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Motivated by recent reports (Phys. Rev. B80, 241102) of room-temperature ferromagnetism in
vanadium-oxide based superlattices, a single-site dynamical mean field study of the dependence of
the paramagnetic-ferromagnetic phase boundary on superlattice geometry was performed. An exam-
ination of variants of the experimentally determined crystal structure indicate that ferromagnetism
is found only in a small and probably inaccessible region of the phase diagram. Design criteria for
increasing the range over which ferromagnetism might exist are proposed.

PACS numbers: 73.21.Cd,71.28.+d,75.10.Lp

I. INTRODUCTION

“Materials by design”, the ability to design and create
a material with specified correlated electron properties, is
a long-standing goal of condensed matter physics. Super-
lattices, in which one or more component is a transition
metal oxide with a partially filled d-shell, are of great cur-
rent interest in this regard because they offer the possi-
bility of enhancing and controlling the correlated electron
phenomena known1 to occur in bulk materials as well as
the possibility of creating electronic phases not observed
in bulk.2 Following the pioneering work of Ohtomo and
Hwang,3 heterostructures and heterointerfaces of tran-
sition metal oxides have been studied extensively. Ex-
perimental findings include metal-insulator transitions,4

superconductivity,5 magnetism6,7 and coexistence of fer-
romagnetic and superconducting phases.8,9
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FIG. 1: Ferromagnetic-paramagnetic phase diagram for
La/SrVO3 solid solution in plane of carrier concentration
(changed by Sr concentration) and tilt angle in Pnma struc-
ture but with all three Glazer’s angles nearly equal. Dashed
line indicates relation between carrier concentration and ro-
tation amplitude in physically occurring bulk solid solution.
From Ref. 10.

In this paper we consider the possibility that ap-
propriately designed superlattices might exhibit ferro-
magnetism. Our work is partly motivated by a recent
report6 of room-temperature ferromagnetism in super-
lattices composed of some number m of layers of LaVO3

(LVO) separated by one layer of SrVO3 (SVO), even
though ferromagnetism is not found at any x in the bulk
solid solution La1−xSrxVO3. Our study is based on a pre-
vious analysis10 of the possibility of obtaining ferromag-
netism in variants of the crystal structure of bulk solid
solutions of the form La1−xSrxVO3. A key result of the
previous work was that ferromagnetism is favored by a
combination of large octahedral rotations and large dop-
ing away from the Mott insulating LaVO3 composition.
A schematic phase diagram is shown in Fig. 1. How-
ever, as indicated by the dashed line in the figure, in the
physical bulk solid solution, doping away from the Mott
insulating concentration reduces the amplitude of the oc-
tahedral rotations so that the physical materials remain
far from the magnetic phase boundary. The motivating
idea of this paper is that in the superlattice geometry, oc-
tahedral rotation amplitude may be decoupled from car-
rier concentration. The rotations can be controlled by
choice of substrate while the carrier concentration can
be controlled by choice of chemical composition and may
vary from layer to layer of a superlattice. In effect, an
appropriately designed superlattice could enable the ex-
ploration of different paths in Fig. 1.

In this study, we combine single-site dynamical mean
field approximation11 with realistic band structure cal-
culations including the effects of the octahedral rotations
to determine the ferromagnetic-paramagnetic phase dia-
gram in superlattices with the crystal structures believed
relevant12,13 to the experiments of Ref. 6. Unfortunately
we find that the experimentally determined crystal struc-
ture is in fact less favorable to ferromagnetism than the
one found in the bulk solid solution, but we indicate
structures that may be more favorable.

The paper has following structure. The model and
methods are described in Sec. II. Sec. III establishes the
methods via a detailed analysis of the phase diagram of
superlattices with no rotations or tilts. In Sec. IV we
present the magnetic properties of superlattices with oc-
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tahedral rotations similar to those observed experimen-
tally. The final section V is a summary and conclusion.

II. MODEL AND METHODS

A. Overview

This paper builds on a previous study of the magnetic
phase diagram of bulk vanadates.10 The new features rel-
evant for the superlattices studied here are (i) the change
in geometrical structure, including the differences from
the bulk solid solution in the pattern of octahedral tilts
and rotations and (ii) the variation of electronic density
arising from superlattice structure. In the rest of this sec-
tion we briefly summarize the basic theoretical methodol-
ogy (referring to the reader to Ref. 10 for details), define
the crystal structures more precisely, explain the conse-
quences for the electronic structure and explain how the
variation of density appears in the formalism.

B. Geometrical structure

We study superlattices composed of layers of SrVO3

(SVO) alternating with layers of LaVO3 (LVO). If we ide-
alize the structures as cubic perovskites, then the layers
alternate along the [001] direction. In bulk, SVO crystal-
lizes in the ideal cubic perovskite structure,14 while LVO
crystallizes in a lower symmetry Pnma structure derived
from the cubic perovskite via a four unit-cell pattern of
octahedral tilts.15 The crystal structure of bulk solid so-
lutions La1−xSrxVO3 interpolates between that of the
two end-members with the rotation amplitude decreas-
ing as x increases. In the superlattice, the presence of a
substrate and the breaking of translation symmetry can
lead to different rotational distortions of the basic per-
ovskite structure and also to a difference between lattice
constants parallel and perpendicular to the growth direc-
tion.

