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Abstract

First principles density functional theory DFT+U calculations and experimental neutron diffrac-

tion structure analyses were used to determine the low-temperature crystallographic and magnetic

structure of bixbyite α-Mn2O3. The energies of various magnetic arrangements, calculated from

first principles, were fit to a cluster-expansion model using a Bayesian method that overcomes

a problem of underfitting caused by the limited number of input magnetic configurations. The

model was used to predict the lowest-energy magnetic states. Experimental determination of mag-

netic structure benefited from optimized sample synthesis, which produced crystallite sizes large

enough to yield a clear splitting of peaks in the neutron powder diffraction patterns, thereby en-

abling magnetic-structure refinements under the correct orthorhombic symmetry. The refinements

employed group theory to constrain magnetic models. Computational and experimental analyses

independently converged to similar ground states, with identical antiferromagnetic ordering along

a principal magnetic axis and secondary ordering along a single orthogonal axis, differing only

by a phase factor in the modulation patterns. The lowest-energy magnetic states are compro-

mise solutions to frustrated antiferromagnetic interactions between certain corner-sharing [MnO6]

octahedra.
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Introduction

Manganese is a multivalent element. Each valence state has a characteristic oxide or

oxides. Mn ion magnetism and electron correlations of Mn d states make it challenging

to accurately determine the electronic structure of Mn oxides using the density functional

theory (DFT) approach. Franchini et al.1 explored various manganese oxides using DFT and

showed that the electronic structure as well as the magnetic ground state depend sensitively

on the details of the DFT calculation, such as the exchange-correlation functional used.

FIG. 1: Topology of bixbyite phase. Mn in dark blue; O in medium red; unfilled tetrahedral

interstitials indicated in light yellow. The four nearest Mn to a given O are drawn in the upper

left.

The α-Mn2O3 phase, with the bixbyite structure, is particularly challenging to model be-

cause of its complicated, and not yet completely solved, magnetic structure. In the bixbyite

structure (Fig. 1), the Mn3+ ions are octahedrally coordinated, while the O ions have 4 Mn

neighbors. The bixbyite structure can be viewed as a close-packed lattice of Mn with O ions

filling 3/4 of the tetrahedral interstitials in a pattern with Ia3 symmetry. Below about 300

K, α-Mn2O3 transforms from cubic to an orthorhombic structure with Pbca symmetry2. The

rhombohedral distortion increases with decreasing temperature, with lattice parameters at

81 K approximately a= 9.41 Å, b = 9.45 Å, and c = 9.37 Å (Refs. 2–4). Geller5 rationalized

the low-temperature orthorhombic distortion of bixbyite as a consequence of a Jahn-Teller

instability of [MnO6] octahedra toward elongation along any one of the three Cartesian axes.



In the cubic bixbyite phase, 24 of 32 Mn atoms exhibit distorted coordination whereas the re-

maining 8 Mn atoms, which occupy fixed-coordinate high-symmetry positions, retain regular

coordination environments. The orthorhombic phase accommodates Jahn-Teller distortion

of the remaining 8 octahedra (see Fig. 2-Fig. 3).

FIG. 2: Cubic α-Mn2O3 viewed along c axis; regular octahedra surrounding high-symmetry Mn

sites shown, in columns with two octahedra per repeat unit along c. Blue balls are Mn; red balls

O.

FIG. 3: Orthorhombic α-Mn2O3: octahedra shown in Fig. 2 have undergone Jahn-Teller distortion.



The magnetic structure of Mn2O3 has long been of interest, but it is not completely

solved. Computationally, Franchini et al. found a preference for either antiferromagnetic

or ferromagnetic ordering in α-Mn2O3, depending on the type of DFT exchange-correlation

functional used1. Experimentally, Regulski et al.6 found evidence for various antiferromag-

netic ordering transitions within the orthorhombic phase, which occur without any apparent

change in symmetry.

Grant et al.7 suggested that the magnetic ordering of orthorhombic α-Mn2O3 can be

predicted from the cubic Ia3 symmetry because the orthorhombic distortion is small. They

proposed a non-collinear ordering model with magnetic moments on the Mn 8(b) sites (4(a)

and 4(b) in Pbca) aligned with the body diagonals of the pseudo-cubic cell and those on

the Mn 24(d) sites (8(c) in Pbca) directed perpendicular to one of the two orthogonal 21

screw axes passing through each 24(d) site. However, Regulski et al. demonstrated that this

model is incompatible with the neutron powder diffraction data6. They further identified

an alternative, better-fitting, collinear model which featured antiferromagnetic ordering on

each of the five inequivalent Mn sublattices of the orthorhombic structure. However, the

orthorhombic distortion could not be resolved in the diffraction patterns used by Regulski et

al and, therefore, the atomic positions had to be refined according to the high-temperature

cubic Ia3 structure. No refinements of the nuclear and magnetic structures of the magnetic

phase under the correct orthorhombic symmetry have been reported.

