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The vortex-state electrodynamics of s-wave superconductors has been studied by infrared spec-
troscopy. Far-infrared transmission and reflection spectra of superconducting Nb0.5Ti0.5N and NbN
thin films were measured in a magnetic field perpendicular to the film surface, and the optical
conductivity was extracted. The data show clear reduction of superconducting signature. We con-
sider the vortex state as a two-component effective medium of normal cores embedded in a BCS
superconductor. The spectral features are well explained by the Maxwell Garnett theory. Our anal-
ysis supports the presence of magnetic-field-induced pair-breaking effects in the superconducting
component outside of the vortex cores.
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The vortex or Abrikosov state exists in type-II superconductors subjected to magnetic fields between Bc1 and
Bc2. In this state the field penetrates the superconductor in the form of quantized tubes of flux, or vortices. The
superconducting gap is zero inside the vortex cores and finite outside so that each vortex may be considered to
have a core of normal metal, surrounded by superconductor.1,2 Because vortex quantization renders the material an
inhomogeneous system, it necessarily affects the electrodynamics of the superconductor. The microwave response
of the vortex state has been extensively studied theoretically3–5 and experimentally.6–11 However the picture is still
incomplete in the infrared region spanning the superconducting gap.12,13

In this work we address the infrared electrodynamics of the vortex state. We obtain the complex optical conductivity
of type-II superconductors and compare our results to calculations of a superconductor-normal metal mixture using the
two key models for the effective conductivity of an inhomogeneous system: that of Garnett14 (the so-called “Maxwell
Garnett theory” or MGT) and that of Bruggeman15 (sometimes called the “effective-medium approximation” or
EMA). We also compare our results to a theory of viscous motion of vortices driven by currents in the superconductor.3

We find that only the MGT gives a good description of experiment, and then only when pair-breaking by the magnetic
field16–18 is considered. That it does so is reasonable considering the topology of the vortex state: normal regions
surrounded entirely by a connected superfluid. As pointed out some years ago,19 this is the topology of the MGT: the
inclusions are embedded in a host medium and are correlated to stay apart. In contrast, the EMA allows percolation
of the minority constituent at some critical concentration, something that does not happen in the vortex state until
the upper critical field, when the entire material is in the normal state.
We studied type-II superconducting thin films of BCS superconductors Nb0.5Ti0.5N and NbN, which are widely

used in superconducting magnets,20 RF cavities,21 and photodetectors.22 The 10 nm Nb0.5Ti0.5N film was grown on
a quartz substrate in Ar and N2 gas with a NbTi target, and the 70 nm NbN film grown on a MgO substrate in
N2 atmosphere using Nb, both by reactive magnetron sputtering.23,24 The substrates have negligible absorption in
the spectral range of interest (10–100 cm−1) for T < 20 K. We performed the experiment at Beamline U4IR of the
National Synchrotron Light Source, Brookhaven National Laboratory. The beamline is equipped with a Bruker IFS
66v FT-IR spectrometer, modified to use synchrotron radiation and a superconducting magnet for low-temperature
magneto-spectroscopy. A composite silicon bolometer operating at T ∼1.5 K detects far-infrared radiation with high
sensitivity. Both samples were cooled to 2 K (≪ Tc) in zero field, and their transmission and reflection measured in
magnetic fields from 0–10 T, with the field direction normal to the sample surface. To avoid systematic experimental
errors, the samples were brought to the normal state by heating to 20 K in zero field without changing the position,
and their transmission and reflection measured. These transmission and reflection values served as a reference for
calculating the real and imaginary parts of the optical conductivity relative to the normal state conductivity. An
unavoidable reflection from a quartz vacuum window caused stray light to be included in reflection measurements.24

