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Abstract

In this work the magnetization in antiferromagnetic thin films and multilayers with inter-layer

exchange coupling is simulated using mean-field approximation. Transition-metal oxide antiferro-

magnets are modeled as multi-plane magnetic systems with 1 to 11 planes and the magnetization

M is calculated as a function of temperature T . The antiferromagnetic films exhibit ferromag-

netism when the number of monolayers is odd, i.e., when there is an uncompensated plane, but

the net magnetization is lower than that of any single uncompensated plane due to cancellations

and finite-size effects. With increasing film thickness the Néel temperature increases monotonically

and the magnetic moment near the surface is reduced compared to that of the core, changing the

form of the M(T ) curve. When antiferromagnetic films are exchange coupled to each other, as in a

multilayer with a non-magnetic intervening layer, the surface magnetization of each film increases

and the ferromagnetism of odd-numbered systems is enhanced. These results are shown to be

experimentally testable by comparing magnetometry and neutron diffraction.

PACS numbers: 75.10.Hk, 75.40.Mg, 75.47.Lx, 75.50.Ee7
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I. INTRODUCTION9

The magnetization and ordering temperature of thin magnetic films have been studied10

extensively because of their technological importance and due to fundamental interest in new11

phenomena which emerge at the nano-scale. While finite-size effects most often reduce the12

magnetic properties of thin films, in metallic ferromagnetic (FM) films, with the exception of13

Ni on Cu, the magnetic moments at the surface or interface are larger than in the bulk1–5 due14

to band narrowing at the surface and a large density of states (DOS) at the Fermi level3. In15

contrast, antiferromagnetic (AFM) metal oxide films (MO) have localized magnetic moments16

and their DOS at the Fermi level is zero, therefore the formation of surface states, and thus17

the enhancement of surface magnetism, is not expected6. This was shown for Heisenberg18

antiferromagnets, where the ordering temperature increases monotonically with increasing19

film thickness7, and the surface magnetization is reduced compared to the film core in the20

absence of quantum fluctuations8.21

The magnetic properties of oxide antiferromagnetic films have been increasingly investigated9–12,22

especially after the discovery of exchange bias13 and giant magnetoresistance14. Oxides of23

the transition metals Mn, Fe, Co, and Ni are antiferromagnetic with Néel temperatures24

of15–18 TN ≈ 120 K for MnO, 200 K for FeO, 300 K for CoO, and 520 K for NiO. Below25

TN, spins are ferromagnetically coupled within (111) planes of the NaCl structure and an-26

tiferromagnetically coupled to neighboring planes17 and, with the exception of FeO, the27

magnetization lies predominantly inside the (111) plane17. This magnetic configuration in28

MO AFM thin films, in which alternating planes cancel each other out, leads to a dom-29

inance of uncompensated spins, which may be coupled to the Néel vector or not, in the30

measured magnetization of such systems. Recently, this aspect was exploited and it was31

experimentally shown that AFM multilayers can be used as a source of ferromagnetism,32

arising from uncompensated magnetization coupled via a lightly doped semiconductor, in33

a new type of magnetic semiconductor19. The findings of that work motivated this theo-34

retical investigation. Identifying the mechanisms which govern the magnetization in such35

systems is crucial to fully understand and predict the behavior of exchange biased films and36

exchange-coupled multilayers of magnetic semiconductors with uncompensated AFM films.37

The magnetization properties in such systems are dominated by finite-size effects which38

reduce the magnetic moment near the surface, thus generating a magnetization profile as a39
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function of film thickness. While the magnetization profiles in thin ferromagnetic films have40

been studied extensively20–23, the effect of finite-size on the magnetization of AFM films is41

not known.42

In this work we therefore present a theoretical study of AFM films and multilayers using43

a simple mean-field model for a metal-oxide in the NaCl structure, where the system consists44

of ferromagnetically ordered (111) planes which are antiferromagnetically coupled to each45

other. We chose to use the mean-field method because it is the most suitable approach for46

the description phase transitions in systems with many sublattices, as in the case of the47