In this paper, we address deficiencies in both the computational and experimental studies

of the magnetic ground state of α-Mn2O3. Computationally, we use density functional the-

ory at the DFT + U + J level in concurrence with a cluster-expansion model to investigate

candidate ground state models until the correct DFT ground state is established. Exper-

imentally, we use optimized conditions to synthesize α-Mn2O3 with crystallite sizes large

enough to yield visible splitting of reflection peaks in the neutron diffraction patterns of the

orthorhombic phase, and thus refine the magnetic ordering within orthorhombic symmetry.

Both approaches give very similar results for the magnetic ordering, suggesting that the

ground state magnetic structure of α-Mn2O3 is largely solved.



Computational Methods

First principles density functional theory (DFT) calculations, as encoded in the VASP

software8,9, were used to calculate the relaxed configurations investigated here and their

electronic structures. The generalized gradient approximation (GGA) for the exchange-

correlation functional was used throughout, within the “Perdew-Burke-Ernzerhof revised

for solids” or “PBEsol” parameterization10.

The PBEsol exchange-correlation functional has been found to give excellent results

compared with experiment for the lattice parameters and bulk moduli of both metals and

nonmetals11. As is generally true for DFT, however, calculated band gaps are too small.

This error can lead to qualitative errors for narrow bandgap materials and for materials

with magnetic ions, both which are true for α-Mn2O3. We compensated for this error by

including onsite Coulomb terms (the “GGA+U” approximation). In a previous study of

MnO2 phases12, we found that the experimental volume and bandgap of β-MnO2 could

both be reproduced using the rotationally invariant DFT+U of Liechtenstein et al.13 with

an onsite Coulomb parameter U = 2.8 eV and onsite exchange parameter14 J = 1.2 eV

for Mn d electrons. Remarkably, these same values used for the Mn4+ ion of β-MnO2 ion

were found to be transferable to the Mn3+ ion of α-Mn2O3, giving excellent agreement with

experiment, as shown below. Ex post facto investigations of the effects of varying the Mn U

and J parameters, or adding U or J parameters for oxygen, gave little, if any, improvement.

Sufficient convergence in total energies and lattice parameters was achieved with a plane

wave cutoff energy of 500 eV and a 2×2×2 Monkhorst-Pack grid of k-points. A 8×8×8

Monkhorst-Pack grid was used for density of states calculations. The magnetic ordering of

each of the 32 Mn atoms in the unit cell could be set either “up” or “down” as desired.

Spin-orbit coupling was neglected. Only collinear magnetic structures were computed using

VASP.

The aim of the computational work was to find the DFT ground state magnetic ordering

of α-Mn2O3. The cluster-expansion concept, as developed for interatomic alloys15,16, was

used to identify candidate states to explore. The formal mathematics of the spin-state

problem is identical to that of the alloy problem. Each site i is given a parameter σi, where

σi = 1 for spin up (species A in the alloy problem) and σi = −1 for spin down (species B in

the alloy problem).



The total energy U of a configuration {σi} is written as

U({σi}) =
∑
α

Jαξα, (1)

where α are the symmetry distinct geometric clusters, Jα the effective spin interaction

parameter for cluster α, and ξα the average spin product over all symmetry equivalent

occurrences of this cluster17.

In practice, one calculates individual U for various configurations, determines the values

of the Jα according to some fitting procedure, and then uses these values to estimate the

energies of any configuration, including those that are not part of the fit. Errors in the

determination of the Jα due to the finite set of included energies lead to errors in the

predictions. While any method for determining the Jα should eventually converge to the

same result given a sufficiently large number of input configurations, in this work, we employ

the cluster expansion method formulated by Cockayne and van de Walle18. This method

uses DFT results to fit a number of Jα parameters that is much larger than the number of

results. The mathematical problem of overfitting the data (that is, the non-uniqueness of the

solution) is controlled using a Bayesian approach18,19. A physically motivated probability

distribution of all Jα values is the Bayesian prior. The DFT results are a series of constraints

used to update the probability distribution via Bayes’ Theorem. The posterior distribution of

the Jα gives the most probable values of the Jα and their standard deviations. Additionally,

the method of Ref. 18 reproduces all of the DFT energies used to generate the cluster

expansion exactly, and gives self-consistent error estimates for all predictions.