Octahedral rotations in perovskites can be described
using Glazer’s notation.16 In the coordinate system de-
fined by the three V-O bond directions of the original
cubic perovskite, there are 3 tilt angles α, β and γ with
corresponding rotation axes [100], [010] and [001]. The
tilt is in-phase if successive octahedra rotate in the same
direction, and anti-phase if they rotate in opposite di-
rections. Rotational distortions of the cubic perovskite
ABO3 structure may be denoted by aibjck where i, j, k
can be +,− or 0 denoting in-phase, anti-phase or no tilt-
ing, respectively and a = α, b = β, c = γ.16–18 Bulk LVO
(Pnma) is of the type a−b+a− with α = γ = 8.7◦ and
β = 7.9◦.13,15

For superlattices, substrate-induced strain may change
the situation in a way which depends on the growth direc-
tion. Experiments12,13 confirm that the growth direction
for the experimentally relevant superlattices is [001] (in
the ideal cubic perovskite notation) and we focus on this

case here. Recent experimental studies of superlattices12

and of LaVO3 thin films, which apparently have the same
growth direction,13 suggest that the rotations are of the
type a−a+c−17,18 and indicate that the dominant rota-
tion is around the axis defined by the growth direction:
α = β ≈ 3◦ and γ ≈ 11.5◦. This distortion pattern is
different from that occurring in bulk. To explore its ef-
fects we set α = β = 3◦ and consider the consequences
of varying γ.

In bulk La1−xSrxVO3, while the 4-sublattice Pnma
structure implies a difference in lattice constants, all V-
O bond lengths are the same.15 The difference in lat-
tice constants arises from a difference in tilting pattern.
Superlattices are typically grown on a substrate, and in
epitaxial growth conditions the lattice constants perpen-
dicular to the growth direction (which we denote here by
a) are fixed by the substrate, while the lattice parameter
along the growth direction (c) is free to relax. The result
is a c/a ratio typically 6= 1 contributed by both tilting
and anisotropy in V-O bond lengths and possibly varying
from layer to layer of the superlattice. For the experi-
mentally studied superlattices, c/a ∼ 1.02.6,12 The V-O
bond lengths have not been determined but, as discussed
in more detail in the Appendix, our studies indicate that
all V-O bonds have essentially the same length. Further
we show that a few percent differences have no signifi-
cant effect on our study of ferromagnetism. In the rest
of the paper we therefore ignore these distortions, setting
all V-O bond lengths to be equal.

C. Electronic Structure

We study superlattices designed to be similar to the
system studied in Ref. 6. In these superlattices, units of
m layers of LaVO3 are separated by one layer of SrVO3.
To define the superlattice, we begin from LVO in the
appropriate bulk structure, then break translation in-
variance along the [001] (z-direction) by replacing every
(m+1)st LaO plane with an SrO plane. Fig. 2a shows
such a superlattice with m = 3.

We assume that the superlattice is grown epitaxially so
that in-plane bond lengths and other aspects of the local
structure including rotations are the same for all layers.
We therefore take the electron transfer integrals which
define the band structure to the be same for all layers.
In this case the electronic structure of a superlattice is
defined by adding the electrostatic potentials of the Sr
and La ions to the basic translationally invariant hopping
Hamiltonian describing the bulk materials.

In our calculations we follow the common practice in
studies of early transition metal oxides by assuming that
the energy splitting between transition metal d-bands
and oxygen p-bands is large enough to justify the use
of a “frontier orbital” model focusing on the p-d anti-
bonding bands which are mainly composed of vanadium
t2g-symmetry d-states.
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FIG. 2: (Color online) (a) Schematic of superlattice lattice
structure (LaVO3)m(SrVO3)1 with m = 3. Vanadium sites
indicated as circles with charge density indicated by shading:
heavy shading (black online) indicating higher charge density
and light shading (yellow online) indicating lower charge den-
sity. LaO and SrO planes are shown as solid and dashed lines
respectively. Nearest neighbor (t) and next-nearest neighbor
(t′) hoppings between vanadium sites indicated by arrows.
The numbers on the right are VO2 layer indices. (b) Inset:
pdπ hopping between t2g orbital and p-orbital. Main panel:
two-dimensional nearest neighbor hopping t made of two pdπ
hoppings from xy orbital of one vanadium site to oxygen px
or py orbital, then to xy orbital of another vanadium site.

The Hamiltonian for the superlattice is thus

H = Hkin +Honsite +Hcoulomb, (1)

where Hcoulomb describes the electron-ion interaction and
electron-electron interaction between different sites and
Honsite describes the d-d interactions, which we take
to be on-site. Hkin is a tight binding model, derived
by using maximally-localized Wannier function (MLWF)
techniques19 to fit the t2g-derived antibonding bands.
The detailed procedure is described in our previous
work.10

The kinetic Hamiltonian has the quadratic form

Hkin =
∑

k,α,β,σ

Hαβ
band(k)c†kασckβσ, (2)

where c†kασ and ckβσ are electron creation and annihi-
lation operators in reciprocal space with wavevector k.
α and β are orbital and layer indices, and σ is the spin
index.

