ(1)
qq + ϕ(3)

qq

)
+ δi1

(
ϕ(2)
qq − ϕ(3)

qq

)
+ δi2

(
−ϕ(1)

qq + ϕ(4)
qq

)
+ δi3

(
−ϕ(2)

qq − ϕ(4)
qq

)
,(7)

ϕ(m)
qq (t) = 2i=

∑
k

TrB

{
ρB 〈q|A(m)

k (t) |q〉
}
, (8)

where A(1)
k = t↑kd↑d↓d

†
↓a
†
↑k, A

(2)
k = t↑kd↑d

†
↓d↓a

†
↑k, A

(3)
k =

t↓kd↑d
†
↑d↓a

†
↓k and A(4)

k = t↓kd
†
↑d↑d↓a

†
↓k.

The evaluation of the ϕ(m)
qq (t) has previously been per-

formed with real time path integral Monte Carlo (RT-
PIMC) methods15,25,35, revealing that, in the presence
of strong electronic correlations, the memory kernel may
develop long tails. Near the Kondo regime this effect
becomes particularly pronounced, making it impossi-
ble to converge the cutoff approximation and highlight-
ing the need for methods able to obtain κ for longer
times. Here we show that the problem can to a large
extent be solved by using the bold expansion for impu-
rity models29, a technique related to bold-line methods
for lattice systems36–38. The bold expansion is based on
a stochastic Monte Carlo sampling of diagrammatic cor-
rections to the propagators obtained from an infinite par-
tial summation, rather than a sampling of all diagrams.
Intrinsic to the method is a tradeoff between complexity
and memory requirements of the initial partial resumma-
tion and the number of additional diagrams which must
be stochastically evaluated. The resulting procedure con-
verges at lower expansion order and greatly reduces the
severity of the dynamic sign problem, in practice more
than doubling the accessible time scales relative to a bare
expansion and allowing reliable estimates of the memory
kernel down to much lower temperatures. This allows
access to dynamics exhibiting arbitrarily long timescales
at those temperatures.

In the nonequilibrium case, diagrams must be evalu-
ated on the Keldysh contour. We find it advantageous to

Figure 1. Self energies and vertex equations used within the
OCA based bold expansion. Solid lines represent bare prop-
agators, bold lines are dressed propagators, wavy lines are
hybridization interactions and shaded regions are vertex func-
tions. The vertices are defined on the unfolded Keldysh con-
tour, such that the final time on the contour is marked by the
central “X” and both edges of the contour stand for the initial
time.

employ a “BoldOCA” built on the one-crossing approx-
imation (OCA)29,39. Fig. 1 illustrates this in diagram-
matic terms: the bold-line propagators and vertex func-
tions (which allow for the summation over hybridization
lines connecting pairs of times on the two different halves
of the Keldysh contour) are obtained from the solution
of the OCA equations, and used in an expansion which
samples diagrams of all crossing orders. The increase
in complexity and memory required to obtain the initial
OCA solution (not needed in the bare expansion) is more
than compensated for by the reduction in the number of
diagrams which must be stochastically sampled. Unbi-
ased error estimates are obtained by jackknife analysis
on data from multiple, uncorrelated Monte Carlo runs
(typically 5–10).

We assume a wide, flat band Γi (E) = ΓL
i (E)+ΓR

i (E)

with Γ
L(R)
i (E) = Γ/2

(1+eν(E−εc))(1+e−ν(E+εc))
; here εc and

ν are the band cutoff energy and its inverse cutoff width,
and L and R are respectively left and right lead in-
dices. We restrict our calculations to the symmetric An-
derson impurity model. We apply a magnetic field h
in order to generate a non-zero magnetization, setting
εi = −U

2 ±
h
2 (the formalism is more general and does

not rely on this symmetry). We choose Γ as our energy
unit, and throughout the rest of this paper set U = 5Γ,
εc = 10Γ and Γν = 10. The initial conditions are deter-
mined by assuming an initially decoupled system, having
left and right leads thermally equilibrated at a tempera-
ture β and chemical potentials µL = V

2 and µR = −V
2 ,

respectively. This defines the lesser and greater hy-
bridization functions ∆<

L(R) (ω) = −ifL(R) (ω) ΓL(R) (ω)

and ∆> (ω) = i
(
1− fL(R) (ω)

)
ΓL(R) (ω), which depend

on the temperature and chemical potentials through the
Fermi occupation function fL(R) (ω) = 1

1+e
β(ω−µL(R))

. At

these parameters, the Kondo temperature is given by
ΓβK ≡ Γ

TK
' 3.440.

