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Ferromagnetism in perovskites RTiO3 can be induced by a steric effect. How the subtle local structural 

change can induce 3D ferromagnetic coupling through Ti-O-Ti superexchange interactions remains 

controversial. The critical behavior study for the ferromagnetic phase has been made so far only on 

YTiO3 since the magnetization measurements are plagued by the contribution from magnetic rare earth. 

Here we report critical exponents for most ferromagnetic members in the RTiO3 family by measuring 

magnetocaloric effect and applying the corresponding scaling laws. Our results indicate that the 

ferromagnetic coupling in the RTiO3 can be well-described by the 3D Heisenberg model. 

 

PACS numbers: 75.40.Cx, 75.47.Lx, 75.30.Sg 
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For a second-order ferromagnetic phase transition, the critical behavior near Tc is 

characterized by a set of critical exponents1 α, β, γ, and δassociated with, respectively, the specific heat 

C, the spontaneous magnetization Ms(≡MH=0), the initial magnetic susceptibility χ0(≡ ∂M/∂H|H=0), and 

the critical isothermal M(H)T=Tc through the following equations: 

     C(T) ~ |T-Tc|-α,             (1)  

  Ms(T) ~ |T-Tc|β (T < Tc),     (2) 

  χ0(T) ~ |T-Tc|-γ (T > Tc),     (3) 

M(H) ~ H1/δ (T = Tc).      (4) 

These critical exponents are not independent and the number of independent variables is reduced to two 

by the following relations: 

    α + 2β + γ = 2,         (5) 

      δ = 1+γ/β.           (6)       

Precise determination of these critical exponents can provide valuable information about a 

magnetic phase transition, e.g. the range and the dimensionality of the magnetic exchange interactions2. 

As shown in Table I, distinct values of the critical exponents corresponding to different models have 

been derived theoretically1. The mean-field model with α = 0, β = 0.5, and γ = 1 signals a long-range 

exchange interaction with negligible critical fluctuations near Tc. Such critical behaviors are usually 

observed in the very weak itinerant-electron ferromagnetic systems, e.g. ZrZn2
3, which have been 

justified theoretically by Stoner and Wohlfarth. In contrast, the three-dimensional (3D) Heisenberg 

model involves isotropic nearest-neighbor exchange interactions between localized spins; significant 

critical fluctuations in the vicinity of Tc lead to β < 0.5 and γ > 1. Such a universality class has been 

found experimentally in a wide range of ferromagnetic systems, including metallic Ni4, CrO2
5, 

La1-xAxMnO3
6, and insulating YTiO3

7,8. Although the 3D Ising model is applicable when the spin 

degree of freedom is restricted to one direction, an experimental realization of the 3D Ising 

ferromagnetism in real system is rare9. 

For a critical behavior analysis around a second-order ferromagnetic transition, the most 

straightforward and widely used approach is the Arrott-plot method10 based on dc magnetization 

measurements. For this purpose, a series of isothermal magnetization M(H) curves around Tc is 

replotted in the form of M2 versus H/M, i.e. the Arrott plot. A parallel linear Arrott plot signals the 

mean-field universality class with β = 0.5 and γ = 1. However, in most cases the Arrott plot does not 
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produce straight lines. In order to determine precisely the critical exponents, these isotherms in the 

Arrott plot are usually fitted with a polynomial function and then extrapolated to the H/M = 0 and M2 = 

0 axes to obtain the spontaneous magnetization Ms and the initial magnetic susceptibility χ0, 

respectively. Then, a power law fitting to Ms(T) and χ0(T) according to Eqs. (2) and (3) yields the 

values of β and γ, respectively. By using these critical exponents as a starting point, a modified Arrott 

plot, M1/β versus (H/M)1/γ, can be obtained and the above procedures can be applied again to get new 

values of β and γ. Such an iteration process can be applied until the critical exponents β and γ converge. 

Parallel straight isothermal lines should be restored in the modified Arrott plot with the correct critical 

exponents.  