We assume that the interaction takes the standard
Slater-Kanamori form20–22 which following Ref. 10 we
write as

Honsite =U
∑
iα

niα↑niα↓ + (U − 2J)
∑
iα6=β

niα↑njβ↓+

+ (U − 3J)
∑

i,α>β,σ

niασniβσ+

+ J
∑
iα6=β

ψ†iα↑ψiβ↑ψ
†
iβ↓ψiα↓+

+ J
∑
iα6=β

ψ†iα↑ψiβ↑ψ
†
iα↓ψiβ↓,

(3)

where the values of the on-site interaction U and the
Hund’s coupling J are U = 6eV ∼ 22t and J = 1eV so
that LVO is an insulator in bulk while SVO is a metal.

In the approximation employed here, the superlattice
is defined by the Coulomb interaction between the La/Sr
ions and electrons. This, and the off-site part of the
electron-electron interaction is contained23 in

Hcoulomb = Hel−ion +Hel−el. (4)

To construct Hel−ion, we assume that the whole ion
charge of SVO or LVO unit cell comes into the Sr or
La site. Consider SrVO3, the valence of V is +4 (d1).
If this one d-electron is removed, the SVO unit cell will
have charge +1, hence, in our model, Sr site has charge
+1. Similarly, LaVO3 has V+3 (d2), thus La site has
charge +2. As a result, Hel−ion has the form

Hel−ion =
∑
i,RSr

−e2n̂i
4πεε0|Ri −RSr|

+

+
∑
i,RLa

−2e2n̂i
4πεε0|Ri −RLa|

.

(5)

where ni is electron-occupation operator at V-site i, ε is
the relative dielectric constant. The part Hel−el is the
inter-site Coulomb interaction of vanadium d-electrons

Hel−el =
1

2

∑
i,j
i6=j

e2n̂inj
4πεε0|Ri −Rj |

. (6)

Hel−el is treated in the Hartree approximation. Note
that in Eq. (6), n̂i is the operator giving the total d-
electron occupation of site i, while nj = 〈n̂j〉 is the ex-
pectation value of d-electron occupancy at site j, which
is determined self consistently. From Hcoulomb, the
Coulomb potential Vi for site i is calculated using Ewald
summation.24

The dielectric constant ε is an important parameter in
Eqs. (5, 6). It accounts for screening on the scale of a lat-
tice constant so bulk measurements are not directly rele-
vant and an appropriate value has not been determined.
Values ranging from 4 to 15 have been reported in the
literature for similar systems.25,26 Because the appropri-
ate value of ε has not been determined, we have studied
several cases and present results mainly for ε = 8, 15.
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D. Methods

We treat the on-site interaction terms using single-site
dynamical mean field theory (DMFT)11 with the hy-
bridization expansion continuous time quantum Monte
Carlo (CTQMC) solver.27 The superlattice effect is taken

into account by the Coulomb potential V̂ . We use the
superlattice dynamical mean field theory introduced by
Potthoff and Nolting28,29 in the form given in Ref. 23.
Here each V site i has a self energy (site local but de-
pendent on site) determined from the solution of a quan-
tum impurity model which has parameters fixed by the
DMFT self-consistency equation linking the site local
term of the lattice Green function {}ii to the quantum
impurity model Green function30

Ĝiimp(ω) =

{[
(ω + µ)1− Ĥband − V̂ − Σ̂(ω)

]−1}
ii

,

(7)
where

Vi =
∑
j,j 6=i

e2nj
4πεε0|Ri −Rj |

−
∑
RSr

e2

4πεε0|Ri −RSr|
−

−
∑
RLa

2e2

4πεε0|Ri −RLa|

(8)

is a site dependent quantity, diagonal in spin and or-
bital indices but linking different sites, derived from
Eqs. (5, 6). The layers are coupled by a self-consistency
condition which as discussed in Refs. 23,28,29 fixes
both the hybridization function of the quantum impu-
rity model and the layer-to-layer variation in the charge
density.

As described in Ref. 10, it is advantageous to perform a
site-local rotation to align the orbital basis to the local V-
O bond directions of each octahedron before solving the
impurity model. This reduces the sign problem in the
CTQMC impurity solver and restores in-plane transla-
tion invariance in the sense of making the self-consistency
equations the same for all sites in a given plane.

In a superlattice composed of N layers, it is in princi-
ple necessary to solve N dynamical mean field problems,
coupled by the self-consistency condition. However, we
find (see section III) that the susceptibility for a given
layer of the superlattice may be determined from a bulk
computation at the same local density and crystal struc-
ture. Because the layer dependent density has no signif-
icant dependence on the temperature or the many-body
physics, it may be determined once from a band structure
calculation and then bulk results with the appropriate
density for a wide range of temperature may be used to
infer the Curie temperature, substantially reducing the
computational burden.