All results were calculated within an identical 80-atom, 32 Mn cell. The cluster interac-

tions that can be determined are limited to those contained within one unit cell. The model

is valid for predictions of other configurations within the same cell, but can not be applied

to larger supercells; thus if the ground state magnetic state has a larger periodicity than the

crystallographic one, it will be missed.

There are 232 collinear magnetic states for the 32 Mn atoms in the α-Mn2O3 unit cell.

Time reversal and crystallographic symmetry reduce the number of symmetry-independent

configurations to about 3× 108, which, according to a one-to-one correspondence with the

number of cluster terms15,20, yield about 3× 108 unknown cluster terms. Solving linear

sets of equations with order 108 unknowns is not computationally feasible. To simplify the

problem, we truncated the interaction terms at fourth order (time reversal symmetry forbids



linear or cubic terms in the magnetic interactions). There is 1 constant term, 73 independent

pair cluster term and 4632 four-body cluster terms in our model. For sets of n DFT total

energy results, we solved n equations in 4706 unknowns, using a Bayesian prior to weight

the parameters and standard singular value techniques for solving underdetermined sets of

linear equations.

The prior that we used for the pair terms was

P =
∏
ij

exp(−J2
ij/(2w

2
ij)), (2)

with

w(i, j) = A
( d0
dij

)2
, (3)

where dij is the distance between the Mn at site i and j and d0 ≈ 3.3 Å=
√

2a0/4 is the

approximate nearest-neighbor Mn-Mn distance and A is an unknown constant. The prior

for the four-body terms was of similar form, with

w(i, j, k, l) = A
( d0
dij

)2( d0
dik

)2( d0
dil

)2( d0
djk

)2( d0
djl

)2( d0
dkl

)2
(4)

The physical motivation behind the form of this interaction was to weaken cluster terms

involving Mn ions that are farther apart from each other. Although superexchange spin

interactions are short range, we expect that strain coupling effects may mediate longer

range interaction; thus the (dij)
−2 form for our relative interaction terms in the prior. The

value of A was determined self-consistently by the leave-one-out cross validation method18.

This value was scaled such that the root mean square error in the predicted energies equalled

the root mean square of the predicted errors18.

We studied the magnetic states in an iterative manner. After calculating an initial set

of energies versus magnetic orderings for a few simple configurations, additional structures

were investigated, with, in rotating turns, (1) the minimum predicted energy among untested

structures, (2) the maximum predicted energy among untested structures, and (3) the max-

imum predicted uncertainty in energy. The parameters Jα were recalculated after each step,

and then used to predict the energies and energy uncertainties for all order 3× 108 symme-

try independent configurations. The model was refined iteratively until there were no more

predicted states within two standard deviations of uncertainty of the tenth lowest-energy

state found, at which point it was concluded that the collinear ground state was probably

found. 76 structures in all were calculated.



Experimental Methods

The α-Mn2O3 powder sample was prepared by heating MnCO3 (analytical reagent) at

800 ◦C in air for 12 h, which was the highest temperature to yield phase-pure α-Mn2O3

devoid of Mn3O4 traces. The sample was characterized using X-ray powder diffraction in

an instrument equipped with an incident-beam monochromator (Cu Kα1 radiation) and a

position sensitive detector. The heating temperature and time were selected to minimize the

width of the 222 peak, which remains non-split in the orthorhombic phase and, therefore,

reflects the size of the coherently scattering domains in the sample. (Phase-pure α-Mn2O3

can be obtained by heating MnCO3 at temperatures between 600 ◦C and 800 ◦C, but lower

temperatures produced considerably broader peaks). No changes in the peak widths were

observed after the second heating at 800 ◦C for 12 h.

Neutron powder diffraction measurements were performed using both the time-of-flight

HIPD diffractometer at the Lujan Center of the Los Alamos National Laboratory and the

BT-1 constant-wavelength (Cu 311 monochromator, λ = 1.5405 Å, 15’ collimation) diffrac-

tometer at the NIST Center for Neutron Research. For these measurements, the α-Mn2O3

powder was loaded in vanadium cans. In each experiment the data were collected at a series

of temperatures (HIPD: 300 K, 200 K, 150 K, 100 K, 60 K, 40 K, 5 K and BT-1: 300 K,

100 K, 40 K, 10 K, 2 K). Rietveld refinements of the nuclear and magnetic structures were

performed using GSAS21.