For most homogeneous ferromagnetic systems involving only one magnetization process, the 

above-mentioned Arrott-plot method is applicable. Otherwise, application of this method requires 

caution; interpretation of the obtained critical exponents must take into account the specific situation of 

the magnetic system. For example, in the RTiO3 (R = Gd, …,Lu, and Y) perovskites, the critical 

behavior associated with the ferromagnetic ordering of the localized Ti3+ S = ½ spin can be well 

understood in terms of the 3D Heisenberg model as shown in YTiO3. However, in these ferromagnetic 

RTiO3 (R ≠ Y and Lu), the presence of large paramagnetic R3+ moments near Tc makes the Arrott-plot 

method invalid for the critical-behavior analysis. As shown in the present study on RTiO3, the 

Arrott-plot approach even leads to an opposite conclusion. Interestingly, during the course of our study 

on the magnetocaloric effect (MCE) of these ferromagnetic RTiO3
11, we found that the correct critical 

exponents can be deduced from the MCE scaling laws12.  

For a magnetic system with a second-order phase transition, Oesterreicher and Parker14 have 

proposed a universal relation: 

PK n
M HSΔ ∝  with n = 2/3,    (7)    

where ΔSM
PK is the peak value of the magnetic entropy change at different external magnetic fields H.  

Although subsequent experimental results in some soft magnetic amorphous alloys exhibit a deviation 

from n = 2/315, Franco et al.12,16 recently confirmed the existence of the above universal relation and 

provided a new relation, i.e. the MCE scaling law: 

        n = 1 + (β - 1)/(β + γ),      (8)  

which is in better agreement with the experimental results. In addition, the relative cooling power (RCP) 
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obeys the scaling law: 

1+1 δRCP H∝ .                  (9) 

According to Eqs. (6-9), we can deduce the critical exponents β and γ by determining the values of n 

and δ from the field dependences of ΔSM
PK and RCP, respectively. Here we report critical exponents for 

most ferromagnetic members in the RTiO3 family by measuring the magnetocaloric effect and applying 

the corresponding scaling laws. Our results indicate that the ferromagnetic coupling in the RTiO3 can 

be well-described by the 3D Heisenberg model. The present study on RTiO3 perovskite demonstrates 

that the MCE scaling laws can provide an alternative approach to investigate the critical behavior of a 

magnetic phase transition involving a strong paramagnetic background. 

Single crystal RTiO3 was grown by the floating-zone method as described elsewhere7. The 

phase purity and crystal quality were examined with powder X-ray diffraction and Laue back 

diffraction, respectively.  DC magnetization and specific-heat measurements were performed with a 

Physical Property Measurement System (PPMS-9T) from Quantum Design. 

Figure 1 shows the temperature dependence of magnetization M(T) for an YbTiO3 single 

crystal measured upon warming up from 10 to 70 K under an external magnetic field H = 0.01 T after 

zero-field cooling (ZFC). The ferromagnetic ordering of the Ti3+ spins induces an abrupt increase in 

M(T) around TC = 42.5 K, leading to a large magnetic entropy change. The field-cooled cooling (FCC) 

and field cooled warming (FCW) M(T) curves (inset of Fig. 1) do not show any thermal hysteresis 

around TC, indicating a second-order magnetic phase transition. At temperatures slightly below Tc, the 

magnetization decreases sharply until ca. 30 K, where the M(T) curve exhibits a noticeable shoulder. In 

comparison with the typical ferromagnetic behavior observed in YTiO3
7, these features should arise 

from the large Yb3+ moments and indicate an antiparallel alignment relative to the ferromagnetic Ti3+ 

spins. As shown below by the specific-heat data, the Yb3+ moments do not show a long-range ordering 

at least down to 20 K. The large paramagnetic contribution of the Yb3+ moments makes it invalid to 

evaluate the critical behavior near Tc with the conventional Arrott-plot method. Similar results are also 

found in the other RTiO3 with magnetic R3+ (R=Dy, Ho, Er, Tm). 