The Curie temperature for ferromagnetism is deter-
mined by extrapolating the inverse susceptibility χ−1(T )
to 0 based on Curie-Weiss law χ−1 ∼ T − Tc. The test
for the reliability of this method for Tc has been done in
Ref. 10. A similar approach can be found in literature.31

III. RELATION BETWEEN SUPERLATTICE
AND BULK SYSTEM CALCULATIONS

In this section, we demonstrate that the magnetic
phase diagrams of superlattice systems may be inferred,
to reasonable accuracy, from the study of appropriately
chosen bulk systems. This enables a considerable reduc-
tion in the computation resources required.
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FIG. 3: (Color online) Panel (a): Non-interacting density
of states for bulk system at carrier density n = 1. Panels
(b): Non-interacting density of states for different layers of
(LVO)3(SVO)1 superlattice for two different values of dielec-
tric constant ε = 5 (solid) and ε = 15 (dashed) with hopping
parameters t = 0.264eV and t′ = 0.084eV. SrO plane is be-
tween layers 0 and 1 (the index is defined in Fig. 2). The
Fermi energy is at 0.

We begin with a study of “untilted” or “cubic” su-
perlattices: those in which all V-O-V bond angles are
180◦. We focus specifically on [001] superlattices in which
the unit cell contains m layers LVO and one layer SVO,
where m = 3, 4, 5. For orientation, we present the density
of states (DOS) of the non-interacting system in Fig. 3.
In obtaining these densities of states we used the simple
tight binding parametrization. The DOS for the bulk sys-
tem is shown in panel (a). One sees the typical three-fold
degenerate DOS for t2g band, the Van Hove singularity
is visible as a peak near the upper band edge. It is at
high energy because the next-nearest neighbor hopping
t′ > 0. The remaining panels show the layer-resolved
densities of states for the m = 3 superlattice. The upper
two panels show layers sandwiched by La on both sides;
the lower two panels show the layers adjacent to the SrO
plane. The superlattice-induced changes in the density
of states are seen to be relatively minor: the main effects
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are a weak splitting of the van Hove peaks reflecting the
breaking of translational invariance in the z-direction,
and a relative shift in the positions of the van Hove peaks
arising from band bending associated with the different
charges of the Sr and La ions.

Fig. 4 shows the layer-resolved charge density and in-

verse susceptibility
H

m(H)
plotted against temperature

for three different superlattice structures corresponding
to m = 3, 4, 5. As expected from electrostatic consid-
erations, the charge is lower for the VO2 planes nearer
the SrO layer and the charge variation between layers is
controlled by the dielectric constant.

The magnetization m the V sites on each layer was
computed at field H = 0.01eV/µB and the inverse sus-
ceptibility was obtained as H/m. Linearity was veri-
fied by repeating the computation using H = 0.02eV/µB
(not shown). For the m = 3, ε = 15 case (Fig. 4a),
we extended the computation to the lower temperature
T = 0.03eV; for the other two cases T = 0.06eV was
the lowest temperature studied. The inverse susceptibil-
ities are approximately linear in temperature at higher
temperatures and in all cases, extrapolation to χ−1 = 0
reveals Tc < 0, implying absence of ferromagnetism.

Especially for the layer nearest the SrO plane the χ−1

curves exhibit weak upward curvature at the lowest tem-
peratures studied. As shown in Ref. 10, the curvature
is a signature that the system is entering a Fermi-liquid
coherence regime. The Fermi liquid coherence tempera-
ture is highest for the layers nearest the SrO because the
charge in these planes is farther from the n = 2 Mott
insulating state. To verify this we followed Ref. 10 and
computed the Wilson ratio RW for each layer of the su-
perlattice for the case m = 3, ε = 15, finding (not shown)
that for each layer the RW extrapolates to 2 at low tem-
perature. The approach to the low temperature value
is faster for layers with low density (near SrO planes)
than for layers with high density (far from SrO planes).
RW = 2 is the value for a Kondo lattice, while ferromag-
netism is characterized by an RW > 2.10 We therefore
believe that for “untilted” superlattices, the differences
in χ−1 among layers arise from differences in quasipar-
ticle coherence scale, there is no evidence for ferromag-
netism in this system, consistent with the solution of the
corresponding bulk problem.

To gain insight into the physics underlying the layer
dependence of χ−1 we have computed χ−1(T ) for the
cubic bulk system (Hcoulomb = 0, Hkin is constructed
from the two-dimensional dispersion ε(k) = −2t(cos kx+
cos ky) − 4t′ cos kx cos ky) for carrier densities equal to
those on the different VO2 layers. In Fig. 4, we present
bulk calculations for n = 1.62 and n = 1.88 correspond-
ing to the densities calculated for layer 0 and 2 of the
superlattice for all cases m = 3, 4, 5. For n = 1.88, bulk
χ−1 at T = 0.06, 0.10 and 0.14eV are very close to those
of L = 2 layer of m = 3 superlattice, which has the
same density. For m = 4, 5 superlattices, bulk n = 1.88,
χ−1(T ) (not shown) almost coincides with those of L = 2
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FIG. 4: (Color online) Temperature-dependent layer-resolved
inverse magnetic susceptibilities for symmetry-inequivalent
layers of untilted (LVO)m(SVO)1 superlattice structures with
different numbers of LVO layers m = 3, 4 and 5. Layer 0 is
adjacent to SrO and layers 2 and 3 are between two LaO lay-
ers. The relative dielectric constant is ε = 15, magnetic field
H = 0.01eV/µB . The χ−1(T ) obtained from solution of bulk
cubic systems with charge density set to the density on the
given layer are also shown. “Bulk L0” (“BulkL2”) denotes a
calculation performed for a bulk system with density the same
as for L = 0 (L = 2) layer density. Inset: the electron layer
density distribution corresponding to the susceptibility plot,
x-axis is the layer index, y-axis is the layer density. On-site
interactions U = 6eV, J = 1eV.