AFM films, where each atomic plane is treated as a sublattice to obtain the magnetization48

profile. Our focus lies on the magnetization profile as a function of thickness and its impact49

on the net magnetization in thin AFM films. While it is intuitive that uncompensated AFM50

films, i.e., with odd number of atomic planes, exhibit non-zero magnetization, in section III51

it will be seen that the net magnetization of an uncompensated AFM film is, surprisingly,52

not equal to the magnetization of any single uncompensated plane.53

II. THEORETICAL MODEL54

Let us consider the Hamiltonian of the system, in which spins interact with their nearest55

neighbors, and with an external field:56

H = −
1

2

N∑

i

z∑

j

JijSiSj − h
N∑

i

Si . (1)

The spin S represents the localized total angular momentum, Jij is the exchange coupling57

constant between Si and Sj, and h is the external field. The sum over i runs to the total58

number of spins N and the sum over j runs to the number of nearest neighbors z of each59

spin Si.60

Considering the sheet-wise ordering of MO inside the (111) planes, we divide the system61

into alternating planes. In a system with D planes, each containing Nd ions, the first term62

of the Hamiltonian can be broken down to account for interactions within the same plane d63

with coordination number z via exchange constant J and interactions with the spins in the64

neighboring planes with coordination number z∗ via an inter-plane exchange constant J∗,65

which we scale with J , i.e., J∗ = αJ . The Hamiltonian for each plane d then reads:66
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Hd =−
1

2

Nd∑

i





z∑

j

JSd,iSd,j +

z∗∑

j

J∗Sd,i (Sd+1,j + Sd−1,j)





− h

Nd∑

i

Sd,i. (2)

The Hamiltonian of the entire system is then the sum of all planes: H = H1+ . . .+Hd+67

. . .+HD. We simplify the Hamiltonian in Eq. 2 using the Weiss mean-field approximation68

(MFA), i.e., by introducing the magnetization md = 〈Sd〉 which corresponds to the mean69

field in the dth plane. The strength of the mean field depends on the number of neighbors,70

i.e., z and z∗, which in the ABC stacking of (111) planes in the NaCl structure is 6 and 3,71

respectively. The MFA treatment decouples all the spins and reduces the Hamiltonian to72

that of a single spin for each plane:73

HMFA
d =

Nd

2

[
zJm2

d + z∗J∗md (md+1 +md−1)
]

︸ ︷︷ ︸

Xd

− [zJmd + h+ z∗J∗ (md+1 +md−1)]
︸ ︷︷ ︸

Yd

Nd∑

i

Sd,i . (3)

The partition function Z(T ) and the equation of state for the above Hamiltonian can74

be obtained after choosing the type of spins. Heisenberg-type spins have S(S + 1) possible75

values and the equation of state for the z projection is the Brillouin function5, but low-76

dimensional systems with isotropic exchange exhibit no long-range order24,25. In contrast,77

Ising systems have infinite anisotropy, where Ising-type spins can only take ±S values and78

the equation of state is of the form26,27:79

md = |S| tanh (|S|βYd) = f(md−1, md, md+1) , (4)

with β the inverse temperature 1/T , and |S| the absolute spin value which is set to 2, i.e.,80

the value for Co+2 spins (µCo+2 ≈ 3.8µB)
17. We choose to use Ising spins in our calculations81

because CoO behaves more like an Ising system due to its high anisotropy11,28,29. Moreover,82

we scale all the energy contributions, i.e., the temperature T and the external field h with the83

intra-plane exchange constant J . For the inter-plane exchange we use values of α = −0.5,84

−1.0, and −1.5. While the most common choice for α for CoO would be30 −2 or −3 , our85
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choice of parameters is directed towards a general description and understanding of this type86

of AFM system, where the ratio α is the dominant mechanism for finite-size effects, as will87

be seen below.88

For the order parameters we define the net magnetization M(T ) of the system and the89

average absolute value of plane magnetization |m(T )|:90

M(T ) =
D∑

d=1

md(T ) (5a)