 As shown in Fig. 2, the Arrott plots of the RTiO3 single crystals produce nearly parallel 

straight lines both below and above TC, which seem to suggest that the critical behavior of RTiO3 fits to 

the mean-field universality class13. The critical exponents, β  and γ, obtained with the conventional 

Arrott-plot procedure, are also close to those predicted by the mean-field model (see Table I). However, 
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it has been well-established in YTiO3 that the critical behavior associated with the ferromagnetic 

ordering of the Ti3+ spins belong to the 3D Heisenberg universality class7,8. In addition, the 

nearest-neighbor exchange interactions between localized Ti3+ spins in these ferromagnetic RTiO3 do 

not fit into the mean-field model. The large paramagnetic R3+ moments contribute to a linear-field 

dependence in the isothermal M(H) curves around Tc, which modifies significantly the magnetization 

process and then leads to a different model of magnetic interactions based on the conventional 

Arrott-plot method. In the following, we show that the correct critical exponents of RTiO3 can be 

deduced from the magnetocaloric-effect (MCE) scaling laws.  

We have shown recently that the magnetic transitions of the ferromagnetic RTiO3 are 

accompanied by a large magnetocaloric effect11. Here, we applied the above-mentioned MCE scaling 

laws to evaluate the critical behavior of RTiO3. In order to obtain the values of n and δ, we first 

calculated the magnetic entropy change versus temperature under different magnetic fields by using the 

Maxwell relation: 
M 0

( , )
H

H

MS T H dH
T

∂⎛ ⎞Δ Δ = ⎜ ⎟∂⎝ ⎠∫ . Then, the relative cooling power (RCP, evaluated 

by RCP=ΔSM
PK×δTFWHM

18) can be deduced from the ΔSM versus T curves. The calculated ΔSM(T) 

under different magnetic fields for RTiO3 are shown in Fig. 3(a)-(e), while the field dependences of 

ΔSM
PK and RCP are plotted in Fig. 3(f)-(j). As shown by the solid lines in Fig. 3(f)-(j), least-square 

fittings to ΔSM
PK(H) and RCP(H) with Eqs. (7) and (9) yields the values of n and δ, respectively. Finally, 

with the help of Eqs. (6) and (8), the critical exponents β and γ of RTiO3 were determined, respectively. 

These values are in sharp contrast with those obtained from the Arrott-plot method shown above. As 

shown in Table I, the critical exponents β and γ of RTiO3 are close to those predicted by the 3D 

Heisenberg model and are in excellent agreement with those of YTiO3
7,8.  

The reliability of our above critical-behavior analysis for RTiO3 was further confirmed by the 

scaling plot of the magnetic entropy change ΔSM,16,17 which can be expressed as ΔSM/aM = Hns(t/H1/Δ), 

where aM = TC
-1Aδ+1B with A and B the critical amplitudes as in MS(T) = A (-t)β and H = BMδ, 

respectively, Δ = βδ , and s(x) is the scaling function. If the reduced temperature t was rescaled by a 

factor H1/Δ and the magnetic entropy change ΔSM by Hn, the experimental data should collapse onto the 

same curve. For instance, by using the values of β = 0.355, γ = 1.402 and δ = 4.95 obtained above, we 

have obtained the scaling plot of Fig. 4 for our YbTiO3 single crystal. As can be seen, except for the 

low temperature region at T < TC, all data points indeed fall onto the same curve. Therefore, the MCE 
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scaling method is an effective and reliable approach to investigate the critical behavior of RTiO3 having 

a strong paramagnetic background near Tc.  