This was corrected by measuring the stray light and subtracting. Spectra were collected at 4 cm−1 resolution, large
enough to average out the interference fringes due to multiple internal reflections of the light in the substrate. The data
for both samples at selected fields are shown in Fig. 1. As the magnetic field increases, the vortex-state transmission
Tv and reflection Rv continuously approach the normal-state values Tn and Rn. Nb0.5Ti0.5N reverts to the normal
state more quickly than NbN due to its lower Bc2. The samples were also cooled through Tc at each field shown in
Fig. 1, and the same measurements repeated. The results show no noticeable difference from the zero-field-cooled
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FIG. 1. (color online) The vortex-state to normal-state transmittance ((a) and (c)) and reflectance ((b) and (d)) ratios for
Nb0.5Ti0.5N and NbN at selected perpendicular magnetic fields. The reflection data include a stray-light correction discussed
in the text. The arrows indicate the direction of increasing field.
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FIG. 2. (color online) The real (circles) and imaginary (squares) part of the vortex-state optical conductivity σv for Nb0.5Ti0.5N
and NbN, normalized to the normal-state conductivity σn. The solid lines are MGT fits using Mattis-Bardeen theory for the
superconducting host component and Drude theory for the normal cores (inclusions). The dashed lines are fits where the
superconducting host component also includes pair-breaking effects.

case.

Measurements of both transmission and reflection enable the direct extraction of the thin film optical conductivity
σ = σ1 + iσ2. We measured the absolute normal-state transmittance Tn, using an open aperture as reference. The
films have large electronic scattering rates 1/τ that σn = σ0/(1+ iωτ) ≈ σ0 in the measured frequency range, yielding
a frequency-independent Tn. From the measured Tn we extract σ0, which in turn determines Rn. Using the method
described in Ref.18, we obtained σ1 and σ2 at various magnetic fields, shown respectively as circles and squares in
Fig. 2. The extraction of σ2 involves the difference between two relatively large measured quantities (see Eq. (4)
in Ref18) causing it to be highly sensitive to small errors and other measurement artifacts. This is particularly
problematic towards higher frequencies where σ1 dominates over σ2. σ2 is further complicated by the residual fringes
in the raw data above 40 cm−1. The optical conductivity data show two characteristic features: (i) With increasing
magnetic field, the real part approaches the normal-state value (but does not exceed it whether below or above he
gap frequency) while the imaginary part diminishes. (ii) A weak minimum in the real part appears around the gap
frequency at finite fields.

We first compare these features with calculations based on two different effective medium theories for the average
dielectric response of a mixture of two materials; the MGT and EMA.14,15,24–26 The nanometer dimension of a
vortex core is much smaller than the far-infrared wavelength. This justifies treating the vortex-state superconductor
as an effective medium composed of a superconductor-normal metal mixture. The MGT and EMA make different
assumptions, thus yielding different results. The MGT treats one constituent as the host and all others as embedded
media, so is suitable for mixtures with isolated inclusions.19 The effective response functions vary smoothly with the
volume fraction f of the grains, and no percolation transition occurs for f < 1. In contrast, the EMA treats all
constituents equivalently, appropriate for mixtures with connected grains. It predicts percolation at a certain mixture
fraction fc. A vortex-state superconductor maintains its superconductivity even at a high volume fraction of vortices;
percolation does not occur. Moreover, vortices correlate to stay apart because of the repulsive force between them.
Therefore we expect the MGT to be a better description of our experiment, though one previous infrared study argued
otherwise.13

Model calculation results in Fig. 3 support the above reasoning. When calculating the effective optical conductivity,
we treat the vortex cores as cylinders of dirty-limit Drude metal and the superconducting component using Mattis-
Bardeen theory.27 For the MGT the superconducting component is taken as the host medium. Fig. 3(a)–(c) compares
the real and imaginary parts of the optical conductivity of the effective medium at various volume fractions f of
the normal metal. The MGT results are consistent with the experimental results shown in Fig. 2, including the
minimum in the real part σ1 near the gap frequency and the monotonic growth towards σn for increasing field. The
EMA results are strikingly different: σ1 is greater than σn towards zero frequency, and changes non-monotonically
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FIG. 3. (color online) (a)–(c) Effective optical conductivity calculated from MGT (solid lines), EMA (dashed lines), and the
Coffey-Clem model in the vortex-pinning regime at ω0 = 300 cm−1 (dashed-dotted lines). f is the normal-volume fraction. (d)
Effective optical conductivity calculated from the Coffey-Clem model at different depinning frequencies ω0 for f = 0.4.