91

|m(T )| =
1

D

D∑

d=1

|md(T )| (5b)

In the discussion each plane magnetization is normalized to 1 at T = 0, i.e., divided by92

|S| = 2 which is the magnetic moment per atom in the plane.93

Finally, we derive the ordering temperature of a system with D = 1 (2 dimensions)94

and D = ∞ (3 dimensions) by expanding Eq. 4 for h = 0 and small plane magnetization95

(|m| → 0). The 2-dimensional system orders at TN = zJS2, and the 3-dimensional system96

at TN = S2J(z+2αz∗). The thickness dependence of the ordering temperature within MFA97

is31:98

TN(D) =
S2J(z + 2αz∗)

2

(

1 + cos
π

D + 1

)

. (6)

Considering the ordering temperature of bulk CoO (TN ≈ 300 K), and the coordination99

numbers z = 6 and z∗ = 3, the exchange constant amounts to J = 12.5/(1 + α) K. This100

value corresponds to J = 0.55 meV (for α = 1) which is very close to results from quantum101

chemical ab-initio calculations for CoO30 (normalizing their value of 6.5 meV by a factor of102

16 due to the use of |S| = 1/2 against our |S| = 2).103

We next expand our model to simulate multilayers of MO films each with D planes,104

separated by a spacer layer (S) which allows inter-layer exchange interactions. In this con-105

text, the inter-layer coupling could be of any nature, including RKKY, dipolar, etc; for an106

RKKY-type interaction, as suggested in Ref.19, the spacer needs to have sufficient charge107

carrier density to facilitate such an interaction, as shown experimentally for CoO/Al-ZnO108

multilayers, where the RKKY-type IEC is mediated by the electrons of the Al dopants19.109

In that case, the inter-layer coupling JIEC between two surfaces, or sheets of spins, oscillates110

with the spacer layer thickness, and decays with32 JIEC ∝ e−LS/λ/L2
S, with LS the thickness111
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of the spacer layer, and λ the material-specific exchange decay length. We incorporate JIEC112

in our model by coupling the top and bottom plane of the film with JIEC, as shown in Fig. 1,113

effectively a type of periodic boundary condition. This corresponds to a stacking of multiple114

MO films, where the top plane of a film interacts with the bottom plane of the next one and115

so on. In this context of IEC-induced boundary conditions, when the energy contribution of116

IEC conflicts with that of J∗, the unit cell of the model needs to be doubled, i.e., to account117

for the modulation of the exchange constants (see discussion).118

In the equation of state this energy contribution has the same form as that of the inter-119

plane exchange J∗, where the coordination number is set to 1, which means that Yd (see Eq.120

3) in the equation of state for the bottom and the top planes in a film will have the form:121

Y1 = zJm1 + h+ z∗J∗m2 + JIECmD (7a)
122

YD = zJmD + h + z∗J∗mD−1 + JIECm1 (7b)

123

As with the other energy terms, we scale JIEC with J and try different values which would124

correspond to a spacer with a few monolayers thickness, assuming a constant decay length125

λ of 10 monolayers (JIEC = 0.2 J and 0.4 J).126

The equations of state for all planes (Eq. 4) must be solved simultaneously in order to127

find the magnetization of each plane at a temperature T and field h, from which we will128

obtain the magnetization of the entire film or multilayer. We therefore need to minimize129

E =
D∑

d=1

[md − f(md−1, md, md+1)]
2 = 0 . (8)

This is done numerically by iterating all plane magnetizations by one of three possible130

changes: +δ, 0, or −δ, at the same time and checking which set of changes leads to the131

minimum of equation 8. This means that for D planes, D equations of state need to be132

solved at the same time, and each step towards the solution contains 3D possibilities, which133

are all considered at each temperature step.134

The accuracy of the solution of Eq. 4 depends on the step size δ and the value of E. In135

our simulations we vary the magnetization of each plane by δ = 10−5 |S| and require that136