The magnetic-structure models were selected according to representational analyses per-

formed by SARAh22; likewise, SARAh was used for symmetry-constrained refinements in

GSAS. First, the magnetic basis-vector coefficients were refined using a Reverse Monte Carlo

(RMC) algorithm implemented in SARAh with the magnitudes of all the magnetic moments

constrained to be equal. The best-fit model was further refined in GSAS (i.e. using least

squares minimization) by keeping the basis-vector coefficients fixed but allowing for distinct

ordered magnetic moments on inequivalent Mn sites. The HIPD and BT-1 data produced

consistent structural parameters.



TABLE I: DFT crystal structure for ferromagnetic α-Mn2O3 in cubic Ia3 phase. Lattice constant

a0 = 9.4090 Å.

Species Site x y z

Mn(1) 8(a) 0 0 0

Mn(2) 24(b) 0 1/4 0.2848

O(1) 24(b) 0.4162 0.1286 0.3555

O(2) 24(b) 0.3714 0.1445 0.0838

Computational Results

The α-Mn2O3 bixbyite structure was first investigated with ferromagnetic ordering. Re-

laxation under cubic Ia3 symmetry, yielded a0 = 9.409 Å, and the structure shown in Ta-

ble I. DFT phonon results of this cubic structure show an extremely strong double instability

(ν = 510 i cm−1), associated with Jahn-Teller distortions of the oxygen octahedra centered

on the Mn(1) sites. Full relaxation of the bixbyite structure perturbed by either mode in the

instability doublet, or any linear combination of the two, leads to an orthorhombic minimum

energy state with Pbca symmetry, explaining the experimental cubic-orthorhombic transi-

tion. In fact, we find that all such combinations relax to the same ferromagnetic ground

state structure, differing only with respect to (1) which of the original cubic axis becomes

the short axis of the orthorhombic unit cell and (2) possible translations of the origin by

(1/2,1/2,1/2). Each Mn(1) and Mn(2) in the orthorhombic structure has four short Mn-

O distances and two long Mn-O distances. The topology of the orthorhombic structure

is uniquely defined by specifying which Mn(1)-O and Mn(2)-O distances are long. In this

work, we arbitrarily choose the setting where the Mn(1) at (0,0,0) has its far O neighbors at

approximately ±(0.139, 0.149,−0.093), and the Mn(2) at (1/2,1/2,1/2) has its far O neigh-

bors at approximately ±(0.656, 0.412, 0.641). The ground state ferromagnetic structure is

shown in the left-hand side of Table II.

The orthorhombic crystallographic structure of the ferromagnetic phase was used as the

starting part for relaxation of each collinear spin combination {σi} studied. The state that

was ultimately identified as the ground state was the 36th studied. In total, 76 states were

investigated before the termination criterion was reached: no new structures with predicted



TABLE II: DFT crystal structures for orthorhombic ferromagnetic and ground state antiferro-

magnetic structures. The similarity of a and b for the orthorhombic ferromagnetic structure is

coincidental23.

FM AFM ground

a 9.4417 9.4024

b 9.4417 9.4435

c 9.4096 9.3668

Atom Site x y z x y z

Mn(1) 4(a) 0 0 0 0 0 0

Mn(2) 4(b) 1/2 1/2 1/2 1/2 1/2 1/2

Mn(3) 8(c) 0.2563 0.2854 -0.0070 0.2602 0.2848 -0.0102

Mn(4) 8(c) 0.2864 -0.0010 0.2458 0.2857 -0.0034 0.2450

Mn(5) 8(c) 0.0079 0.2478 0.2845 0.0136 0.2457 0.2818

O(1) 8(c) 0.4215 0.1259 0.3510 0.4256 0.1233 0.3502

O(2) 8(c) 0.1358 0.3523 0.4103 0.1409 0.3506 0.4050

O(3) 8(c) 0.3576 0.4180 0.1223 0.3568 0.4187 0.1196

O(4) 8(c) 0.0855 0.3721 0.1414 0.0845 0.3738 0.1395

O(5) 8(c) 0.3791 0.1460 0.0794 0.3815 0.1478 0.0798

O(6) 8(c) 0.1524 0.0859 0.3648 0.1567 0.0873 0.3608

energies within two standard deviations of the tenth-lowest-energy structure found.