layer. For bulk n = 1.62, the difference between bulk
and superlattice L = 0 layer is small. These calculations
demonstrate a general rule: within the single-site DMFT
approximation, the layer-resolved properties of a super-
lattice correspond closely to those of the corresponding
bulk system at a density equal to that of the superlattice.

The superlattices of experimental relevance have crys-
tal structures which are distortions of the “untilted” one,
involving in particular a P21/m structure characterized
by a rotational distortion of the a−a+c− type17,18 involv-
ing a large rotation about an axis approximately paral-
lel to the growth direction and much smaller rotations
about the two perpendicular axes. Fig. 5 compares the
non-interacting DOS of bulk and (LVO)3(SVO)1 super-
lattice systems (both with the same P21/m structure)
calculated using DFT and a MLWF parametrization of
the frontier bands. The DOS of bulk system is shifted so
that it has the same carrier density as layers of the su-
perlattices near SrO plane. For three different structures
(untilted structure and P21/m structure with γ = 11.5◦

and 16◦), the basic features of the partial DOS are simi-
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FIG. 5: (Color online) Comparison between bulk LVO partial
DOS (positive curves) and (LaVO3)3(SrVO3)1 superlattice
layer DOS of layers near SrO (negative curves) derived from
band structure calculations (DFT+MLWF). Both systems
have the same lattice structure for each case: untilted struc-
ture for the top panel and P21/m structure (Glazer’s notation
a−a+c−) with α = β = a = 3◦ and γ = c = 11.5◦ and 16◦

for other panels. The DOS of bulk system is shifted towards
higher energy so that bulk carrier density is the same as layer
density of superlattices for the layers near SrO (n ≈ 1.55).
The vertical dashed line marks the Fermi level.

lar between bulk and superlattice. The translation sym-
metry breaking in z-direction leads to small extra peaks
in the superlattice DOS. These differences are smoothed
out by the large imaginary part of the DMFT self en-
ergy. Because the DMFT equations depend only on the
density of states it is reasonable to expect that, as in the
untilted case, they will therefore give the same results in
the superlattice as in the bulk material with correspond-
ing density of states.

To verify that this is the case we have also compared
bulk and superlattice susceptibilities for tilted structures.
The four VO6 octahedra in a unit cell are related by ro-
tation, so an appropriate choice of local basis means that
only one calculation needs to be carried out for a given
layer. Fig. 6 compares the inverse susceptibilities for an
m = 3 superlattice to calculations performed on a bulk
system with the same P21/m structure. In these calcu-
lations, we choose γ = 11.5◦, 16◦, 18◦ and dielectric con-
stant ε = 8. We see that in this case, as in the “untilted”
case, the superlattice inverse susceptibilities χ−1(T ) are
almost the same as those for bulk system calculated at
the same density, with differences only resolvable in the
expanded view for the largest tilt angles.

FIG. 6: (Color online) Comparison in temperature depen-
dent inverse susceptibility between bulk LVO (solid lines) and
(LaVO3)3(SrVO3)1 superlattice (dashed lines). Both have the
same lattice structure P21/m with tilt angle γ = 11.5, 16 and
18◦. Bulk system has the same densities as those of layers
of superlattice near and far from SrO planes (n = 1.55, 1.95).
Left column: the plots in wide temperature range. Right col-
umn: the expanded views near zero temperature.

IV. SUPERLATTICES WITH GdFeO3-TYPE
ROTATION

In this section we present and explain our results for
the magnetic phase diagram of (LVO)m(SVO)1 super-
lattices with the P21/m structure (Glazer’s notation
a−a+c−) reported for the experimental systems.12,13 In
these structures in-plane rotation along the growth di-
rection ẑ = [001] is large γ = c = 11.5◦ (presumably
because of the strain imposed by the substrate), while
the out-of-plane rotation is small (α = β = a = 3◦) per-
haps because the system is free to relax along the growth
direction. We concentrate on the effect of the large rota-
tion by fixing the in-plane angles to 3◦ while varying the
out-of-plane angles over a wide range from 10◦ → 18◦.

Based on the results of Section III we generate a phase
diagram for the superlattice from calculations for a bulk
system which is a P21/m distortion of the ideal cubic per-
ovskite structure of chemical composition LaVO3. The
bulk system results are presented as a phase diagram in
the plane of carrier concentration and γ-rotation. Spe-
cific layers of the superlattice will correspond to particu-
lar points on the phase diagram, with the layer dependent
density fixed by number of LVO layers m and the dielec-
tric constant ε and the rotation fixed by the substrate
lattice parameter.
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FIG. 7: (Color online) Partial DOS derived from
DFT+MLWF for “bulk” P21/m structure (Glazer’s notation
a−a+c−) with α = β = a = 3◦ and γ = c changing from
10◦ to 16◦. Only t2g bands are plotted because eg bands are
negligible in this range of energy.