E ≤ 10−6 is satisfied. This provides a very high resolution for the magnetization values and137

a high accuracy for the solution of the equations of state.138
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Using this procedure we simulate M(T ) curves for films with various thicknesses (D),139

inter-plane (J∗), and inter-layer (JIEC) exchange constants.140

III. RESULTS AND DISCUSSION141

We calculated the plane magnetization of systems withD = 1 to 11, considering free films,142

i.e., with JIEC = 0. For systems with even number of planes, all magnetization contributions143

are canceled out because the system is fully symmetric. For odd number of planes, however,144

there is one uncompensated plane, which results in a non-zero magnetization of the system,145

as expected according to Néel33. As will be seen later, however, the net magnetization is146

not equal to the magnetization of any single uncompensated plane.147

Figure 2(a) shows the net film magnetization M(T ) (solid lines) and the average absolute148

value of plane magnetization |m(T )| (dashed lines) of systems with odd number of planes149

as a function of temperature. For the simplest system with one plane (D = 1), there is150

no inter-plane exchange and the system represents a typical MFA Ising ferromagnet with151

ordering temperature TN = 150 K. With increasing D, the ordering temperature increases152

monotonically and approaches saturation after a few planes (see Fig. 2b), following Eq. 6.153

For the system with D = 11 the ordering occurs at TN(11) = 0.983 TN(∞).154

This behavior of the ordering temperature is very similar to that of Heisenberg-type155

ferromagnetic EuO films5,22, and comparable to experimental observations in CoO/SiO2156

multilayers11,12 and CoO/MgO and NiO/MgO superlattices10. The experimental values for157

the ordering temperature of CoO with a thickness of 6 and 10 atomic planes in Ref.10 were158

255(5) K and 275(5) K, respectively, which is in very good agreement with the MFA predicted159

values of 0.95 TN(∞) ≈ 270 K and 0.98 TN(∞) ≈ 280 K, for the corresponding thicknesses160

(considering that the bulk value of that sample was 285 K). The monotonic increase of TN161

differs, however, from that of metallic FM films, where the Curie temperature sometimes162

exceeds the bulk value due to the effect of surface electronic states34–37, which marks a clear163

distinction between metallic and oxide magnets.164

Figure 2 further shows that with increasing thickness the shape of the M(T ) curve de-165

parts strongly from the Brillouin-like shape of D = 1 and the difference between net film166

magnetization M(T ) and average absolute plane magnetization grows surprisingly large (up167

to 40% for D = 11 at T = 3TN/4), due to the different magnetization of different planes.168
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As an example, for D = 11 the magnetization starts at a plateau for low temperature and169

then decreases in a nearly linear fashion with increasing temperature, until it reaches TN.170

The changes in M(T ) become increasingly smaller with increasing D and show no signif-171

icant changes for D ≥ 7. This becomes clear if we compare the normalized M(T ) curves of172

D = 7, 9, and 11, which have the same shape (see Fig. 2c). The evolution of M(T ) with D173

is comparable to the evolution of the ordering temperature, which approaches saturation for174

D ≥ 7. This means that if we keep increasing D the M(T ) curve will not change further,175

and the ordering temperature will eventually reach the bulk value.176

While it may seem counterintuitive that the thinnest film behaves most like a mean field177

magnet [with a Brillouin-function-like M(T )], this is due to a combination of finite size178

effects plus the fact that this is an AFM where the magnetization of almost all planes is179

compensated. The effect of finite-size is further investigated by observing the individual180

plane magnetizations. Figure 3 shows the plane magnetization for systems with D = 4, 5,181

10, and 11 as a function of temperature. As seen in the figure, the plane magnetization at182

low temperature (T ≤ 0.4 TN) is saturated for all planes, but for intermediate temperatures183