The calculated ground state collinear magnetic structure is shown in Fig. 4 and listed in

Table III. The spin moments are obtained by taking the difference in the number of spin up

and spin down electrons, integrated within spheres of radius 1.24 Å centered on each Mn,

as calculated using VASP. The magnitudes are reasonable for high-spin Mn3+ ions, but are

not precisely comparable with experiment because of the artificial partition of the cell into

spherical volumes.

We next investigated possible noncollinear magnetism using the parameters found in the

fit to the computational results. The obvious way to extend the model is to use the interac-

tion parameters determined from calculations of collinear systems with (pseudo)vectorized



TABLE III: Ground state DFT magnetic state and lowest energy noncollinear magnetic state found

in a Heisenberg model based on pair interactions determined by fits to DFT results. Units are µB.

Only the relative directions of the magnetic moments are determined; m‖ is the magnetic moment

along the only axis for the collinear DFT ground state and principal axis of the noncollinear

Heisenberg model ground state; m⊥ is the magnet moment along a second axis of the Heisenberg

model ground state. Mn positions as in Table II; spin moments for other Mn are related by applying

the factors shown in Table IV.

DFT Heisenberg

Atom m‖ m‖ m⊥ φ

Mn(1) -3.6 -3.6 0.0 0

Mn(2) -3.6 -3.6 0.0 0

Mn(3) 3.6 3.0 -1.9 32

Mn(4) 3.6 3.2 1.6 27

Mn(5) -3.6 -3.6 -0.1 1

TABLE IV: Effects of Pbca symmetry generators on the magnetization components of the theo-

retical α-Mn2O3 magnetic structures listed in Table III.

Generator m‖ m⊥

(x,1/2-y,1/2+z) -1 -1

(1/2+x,y,1/2-z) -1 -1

(1/2-x,1/2+y,z) +1 -1

spins in a Heisenberg model approach. That is, instead of using Ising-like interaction terms

Jijσiσj, one uses Heisenberg-like interaction of spin “vectors” according to the principle

axes of “up” spin: Jij~σi · ~σj, with exactly the same set of Jij (note that the posterior likeli-

hood of coupling parameters Jα is actually a distribution, in the following, we use only the

most probable set of values for the Jα). For simplicity, we only included pair interactions

in this approach24. Simulated annealing was used to find the lowest energy state of the

Heisenberg model. Random initial spin configurations always converged to an equivalent

noncollinear ground state (right side of Table III), with a dominant spin axis direction m‖,

and all secondary spin components along the same orthogonal axis m⊥.



FIG. 4: Lowest-energy collinear magnetic structure found computationally; also collinear model

that gives best fit (χ2 = 2.54) to experimental results at 2 K. Only Mn atoms shown; dark spheres

represent spin “up” and light spheres spin “down”.
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FIG. 5: Calculated density of states (DOS) for α-Mn2O3 in ground state collinear magnetic struc-

ture.

The band structure for the lowest-energy collinear magnetic state found is shown in

Fig. 5. The structure has some similarities to that of Franchini et al.1, using the PBE0

approximation, including a band gap at the Fermi level (0.6 eV in our case). Our results

differ from theirs in that our antiferromagnetic structure (as opposed to their ferromagnetic

structure) results in a band structure without a global distinction between majority and

minority spins. Locally, around the magnetic Mn sites, one spin direction dominates. In

Fig. 6, we show the integrated DOS around each distinct Mn site, broken down into majority
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FIG. 6: Integrated density of states (DOS) for α-Mn2O3 in ground state collinear magnetic struc-

ture, within spheres of radius 1.24 Å centered on each Mn site. Integrated DOS of local majority

spins above the line and local minority spins below the line.

and minority spins. We find a remarkable signature of the combination of octahedral crystal

field splitting and effects of Jahn-Teller distortion in the nature of the highest occupied

levels: they are split off from the other occupied 3d states. The highest valence band is an

isolated band associated with 3d electrons of the Mn(1) and Mn(2). A second split band at

around EF − 0.8 eV is associated with Mn(3), Mn(4), and Mn(5) 3d electrons (Fig. 6).