with field. Moreover, the 1/ω behavior of σ2 is completely suppressed in the EMA for f > 0.5, in contradiction to
experiment (Fig. 2).
The effective medium theories discussed above assume a static vortex lattice. To consider the contribution of vortex

motion, we compare our data to the model proposed by Coffey and Clem,3 which calculates the surface impedance of
type-II superconductors under the influence of vortex dynamics. They generalized the two-fluid model to couple self-
consistently the supercurrent density with the vortex displacements. The central result of the model is a frequency-,
field-, and temperature-dependent complex penetration depth λ̃(ω,H, T ).3,28 Noting the relation between the complex

penetration depth and the complex optical conductivity σCC = i/µ0ωλ̃
2, and using the field-dependence of various

quantities in Ref28, we obtain the complex optical conductivity in the low temperature limit (T ≪ Tc),

σCC

σn

≈
(1 − b)σs/σn + b

βb(1− b)σs/σn + 1
. (1)

b = B/Bc2 is the reduced field. β = 1/(1− iω0/ω), where ω0 is the characteristic frequency that distinguishes the flux-
pinning and flux-flow regimes, called the depinning frequency. σs is the optical conductivity of the superconducting
component. Eq. (1) reduces to correct limits as b → 0 and b → 1. Since our superconducting samples were in the low
temperature limit, we did not include the effect of thermal creep in deriving Eq. (1) and the expression for β.
Fig. 3(d) compares the effective Coffey-Clem optical conductivity calculated from Eq. (1) at different ω0. We assume

b ≈ f to allow comparison with the calculation results of MGT and EMA, also shown in the figure. (The validity
of this approximation will be discussed below.) We note that using ω0 = 300 cm−1 corresponds to the flux-pinning
regime and ω0 = 3 cm−1 the flux-flow regime. In the flux-pinning regime, Re(σCC) agrees with the data as well as with
MGT and EMA above the gap, but almost flattens below the gap. Such behavior misses the minimum around the
gap, found at different values of f in Fig. 3(a)–(c) and in the data in Fig. 2 (b,c,d,f,g,h). Flux flow brings a minimum
to Re(σCC), but it also substantially steepens the low-frequency part of Re(σCC) and suppresses the high-frequency
part. These features render the Coffey-Clem theory inconsistent with experiment.
Having established that the MGT possesses the salient features of the experimental data, we now focus on a quanti-

tative analysis. Previous studies of the vortex-state electrodynamics in superconductors assumed the superconducting
fraction to be unaffected by the magnetic field.5,12,13 Adopting this assumption, we use the Mattis-Bardeen theory27

to describe the superconducting fraction and the Drude model for the vortices. The volume fraction of the normal
vortex cores f is varied to fit the σ1 data at different fields. Once an optimal fit is found, we use f to calculate
σ2. The fits and calculations are shown as solid lines in Fig. 2. The zero-field case is trivial as we set f = 0. The
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minimum in σ1 around the gap frequency is captured by the fits, but appears shallower in the data than in the fits.
This indicates less missing spectral weight in the data, meaning weaker superconductivity than assumed for the fits.
The low-frequency σ2 also corroborates this view. The calculated σ2, especially that of NbN, is above the data as the
field increases. Therefore, the analysis points to additional weakening of superconductivity beyond the presence of
the vortex cores.
One source of such additional weakening could be magnetic-field-induced pair-breaking effects in the superconduct-

ing fraction. This effect needs to be considered because the magnetic field outside of the vortex cores does not diminish
significantly until several penetration depths away from the core center.29 The vortex spacing for a square lattice30 is
a� =