(0.4 TN ≤ T ≤ 1.0 TN) it differs strongly between surface and core planes. The surface184

planes have the weakest magnetization because they have a smaller number of interactions185

compared to the core of the film. The planes directly below the surface also have reduced186

magnetization because they are affected by the weaker magnetization of the outer planes.187

Planes which are 2 or more monolayers below the surface also exhibit some differences, which188

are however increasingly small. Similar magnetization profiles have been seen for antiferro-189

magnetic Heisenberg EuTe(111) films, which exhibit strong finite-size effects, notably near190

T ≈ 0.5 TN
38.191

For even-numbered systems (see Fig. 3a,c) all the plane magnetizations are canceled out192

because the system is fully symmetric: equal number and equal absolute value of magne-193

tization points in positive and negative direction, respectively. For odd-numbered systems,194

however, (see Fig. 3b,d) the surface planes add to each other, the next two add to each195

other and subtract from the top two, etc, generating the net film magnetization seen in Fig.196

2. The net magnetization, notably, is not equal to the magnetization of any single uncom-197

pensated plane, but is lower at all intermediate T . This is because the magnetization in the198

positive direction, i.e., in the outer planes, changes differently with temperature compared199

to the magnetization in the negative direction, i.e., in the inner planes, thus resulting in a200
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strongly reduced and modified M(T ) curve.201

We now test the effects of the inter-plane exchange coupling J∗ by simulating the system202

with D = 11 for weaker (α = −0.5) and stronger (α = −1.5) coupling, and also consider203

ferromagnetic cases with α = +0.5, +1.0, and +1.5.204

Figure 4 shows the comparison of M(T ) curves for the six different J∗ values, (a) showing205

the AFM and (b) the FM case. Considering first the AFM (J∗ < 0) results, with decreasing206

α-ratio the shape of the M(T ) curve changes and the curve becomes closer to the Brillouin-207

like shape of the MFA ferromagnet seen in the D = 1 film. The reason for this behavior is208

that with decreasing strength of J∗, the difference in energy between outer and inner planes209

is reduced. In the limit of J∗ → 0, the system with D = 11 will behave as 11 decoupled210

ferromagnets with an ordering temperature of the 2D system and a Brillouin-like M(T )211

curve. In contrast, if we increase J∗ the energy difference becomes larger: near surface212

planes are increasingly weaker compared to the core planes and the M(T ) curve is modified213

further.214

These observations are also valid in the ferromagnetic case (Fig. 4b). The individual215

plane magnetizations m(T ) (see inset to Fig. 4b) of a ferromagnetic film with D = 11216

(with α = 1) are exactly the same as the individual plane magnetizations |m(T )| of the217

AFM system shown in Fig. 3d. The ordering temperature of the FM is also the same218

as in the AFM case, but since all plane magnetizations are positive, the shape of the net219

magnetization M(T ) for D = 11 is only very slightly modified from the Brillouin form of220

the D = 1 limit, in contrast to the case of AFM systems, and it is not strongly affected by221

the α-ratio.222

In the next step, we simulate multilayers of antiferromagnetic films each with D = 11223

separated by non-magnetic layers by using a single D = 11 film and turning on an inter-layer224

exchange coupling JIEC, as shown in Fig. 1, and investigate its effect on the behavior of225

the system. We assume that the IEC only acts on the surface planes, consistent with the226

assumption throughout this paper of nearest neighbor exchange only, and with the nature227

of the superexchange coupling of MO AFM’s given the insulating nature of the MO layers.228

We test its effects for JIEC = 0.2 J and 0.4 J , keeping α = −1 for this set of simulations.229

Figure 5 shows the net magnetization M(T ) as a function of the reduced temperature.230