To complete the critical-behavior analysis, we have further determined the critical exponent α 

from the specific-heat measurement. Fig. 5 shows the specific heat C(T) of RTiO3 in the temperature 

range near Tc. In the critical region, C(T) data can be described by a more sophisticated function19:  

0.5(1 )pC B C t A t E tα−± ± ± ±= + + + ,   (10) 

where t = (T - TC)/TC is the reduced temperature, α is the critical exponent, and Α±, B±, C± and E± are 

adjustable parameters. Superscripts + and – stand for T > TC and T < TC, respectively. The linear term 

represents the background contribution to the specific heat whereas the last term is the anomalous 

contribution to the specific heat. The factor within parentheses is the correction to scaling that 

represents a singular contribution to the leading power as known from experiments and theory20,21. As 

shown by the continuous line in Fig. 5, the experimental data can be described excellently with Eq. (10). 

The obtained critical parameters, adjustable fitting parameters (such as A, B, C and E), the fitting 

ranges and the quality of the fittings (given by the root mean square value) were listed in the Table II. 

The fitting reduced temperature t ranges is about 10-1~10-3 in the vicinity of the Curie temperature TC 

while avoiding the rounding part22. The root mean square values R2 is close to 1, indicating the 

validity of the fitting. The fitting ranges are in all cases limited by the rounding in the curves near 

the transition temperature; this rounding is inherent to the quality of the samples and the 

attribution to the measurement technique22. The obtained α (see Table I and Table II) for RTiO3 

single crystal is in excellent agreement with the prediction of the 3D Heisenberg model13, 23, further 

supporting the above analysis with the MCE scaling laws. Critical exponents α, β, and γ of RTiO3 

obtained in this study satisfy Eq. (5), α + 2β + γ = 2, which also indicates that the critical exponents 

obtained by the MCE scaling law method is valid. 

Finally, let’s briefly comment on the merit of t he MCE scaling laws, which can overcome the 

drawback of the conventional Arrott-plot method by avoiding the influence of the paramagnetic R3+ 

moments on the critical behavior of RTiO3. In the critical region where the Ti3+ spins undergo a sharp 

ferromagnetic ordering, the R3+ moments remain paramagnetic and vary smoothly with temperature 

without singularity. Since the magnetic entropy change ΔSM is proportional to the temperature 

derivative of the magnetization, dM/dT, the paramagnetic ‘background’ from the R3+ moments can be 
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eliminated. In other words, the magnetocaloric effect at the Curie temperature TC mainly reflects the 

ferromagnetic ordering behavior of the Ti3+ spins. Therefore, the MCE scaling laws is valid to 

investigate the critical behavior of RTiO3. 

In summary, we have determined that the critical behavior in RTiO3 single crystals belongs to 

the 3D Heisenberg universality class by using the MCE scaling laws, which also agrees with the 

specific-heat measurement. This approach not only eliminates the influence of other paramagnetic 

contributions in the critical region; it also avoids the drawback of the iteration procedure in the 

conventional Arrott-plot method. Therefore, the MCE scaling laws can be applied to complex magnetic 

systems involving different magnetization process in the critical region. 
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Table Captions: 

TABLE I. Critical exponents of RTiO3 obtained from the conventional Arrott-plot method and the 

MCE scaling law method and theoretical values of three models. 

TABLE II. Critical parameters, adjustable fitting parameters, fitting ranges and quality of the fittings 

of the specific heat for RTiO3. R is the deviation coefficient. 

 

 

 

Figure Captions: 

FIG. 1. Temperature dependence of the magnetization measured at H = 0.01 T after zero-field cooling 

for a YbTiO3 single crystal. Inset: Magnetization vs. temperature curves in the field-cooled cooling 

and warming cycles under a magnetic field of 1 T. 

FIG. 2. (a)-(e) Arrott plots M2 versus H/M for RTiO3, respectively. (f)-(j) Critical exponents, β and γ, 

and critical temperatures, TC
- and TC

+, determined from an iteration process started from the Arrott plot 

for RTiO3, respectively. 

FIG. 3. (Color online) (a)-(e) Temperature dependence of the magnetic entropy changes ΔSM under 

various external magnetic fields. (f)-(j) Field dependence of the maximal ΔSM and the RCP and their 

fitting curves using the MCE scaling laws. 