We use DFT+MLWF methods to obtain the frontier
orbital band structure for the t2g-derived antibonding
bands. Fig. 7 presents representative results for the or-
bitally resolved local density of states. In this figure the
orbitals are defined with respect to the local basis defined
by the 3 V-O bonds of a given VO6 octahedron. We de-
fine ẑ = [001] as the axis (approximately parallel to the
growth direction) about which the large rotation occurs.
Fig. 7 shows that yz and zx orbitals are almost degen-
erate, while xy orbital is strikingly different. The DOS
of xy orbital maintains the shape of a two-dimensional
energy dispersion with a van Hove peak well above the
chemical potential, similar to the bulk cubic structure
(see e.g. Fig. 3a). There are noticeable differences only
at very high rotation angles. On the other hand, yz and
zx orbitals are spread out with two small peaks, because
hoppings along x or y directions (more distorted) are
different from those along z-direction (less distorted).
When the distortion gets larger, the d-bandwidth be-
comes smaller, the xy peak gets larger and slightly closer
to the Fermi level, and yz and zx peaks near the Fermi
level also develop.

Based on Ĥband(k) generated by DFT+MLWF, we
carry out DMFT calculations for in-plane rotation an-
gle γ to get χ−1 curves whose extrapolations define the
Curie temperatures Tc. Fig. 8 shows how Tc evolves when
the rotation angle γ increases from 10 to 18◦. In this fig-
ure, we consider two different carrier densities n = 1.55
and 1.95, corresponding to the band structure prediction
for the layer densities of layers near and far from SrO
planes in the superlattice. Tc for n = 1.95 is a slow func-
tion of rotation and is always negative for the range of
γ under consideration, while Tc for n = 1.55 increases

faster, so that the system becomes ferromagnetic when
γ is between 14 and 16◦. Ferromagnetism is therefore
expected only in superlattices with very large rotations,
and then only in the layers with large hole doping (i.e.
the layers closest to the SrO planes).

FIG. 8: (Color online) Inverse susceptibility χ−1 vs. tem-
perature T for bulk P21/m structure of LaVO3 at densities
n = 1.55 (black circle solid lines) and n = 1.95 (red diamond
dashed lines) for rotation angle γ increasing from 10 → 18◦.
On-site interaction U = 6eV and J = 1eV. Left column: the
circles and diamonds are data points, the solid and dashed
lines are fitted from these data points. Right column: ex-
panded view at small χ−1 region. The vertical dashed line
marks zero temperature.

From a range of calculations such as those shown in
Fig. 8 we have constructed the superlattice magnetic
phase diagram shown in Fig. 9. Similar to Ref. 10, there
are uncertainties in our extrapolation for Curie tempera-
ture, we consider 0.004eV as the error bar for positions on
the phase diagram. Thus, Tc < 0.004eV is considered as
Tc = 0 within the error bar. We see that ferromagnetism
is favored only for very large rotations, much larger than
the 11◦ determined experimentally, and only for carrier
concentrations far removed from n = 2. We may locate
the experimentally studied superlattices on this phase
diagram. For an m = 3 superlattice, band structure cal-
culations indicate layer densities 1.55 for layers near SrO
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plane and 1.95 for the other layers. The experimentally
determined rotation angle is ∼ 11.5◦. These two points
are indicated by squares in Fig. 9.
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FIG. 9: (Color online) The magnetic phase diagram with x-
axis carrier density n and y-axis tilt and rotation angle along
ẑ = [001] direction γ for bulk system LVO with the same
type of distortion as for (LVO)m(SVO)1 superlattices (P21/m
structure), in-plane tilt angles α, β ≈ 3◦. On-site interactions
U = 6eV, J = 1eV. The white regime indicates absence of
ferromagnetism (Tc < 0.004eV ), the colored regime indicates
ferromagnetism with Tc indicated by the color bar. Also in-
dicated are results for bulk La1−xSrxVO3 in the Pnma struc-
ture, from Ref. 10. Note that in the calculations for the Pnma
structure all three tilt angles are almost the same.

It is interesting to compare our results to those previ-
ously obtained10 for the bulk solid solution La1−xSrxVO3

(Pnma structure). The dashed line in Fig. 9 shows the
theoretically estimated phase diagram for the bulk solid
solution. We see that the bulk structure is more favorable
for ferromagnetism than the superlattice structure. An
important difference between the Pnma structure and
the P21/m of the superlattice is that in the former case
all three tilt angles are of comparable magnitude whereas
in the P21/m structure only one rotation is large. We be-
lieve that this difference is responsible for the difference
in phase boundary.