The black solid line shows M(T ) of the uncoupled film (JIEC = 0). The ordering tem-231

perature does not change with increasing interaction energy, but the shape of the M(T )232
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curve changes markedly. Positive coupling between films increases the magnetization of the233

surface planes and reverses the effects of finite-size discussed above. In fact, if we consider234

the, unrealistic, limit of JIEC = |z∗J∗|, the periodic boundary condition is complete and235

finite-size effects disappear: all planes have exactly the same magnetization and there is no236

distinction between surface and film core because all planes have the same number of bonds237

with the same bond strength, which corresponds to the case of D → ∞.238

For negative JIEC the exact same effect occurs; the near-surface magnetic moments are239

enhanced. For this calculation we used two films instead of one, and coupled the bottom240

plane of the first to the top plane of the second, because the negative IEC doubles the unit241

cell of the system. In this case the net magnetization of each film is antiparallel to that of its242

two neighboring films in the multilayer (data not shown), resulting in a zero magnetization243

of the multilayer, as seen experimentally for CoO/Al-ZnO multilayers19.244

For systems with even number of atomic planes, the effect of IEC (whether positive or245

negative) is the same, i.e., the magnetic moment near the surface at intermediate tempera-246

tures is enhanced. In this case, positive or negative IEC affects the direction of individual247

planes at the top and bottom of each layer, but the net magnetization of each film and in248

turn of the multilayer, however, is always zero because all individual plane magnetizations249

cancel each other out.250

In addition to IEC, an external field can influence the ordering of an AFM film or mul-251

tilayer. When we apply an external field h on the AFM films, the shape of the M(T ) curve252

is drastically changed and the ordering is strongly affected: the onset of magnetization at253

TN, which remains unchanged, becomes increasingly smeared with stronger h (see inset to254

Fig. 5) due to paramagnetic effects above TN. The presence of the external field, which255

acts upon all planes equally, increases the magnetization of odd-numbered planes (which256

have positive m), and decreases that of the even-numbered planes (which have negative m).257

Considering that the outer planes have weaker coupling to the inner of the film, they are258

more susceptible to the external field. The magnetic moment of the surface planes thus259

increases more, compared to that of the core planes. This change in the system corresponds260

to a reversing of the finite-size effects discussed above.261

We continue by suggesting how our findings may be observed experimentally by compar-262

ing the net magnetization M(T ) of AFM films to the average absolute plane magnetization.263

The M(T ) curves shown in this paper represent theoretical experiments, where the vectorial264
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sum of the plane magnetizations is projected onto a measurement axis, like in a magnetome-265

ter with small external fields. In other experiments, however, such as neutron diffraction, the266

magnetic intensity is the average of the absolute plane magnetization Mneutron(T ) = |m(T )|.267

Fig. 2 showed that M(T ) 6= |m(T )|, therefore a comparison of neutron diffraction intensity268

and low applied field magnetometry M(T ) should show a difference for thin film AFM’s269

(Note that it is important that the magnetometry not be dominated by ferromagnetic im-270

purities or second phases, or by the usual paramagnetic AFM contribution). In fact, this was271

seen in CoO multilayers19, which exhibited a somewhat different temperature dependence272

in M(T ) measured in a magnetometer and the normalized neutron diffraction data, most273

visible near T = 0.5 TN. Such a comparison can therefore be used to estimate the finite-size274

effects including surfaces and grain boundaries in metal oxide AFM films and multilayers275

and probe the extent to which surface magnetization is reduced in such low-dimensional276

oxide antiferromagnets. Most importantly, the inequality M(T ) ≤ |m(T )| is valid for any277

AFM film regardless of the interaction parameters in the system. For any set of interaction278

strengths J > 0 and J∗ < 0 the net magnetization of an AFM film will always be lower than279

the average plane magnetization, or the magnetization of any single uncompensated plane.280