FIG. 4. (Color online) Scaling plot for YbTiO3 below and above TC based on the critical exponents β = 

0.355, γ = 1.402 and δ = 4.95 [where n = 1 + (β - 1)/(β + γ) and Δ = βδ]. 

FIG. 5. Experimental (squares) and fitted curves (continuous lines) of the specific heat as a function of 

the reduced temperature for the RTiO3 in the vicinity of Tc. 
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TABLE I. 

 α β γ δ Ref. 

Mean-field model 0 0.5 1.0 3.0 13 

3D Ising model 0.11 0.325 1.241 4.82 13 

3D Heisenberg model -0.11 0.365 1.386 4.80 13 

Arrott plot 

method 

DyTiO3 …. 0.328(3) 1.119(2) …. This work 

HoTiO3 …. 0.481(4) 1.032(2) …. This work 

ErTiO3 …. 0.462(5) 0.919(2) …. This work 

TmTiO3 …. 0.460(7) 1.078(2) …. This work 

YbTiO3 …. 0.432(8) 1.062(3) …. This work 

YTiO3 -0.11 a 0.328(4) 1.441(5) 4.85(2) 7 

MCE 

scaling 

law 

method 

DyTiO3 -0.110(3) a 0.352(2) 1.355(3) 4.85(2) This work 

HoTiO3 -0.110(5) a 0.397(5) 1.476(4) 4.72(6) This work 

ErTiO3 -0.106(3) a 0.413(5) 1.611(6) 4.90(5) This work 

TmTiO3 -0.110(1) a 0.401(4) 1.427(3) 4.56(5) This work 

YbTiO3 -0.109(3) a 0.355(4) 1.402(3) 4.95(3) This work 

a The critical exponent α calculated from the specific heat data.
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TABLE II. 

 

 α 
TC 
(K) 

A 
(J mol-1 

K-1) 

B 
(J mol-1 

K-1) 

C 
(J mol-1 

K-1) 
E tmin-tmax R2 

DyTiO3 
T<TC -0.110(3) 64.7 (9) -13.5(6) 74.6(4) 9.04(9)  6.35(7) 2.3×10-1 – 7.7×10-3 0.9999 
T>TC -0.110(1) 65.1 (5) -30.0(3) 55.4(6) 28.04(4)  -0.50(2) 7.7×10-3 – 2.3×10-1 0.9989 

HoTiO3 
T<TC -0.110(5) 50.7 (4) -10.0(2) 48.0(9) -97.75(3) -2.22(9) 2.1×10-1 – 9.8×10-3 0.9993 
T>TC -0.109(2) 50.8 (6) -200.6(3) 144.1(4) -217.0(2) -1.341(3) 3.9×10-3 – 1.8×10-1 0.9951 

ErTiO3 
T<TC -0.106(3) 41.7(9) -5.0(2) 20.4(5) -21.3(3) 0.044(1) 1.6×10-1 – 7.2×10-3 0.9998 
T>TC -0.108(1) 42.0(1) -22.7(3) 25.6(4) -5.90(4) -0.88(7) 9.6×10-3 – 2.0×10-1 0.9938 

TmTiO3 
T<TC -0.110(1) 65.2(2) -3.11(2) 54.7(4) -49.7(3) 7.65(1) 2.1×10-1 – 7.7×10-3 0.9998 
T>TC -0.110(1) 65.2(1) -326.7(3) 226(4) -242.3(2) -1.09(3) 7.7×10-3 – 2.3×10-1 0.9943 

YbTiO3 
T<TC -0.109(3) 42.2(2) -0.738(8) 32.23(2) -4.78(3) 50.4(3) 1.7×10-1 – 4.8×10-3 0.9998 
T>TC -0.110(3) 42.0(5) -200(2) 135.3(1) -168.8(2) -1.18(8) 7.1×10-3 – 1.9×10-1 0.9937 
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FIG. 2. 

 
 



 14

FIG. 3. 

 
 

 

 

 



 15

FIG. 4.  
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FIG. 5. 

 