At zero voltage the method can be benchmarked
against the equilibrium magnetization29,41,42. The top
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left panel of Fig. 2 displays the steady state magnetiza-
tion predicted by the proposed method at V = 0, plotted
against the inverse cutoff time 1

Γtc
at several tempera-

tures. For the very small magnetic field h = 0.01Γ in
Fig. 2, the relative errors are rather large, but consid-
ered on the full scale of the magnetization the precision
demonstrated here is remarkable. Lower temperatures
exacerbate the sign problem, resulting in larger errors
and longer computation times.

The effects of taking the system out of equilibrium are
illustrated in the lower left panel of Fig. 2. Here a con-
stant temperature βΓ = 1 is maintained while the bias
voltage V is varied at h = 0.1Γ; the numerically exact
V = 0 result is also shown. This plot clearly illustrates
that convergence of the method generally occurs at even
shorter times in nonequilibrium conditions—consistent
with expectations, equilibrium exhibits the longest mem-
ory while at larger voltages the plateau is reached at
shorter cutoff times.

An independent approach to verifying convergence re-
lies on direct examination of individual elements of the
memory kernel as a function of time. Several representa-
tive elements are displayed at h = 0.01Γ and βΓ = 1 in
the top right panel of Fig. 2, with the inset highlighting
short times. Within the times accessible by BoldOCA,
the memory kernel elements go to zero within the nu-
merical accuracy. Below this, on the same time scale
and for the same parameters, the time dependence of the
three distinct elements of the reduced density matrix σ is
plotted for an initially magnetized dot in the lower right
panel of Fig. 2. With this initial condition and within
the symmetric Anderson impurity model, the diagonal
density matrix entries σ0 and σ3, which express charging
dynamics, are identical. They both relax so rapidly that
their steady state values could have been obtained to very
good accuracy without recourse to memory techniques.
The difference in scale between the spin relaxation time
of σ1, σ2 and the memory decay in the upper panel, how-
ever, is striking—and is why our memory kernel methods
are essential for obtaining long-time behavior. To obtain
a reasonable converged steady state directly, one would
need to reach times Γt & 20 with errors of similar magni-
tude compared to what we have obtained at Γt = 2 with
the current approach. The exponential scaling in time
typical of all general exact methods makes this unfeasi-
ble.

We now turn to the presentation of results. The left
panels of Fig. 3 show the time evolution of the magnetiza-
tion from an initially polarized state at different voltages
and magnetic fields, with βΓ = 1. At low voltages two
separate relaxation timescales are apparent: immediate
fast relaxation followed by later slow relaxation. At high
enough fields (bottom), an overshoot effect appears along
with oscillatory behavior which is seen more clearly in the
upper right panel. As we increase the voltage the second
timescale is suppressed and eventually the relaxation be-
comes exponential. However, the voltage required in or-
der to reach this regime is surprisingly large. In the top
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Figure 2. Top left panel: The steady-state magnetization
obtained from the memory formalism at several temperatures
plotted as a function of the inverse cutoff time, and compared
in the equilibrium cases to exact CT-QMC results shown as
circles, for h = 0.01Γ and V = 0. Bottom left panel: The
same plot at βΓ = 1 and h = 0.1Γ, for several voltages. Right
panels: equilibrium memory kernel κ (top) and populations σi

(bottom) as a function of time for βΓ = 1 and h = 0.01Γ. The
inset shows the memory kernel at short times. The squares
in the bottom right panel are approximate OCA results.

right panel of Fig. 3, we show that nonequilibrium OCA
and the simpler one-crossing approximation or NCA (nei-
ther supplemented by QMC) are poor approximation for
h 6= 0, in contrast to the approach introduced here.