V. CONCLUSIONS

In this paper, we have studied the possibility of ferro-
magnetism in superlattice structures of vanadium oxides
derived from LaVO3 and SrVO3. Our investigation was
based on the idea that ferromagnetism depends on an in-
terplay between carrier density and octahedral rotation,
and while these are coupled in bulk (see the solid solution
curve in Fig. 9) they may be decoupled in the superlat-
tice. In particular, the charge density varies across the
superlattice, being lowest near the SrO planes, while the

rotation angle is controlled by the substrate. Thus in
an appropriately designed superlattice at least some por-
tions of the system might be moved closer to (or perhaps
into) the ferromagnetic region. In several important as-
pects this idea is consistent with calculations. We find
that the local carrier density determines the local mag-
netic susceptibility (see section III) and the density/tilt
angle relationship may be significantly altered (see solid
line and square points in Fig. 9).

However, we find that the P21/m octahedral rota-
tion pattern characteristic of experimentally discovered
superlattices is in fact less favorable to ferromagnetism
than the Pnma pattern characteristic of bulk materials
(compare the phase boundaries in Fig. 9). Thus while
the general idea that an appropriately designed super-
lattice might provide conditions favorable for ferromag-
netism thereby providing a potential explanation for the
remarkable experimental report of room-temperature fer-
romagnetism in (LaVO3)m(SrVO3)1 superlattices with
m = 3, 4, 5, 6 by Lüders et. al.,6 (even though there is no
ferromagnetism in the bulk solid solution), our detailed
findings are not consistent with the experimental result.

Our results indicate that designing ferromagnetism
into a vanadate superlattice will require both large ampli-
tude rotations about the growth axis and also substantial
rotations about the other two axes. Rotations about the
growth axis arise from substrate-induced strain, so choos-
ing substrates with smaller lattice parameter would be
desirable. Introduction of rotations about the orthogo-
nal axes may be done by replacing the La with a smaller
counterion such as Y.

Our study has certain limitations. The calculations
employ a frontier orbital model which includes only the
t2g-derived antibonding bands. DFT+DMFT calcula-
tions based on correlated atomic-like d-states embedded
in the manifold of non-correlated oxygen states provide
a more fundamental description. Our previous work10

indicates that the two models give very similar results
if both calculations are tuned so that bulk LaVO3 is
a Mott insulator, but the implications of the full (but
computationally very heavy) DFT+DMFT procedure for
the superlattice problem remain an open problem for fu-
ture research. Further, our calculations are based on the
single-site DMFT approximation, which includes all local
effects but misses inter-site correlations. While it is gen-
erally accepted that these calculations give the correct
trends and qualitative behavior, the quantitative accu-
racy of the methods is not known. Unfortunately, as yet
cluster extensions of DMFT are prohibitively expensive
for the multiband models considered here.

The experimental results of Lüders et. al.6 there-
fore provide an interesting challenge to materials the-
ory. They indicate that superlattices display ferromag-
netism when the corresponding bulk solid solutions do
not, whereas the present state of the art of real materials
dynamical mean field calculations suggests that super-
lattices should be less likely to display magnetism than
the corresponding bulk solid solutions. This discrepancy
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requires further investigation.
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Appendix: Lattice constant and V-O bond length
ratio

In this Appendix, we present a more complete discus-
sion of the strain-induced lattice distortions. The in-
plane lattice constant of a superlattice epitaxially grown
on a substrate matches that of the substrate and may
therefore be different from the lattice constant preferred
in a free-standing film or bulk material. The out-of-plane
lattice constant is typically free to relax, and in the pres-
ence of an in-plane strain may also be different from that
found in bulk materials.

Atom x y z Atom x y z

La(1) 0 0.25 0 La(2) 0.5 0.25 0.5

V(1) 0.5 0 0 V(2) 0 0 0.5

O
(1)
1 0.4662 0.25 0.0660 O

(2)
1 0.0392 0.25 0.4392

O
(1)
2 0.7638 -0.0138 0.2362 O

(2)
2 0.2652 -0.0493 0.2652

Lattice constants a(Å) b(Å) c(Å) β c/a ratio

experiment13 5.55 7.82 5.55 89.489◦ 1.02

calculated 5.5988 7.8290 5.5821 88.9732◦ 1.019

TABLE I: Wyckoff positions and lattice constants for LaVO3

with P21/m structure from our calculation based on tilt an-
gles taken from the experiment.13 The V-O bond length is
2Å. La positions are fixed manually but do not affect lattice
constants or c/a ratio.

A difference in V-V distance may arise from a change
in V-O bond length or from a difference in buckling of
V-O bonds. We consider both possibilities here, but first
remark that the main differences in structure between
bulk and experimentally studied superlattices arise from

differences in octahedral rotation. In the experimentally-
studied superlattices, the in-plane V-V distance is in fact
slightly less than the V-V distance in LVO. The V-O bond
lengths have not been measured for the superlattice, but
to a high degree of accuracy we are able to reconstruct
the measured superlattice using the measured tilt an-
gles given from experiments13 structure, assuming that
all V-O bond lengths are equal. Assuming the P21/m
structure, we varied the in-plane and out-of-plane V-O
bond lengths to fit the experimental data and found that
c/a ≈ 1.02 only when the V-O bond length is in the
range 2 ± 0.005Å. Therefore, we believe that all the V-
O bond lengths should, to a good approximation, be the
same. The structure used in our calculations is presented
in Table. I. Although there are slight mismatches in in-
plane angle and lattice constants, the c/a ≈ 1.02 ratio
and bond angles are compatible with the experiment.
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xy zx (yz)
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FIG. 10: (Color online) Partial DOS for bulk LVO with c/a =
1.02 with the c/a ratio due to a change in V-O bonds (panel
(a)) and to P21/m lattice structure with α = β = 0, γ = 11.5◦

(similar to superlattice structure)(panel (b)). The dashed
blue curve is the xy orbital, the solid red curve is the de-
generate yz (or zx) orbital. The dashed vertical line marks
the Fermi level.