√

Φ0/B ≈ 49 nm at 1 T and less at higher fields, where Φ0 is the magnetic flux quantum and B is the applied
field. These distances are smaller than the penetration depth of our samples (a few hundred nm). Therefore the field
penetrates all of the superconducting component for our measured field range. This field breaks the time-reversal
symmetry of the electron pairing, resulting in pair-breaking effects.16,17 Such effects reduce the energy gap and smear
out the gap-edge singularity in the quasiparticle density of states, consequently modifying the optical conductivity.
These effects have been demonstrated in our studies of Nb0.5Ti0.5N and NbN thin films in parallel magnetic fields.18,31

We re-evaluate the MGT analysis by including the pair-breaking effects. A complete model requires computing the
field distribution in the superconducting fraction, and then the pair-breaking optical conductivity as a function of
distance from the vortex center. For simplicity, we use the pair-breaking optical conductivity from our parallel-field
study. Such an approximation is valid when the average field in the superconducting fraction is close to the applied
field. In fact, for the field-normal-to-film geometry, taking into account a demagnetization factor ∼1, the average
internal field almost equals the applied field.32 Taking the value of f from the previous fits, we calculate the effective
optical conductivity using MGT. The results are shown in FIG. 2(b)–(d) and (f)–(h) as dashed lines. Inclusion of the
pair-breaking effects significantly improves the quality of the fits, especially for NbN at high fields where such effects
become significant. The calculated optical conductivity, both the real and imaginary parts, matches better to the
data. The improvement is hardly noticeable for Nb0.5Ti0.5N mainly because its Bc2 at 2 K is about 11 T; thus the
greater density of vortex cores dominates the average response, leaving the pair-breaking effects difficult to see.
The analysis presented above yields the normal-volume fraction f . Its value at different fields for both samples is

plotted in Fig. 4. We previously assumed f = B/Bc2 when discussing the Coffey-Clem model. This assumption can
be justified by noting that f = πr2

v
/a2

�
= πr2

v
B/Φ0 ∝ B, where we have assumed a square vortex lattice with lattice

spacing a� and vortex core radius rv. A linear fit yields Bc2 = 10.9 T for Nb0.5Ti0.5N and Bc2 = 25.6 T for NbN.
For comparison we determined Bc2 of both samples by four-probe resistivity measurements at Station SCM2 at the
National High Magnetic Field Laboratory.24 We found Bc2 ≈ 11 T for Nb0.5Ti0.5N and Bc2 > 20 T for NbN. While
the two methods give consistent result, we point out that the field dependence of f shown in Fig. 4 is sub-linear
for both samples. Such behavior is accounted for by the shrinking of the vortex cores with increasing field. Field-
induced reduction of the vortex core radius by more than a factor of two has been observed in conventional s-wave
superconductors,30 explained in terms of either the “vortex lattice squeezing effect” or the inter-vortex transfer of
bounded quasiparticles in the vortex cores. Although the latter effect was argued to be significantly weakened by
scattering,33 it has been observed in dirty Pb thin films.34 When the vortex core radius rv(B) decreases with field,
the normal-volume fraction f = πr2

v
(B)B/Φ0 could become sub-linear in field.

In conclusion, we measured the far-infrared transmission and reflection of Nb0.5Ti0.5N and NbN thin films in
perpendicular magnetic fields, and observed superconductivity weakening. The extracted optical conductivity of the
vortex state is consistent with the Maxwell Garnett theory for normal metal inclusions in a superconducting host.
Detailed analysis suggests that in the vortex state the magnetic field weakens superconductivity via at least two ways.
One is the increasing normal metal component as the vortex density increases with field. The other is the weakening of
the BCS state in the remaining superconducting component due to pair-breaking effects. We did not need to include
the flux-flow-induced dissipation in our analysis. Effects of flux flow are expected to be important in cleaner materials
with less pinning.
We are grateful to S. W. Tozer for the access to the equipment used in the four-probe resistivity measurements,

and to G. Nintzel and T. P. Murphy for technical assistance. Work at University of Florida, Brookhaven National
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DE-FG02-02ER45984, DE-ACO2-98CH10886 and DE-FG52-10NA29659.
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