In the lower right panel of Fig. 3, we show an exam-
ple of the temperature dependence of the t → ∞ limit
of the magnetization at constant magnetic field and a
range of bias voltages. Interestingly, at higher voltages
(but substantially below V

2 ≈ εc where the lead chem-
ical potentials approach the band cutoff) the temper-
ature dependence becomes non-monotonic. We believe
this is a population switching effect43, which leads to a
suppression of the magnetization by population transfer
from the magnetized |1〉 and |2〉 states to the unmagne-
tized |0〉 and |3〉 states which are activated for V & U .
The rate for this transfer process is approximately pro-
portional to the lead occupation at the energy difference
between the states: f (β,∆E,µ) = 1

1+eβ(∆E−µ) , with ∆E

equal to half the interaction energy U
2 and µ = V

2 or
−V

2 , depending on the lead. f is therefore an increas-
ing function of temperature for V < U and a decreasing
one for V > U . At small voltages the effect of the pop-
ulation transfer results in a reduction of the magnetiza-
tion (as expected), while at large voltages the population
transfer enhances the intermediate-temperature magne-
tization. At still larger temperatures, the nonequilibrium
effects are washed away and normal thermal suppression
of the magnetization occurs.

In Fig. 4 we display the steady state voltage depen-
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Figure 3. Left panels: Time dependence of the cutoff-
converged magnetization at βΓ = 1 starting from a fully mag-
netized dot, at different magnetic fields h and bias voltages
V . Top right: Comparison with NCA and OCA at h = 2Γ
and V = 0. Bottom right: Temperature dependence of the
h = 0.01Γ steady state magnetization at different voltages.

dence of the generalized magnetic susceptibility χ ≡ m
h .

At small h this quantity is h-independent. The top panel
shows clearly how the regime in whichm is linear in h de-
pends on voltage at a constant temperature. The bottom
panel of Fig. 4 shows the voltage dependence at different
temperatures within the linear regime. One immediately
noticeable feature is the decrease of χ with increasing β
at high voltage, which corresponds to the non-monotonic
temperature dependence discussed in the bottom panel
of Fig. 4. A second interesting feature is the fact that
the plots have a simple, Lorentzian-like structure, sug-
gesting that the results may be in a regime accessible
to analytical methods based on performing logarithmic
corrections around rate equations44: in the dotted lines
in the bottom panel we show for comparison results ob-
tained by solving the classical rate equations (obtained
by simple perturbation theory to second order in the hy-
bridization). The large discrepancy between the mas-
ter equation and numerically exact results at βΓ = 1,
demonstrating the need for methods such as those intro-
duced here.

In conclusion, by unifying numerically exact bold
Monte Carlo methods with the exact memory approach
we have developed a new, numerically exact formalism
free from systematic errors and well suited for the real
time solution of nonequilibrium quantum impurity mod-
els. In practice, the capabilities of this formalism are
unparalleled: the method generates precise, converged
results at all timescales, in cases where the current state-
of-the-art approximate methods clearly fail. For the
nonequilibrium Anderson impurity model, the formalism
performs well even as one enters the Kondo regime, a
regime previously inaccessible with accurate numerical

0

0.2

0.4

0.6

Γ
χ

h=0.01Γ
h=0.1Γ
h=0.2Γ
h=0.5Γ
h=Γ
h=2Γ

0 5 10

V/Γ

0

0.2

0.4

0.6

0.8

Γ
χ

βΓ=0.1

βΓ=0.2

βΓ=0.4

βΓ=1

βΓ=1

h=0.1Γ

Figure 4. Generalized magnetic susceptibility χ ≡ m
h

as a
function of voltage, for (top) different magnetic fields and
(bottom) different temperatures, at h = 0.1Γ. Approximate
results from a master equation calculation are shown in dotted
lines for the lowest and highest temperatures in the lower
panel.

methods. It should however be noted that the compu-
tational difficulty increases at low temperatures; in the
strong coupling regime TK becomes very small, even-
tually dropping below our accessible temperature range
(though at the absolute temperature used in this work
strong coupling remains accessible).

Our formalism has allowed us to explore the detailed
behavior of the nonequilibrium magnetization, and we
have made predictions regarding multi-scale, oscillatory
quenching dynamics at high magnetic fields; the effect of
voltage on dynamical relaxation; and population-driven
reversal of the magnetization’s temperature dependence
at high voltages. These results are obtained at param-
eters where no other currently available method is reli-
able. As the temperature is further lowered, one expects
to encounter the formation of Kondo peaks at the chemi-
cal potential. How this will affect the behavior described
here remains an interesting and open question, and work
is currently being carried out to further investigate this
issue. Future research will address lower temperatures
and a wider variety of observables; it is also worth stress-
ing that both bold techniques and the memory formalism
are not specific to the Anderson impurity model, and are
expected to have many more applications.
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