Changing the amount of rotation has a different effect
on the electronic structure than does changing the ra-
tio of V-O bond lengths. Fig. 10 compares the partial
DOS for the two cases, using as example a hypotheti-
cal LaVO3 crystal with c/a = 1.02. The upper panel
presents the DOS for the untilted structure with straight
V-O-V bonds and the c/a ratio induced by a difference in
in-plane and out-of-plane V-O bond lengths. The lower
panel presents the case of all equal V-O bonds, with the
c/a ratio produced by octahedral rotations about the z
axis. The densities of states are quite different, but can
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be understood from the simple energy dispersion

εxy(k) = 2t‖(2− cos kx − cos ky)+

+ 4t′‖(1− cos kx cos ky),

εxz(k) = 2t‖(1− cos kx)+

+ 2t⊥(1− cos kz) + 4t′⊥(1− cos kx cos kz),
(A.1)

where t‖ and t⊥ are the in-plane and out-of-plane near-
est neighbor hopping integrals and t′‖,⊥ are the second

neighbor hoppings. The lower band edge is assumed to
be the same for all orbitals but we assume that the lat-
tice distortions lead to different values for the in-plane
and out of plane hoppings.
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FIG. 11: (Color online) Inverse susceptibility vs. tempera-
ture for cubic structure of bulk hole-doped LVO. The in-plane
and out-of-plane bondlengths are changed so that the octahe-
dral volume is unchanged: tensile strain (c/a = 0.98 - black
lines), no strain (c/a = 1.00 - red lines) and compressive strain
(c/a = 1.02 - blue lines). Two levels of hole doping are con-
sidered: n = 1.55 (solid lines) and n = 1.95 (dashed lines).
These lines are linear fits for the data points.

The lower band edge is defined to be zero and is inde-
pendent of the distortion. The energy of the upper edge
of the xy band is εxy(π, π) = 8t‖ and of the xz/yz bands
is εxz(π, π) = 4t‖ + 4t⊥. The positions of the van Hove
singularities are at k = (0, π) or (π, 0). For xy band there
is only one van Hove peak, at εV = 4t‖ + 8t′; while for

xz band, there are two van Hove peaks at εV1 = εV and
εV2 = 4t⊥ + 8t′. When t⊥ is different from t‖, the differ-
ence in bandwidth of xy and zx orbitals is 4t‖ − 4t⊥,
which is also the distance between the two van Hove
peaks of zx band εV1 − εV2 .

With these definitions, we are in a position to under-
stand the changes in the band structure. When the V-

O bond lengths change (Fig. 10a) so that the z-bond is
longer and the in-plane bond is shorter but the octahe-
dral volume is unchanged, the band structure calculation
indicates that t⊥ decreases but t‖ increases slightly. The
difference between the bandwidth of the xy and xz band-
widths is 4t‖ − 4t⊥ which is the same as the splitting
between the van Hove peaks in the xz/yz bands. On
the other hand, if the c/a ratio is produced by rotation,
(Fig. 10b), the change is opposite. The in-plane hop-
ping t‖ decreases because of the buckled in-plane V-O-V
bonds, while the out-of-plane hopping t⊥ is unchanged.
The xy band therefore narrows substantially relative to
the xz/yz bands. In addition the splitting of the van
Hove peaks is greater. From the bandwidth of xy and
zx bands (Fig. 10b), t‖ ≈ 0.225eV, t⊥ ≈ 0.35eV, the van
Hove peak distance is ≈ 0.5eV, which is compatible with
the peak positions shown in Fig. 10b.

We tested with DMFT calculations for the Curie tem-
peratures with the V-O bondlength changed. Fig. 11 is
the temperature-dependent inverse susceptibility derived
from DMFT for the bulk cubic structure with the c/a
ratio changing from 0.98 (tensile strain) to 1.02 (com-
pressive strain). For all the levels of hole doping under
consideration, the results are nearly the same for every
case of c/a ratio. We conclude that even when the V-O
bondlength changes within the physical range, the ferro-
magnetism is not affected. However, we also found that
when the V-O bondlength is such that c/a ≥ 1.06 or
≤ 0.90, there is large orbital polarization and the fer-
romagnetism can be largely affected. But that range is
unphysical and can be neglected in the context of this
work.



11

1 M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys.
70, 1039 (1998).

2 A. J. Millis, Nature Physics 7, 749 (2011).
3 A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004),

ISSN 0028-0836.
4 K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto,

S. Aizaki, A. Fujimori, and M. Oshima, Phys. Rev. Lett.
104, 147601 (2010).

5 N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis,
G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S.
Ruetschi, D. Jaccard, et al., Science 317, 1196 (2007).
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