We note finally that the simulations in this work were done assuming perfect crystalline281

planes with full atomic occupancy. In the case of defects or grain boundaries in real systems282

the number of uncompensated spins increases drastically and may produce similar effects283

as the ones found here. In addition, however, uncoupled spins, e.g. on rough surfaces or284

corners, can exhibit paramagnetic behavior which can strongly influence the M(T ) curve of285

the films in the presence of an external field.286

IV. CONCLUSIONS287

We have simulated antiferromagnetic thin films with thicknesses of up to 11 crystalline288

planes using mean-field approximation. Our study showed that films with an even number of289

planes have zero magnetization at all temperatures, whereas odd-numbered systems exhibit290

ferromagnetism due to unequal magnetization of near surface layers, where the net magne-291

tization of the film is lower than that of any single uncompensated plane at intermediate292

temperatures. With increasing film thickness the Néel temperature increases monotonically293

and reaches the bulk value after a few planes, while the form of the M(T ) curve is dramat-294
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ically changed due to finite-size effects at near-surface planes which dominate AFM films295

despite having little effect on FM films due to compensation. The difference between near-296

surface magnetization and the core of the film changes strongly with inter-plane coupling:297

with smaller J∗ it becomes smaller because the energy difference between outer and inner298

planes becomes lower, and vice versa. We also found that turning on a positive inter-layer299

exchange coupling inhibits these finite-size effects and promotes ferromagnetism in odd num-300

bered systems by increasing the surface magnetization, whereas negative IEC results in zero301

net magnetization due to full cancellation of magnetic moments in a multilayer. Finally,302

we showed how these effects can be observed experimentally by comparing temperature-303

dependent magnetization measurements and neutron diffraction experiments.304
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JIEC

FIG. 1. Illustration of the layered structure of an antiferromagnetic film with 5 planes. Alternat-

ing (111) planes of the NaCl structure are completely filled with metal ions (M) and oxygen (O)

consecutively. The arrows inside the M planes indicate the alternating direction of the plane mag-

netization and the red springs correspond to the inter-plane exchange coupling J∗. The simulation

of multilayers is performed by coupling the top and the bottom planes as indicated by the JIEC

bond.
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FIG. 2. (a) Magnetization of systems with odd number of monolayers as a function of temperature.

Solid lines correspond to the net film magnetization M(T ) and dashed lines correspond to the

average absolute plane magnetization |m(T )|. (b) Evolution of the ordering temperature TN as

a function of D; the solid line corresponds to Eq. 6. (c) Normalized M(T ) curves as a function

of T/TN. With increasing D the M(T ) curve departs from the Brillouin-like shape and becomes

nearly linear in the range 0.5 ≤ T/TN ≤ 1.0.
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FIG. 3. Plane magnetization of the systems with (a) D = 4, (b) 5, (c) 10, and (d) 11 as a function

of temperature. The surface planes [e.g. 1 and 4 or 5 in a) and c), and 1 and 10 or 11 in b) and

d)] have weaker magnetization compared to the inner planes. For even number of monolayers the

magnetization is fully symmetric (modd = −meven) and the net sum M(T ) is zero (not shown),

whereas for odd-numbered systems the surface magnetization is uncompensated and results in a

net non-zero magnetization (modd 6= −meven), shown as a solid lines marked M(T ) in the right

panels. Note that M(T ) is lower than the magnetization of any single uncompensated plane at

intermediate temperatures.
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FIG. 4. Net magnetization of the system with D = 11 as a function of temperature. The three

different calculations correspond to cases where α = J∗/J = −0.5 (dash-dotted blue line), −1.0

(solid black line), and −1.5 (dashed red line) for the AFM case and J∗/J = +0.5, +1.0, and +1.5

for the FM case. The inset to (b) shows the magnetization of several important planes in the FM

film. The near-surface magnetic moments in FM systems are reduced, in exactly the same manner

as in the AFM case.
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FIG. 5. Net magnetization per film for systems with D = 11 and J∗ = −J as a function of

temperature with different strengths of IEC. With increasing IEC strength M(T ) is enhanced; this

is because the IEC acts on the surface planes, which in turn affect the near-surface planes. The

inset shows the effect of the external field h on the M(T ) curve.
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