Experimental Results

Room-temperature diffraction patterns (Fig. 7) exhibit no clear reflection splitting in-

dicative of an orthorhombic distortion. However, the peaks are broad and the cubic Ia3

model fits poorly yielding abnormally large atomic displacements parameters Uiso for the

oxygen atoms, which suggests that the structure is distorted. The data (not shown) can be

fitted satisfactorily using the orthorhombic Pbca structure reported in the literature with

sensible Uiso values. The refined lattice distortion at 300 K differed considerably between

the HIPD data (b/c = 1.0007) and BT-1 data (b/c = 1.0036), presumably because of the

close proximity of the phase transition which leads to relatively large changes in the lattice

distortion even for small temperature differences. The distortion increases rapidly on cooling

to b/c = 1.0085 at 100 K and the reflection splitting becomes evident (Fig. 7). For these

temperatures, the lattice parameters refined using the HIPD and BT-1 data were in good

agreement. Temperature dependencies of the lattice parameters, unit cell volume, and b/c



0

500

1000

1500

2000

65 65.5 66 66.5

In
te
n
si
ty
 (
co
u
n
ts
)

2 (deg)

300 K

100 K

2 K

Fig. 1

FIG. 7: A trace of the 622 cubic reflection at three different temperatures. This reflection appears

as a single peak at 300 K but exhibits pronounced splitting at sub-ambient temperatures. Similar

trends are observed for other reflections.

data are summarized in Fig. 8. Fig. 9 displays the experimental and calculated diffraction

profiles for T=100 K, while Table V summarizes the results of the nuclear-structure refine-

ments at 100 K and 2 K. The MnO6 octahedra exhibit strong Jahn-Teller distortions already

at 300 K (Table VI).

Below 100 K, a series of strong reflections appears at lower angles, which signifies magnetic

ordering (Fig. 10). The b/c ratio decreases slightly below the magnetic transition (Fig. 8(b))

to 1.0079 at 2 K. The patterns remain qualitatively unchanged from 60 K down to 2 K. The

magnetic reflections can be accounted for by a propagation vector k=0. All eight symmetry

elements of the space group Pbca leave this propagation vector invariant. Group-theory

analysis yields eight irreducible representations (IR) (Γi, i=1, 8), each having an order of

one. Only four of these IRs (Γ1, Γ3, Γ5, and Γ7), are common to all five of the inequivalent

Mn sites.

Regulski et al.6 presented their collinear magnetic-ordering model in the form of schematic

drawings for each Mn sublattice; no symmetry analysis was performed. According to our

representational analysis, the ordering types for their sublattices 1 (combined Mn 4(a) and

4(b) sites), 2, and 4 belong to the Γ3 representation. However, the ordering on their sub-

lattice 3 is incompatible with any of the IRs; that is, the model, at least as presented, is

not compatible with orthorhombic crystallographic symmetry (possibly there is a drawing
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FIG. 8: Temperature dependence of the (a) orthorhombic lattice parameters and (b) unit-cell

volume and b/c ratio which characterizes the magnitude of the orthorhombic distortion. The

behavior of the orthorhombic distortion changes across the magnetic transition at approximately

80 K. The error bars are within the size of the symbols.

error). The spin arrangement for their sublattice 3 can be made compatible with the struc-

tural symmetry by flipping the directions of two spins. The resulting ordering patterns

belong to either the Γ3 or Γ6 representations, depending on which two spins are flipped. We

fitted both models (i.e. Γ3 and Γ3 + Γ6) to our data. A collinear pattern with magnetic

moments directed along one of the orthorhombic axes was assumed. The Γ3 model with

all the moments parallel to the c-axis produced a superior fit of quality comparable to that

reported by Regulski et al. However, examination of the misfit between the calculated and

experimental profiles reveals significant discrepancies for several magnetic reflections that

become split in the orthorhombic structure (Fig. 10(a)), which indicates that the intensity

distribution among the split-peak components is incorrect. Conceivably, these deficiencies
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FIG. 9: Experimental (red/dots) and calculated (blue/line) neutron diffraction profiles (BT-1)

for α-Mn2O3 at 100 K. The residual is indicated below (green line). The agreement factors are

χ2 = 1.16 and Rwp = 4.79%.

were obscured by the insufficient resolution in the data used by Regulski et al.

As the literature model failed to describe the data, we considered collinear models cor-

responding to other representations (i.e. Γ1, Γ5 and Γ7). The Γ1 model with the magnetic

moments directed along the a-axis provided a satisfactory fit to the neutron data of quality

far superior to that obtained for any of the Γ3 models (Fig. 10(b)); the collinear Γ1 models

with magnetic moments directed along the b and c-axes yielded considerably worse agree-

ment factors. Models generated according to the Γ5 and Γ7 representations generated poor

fits and were discarded. Refinements of the magnetic-moment magnitudes (m) indepen-



TABLE V: Parameters of the nuclear structures of paramagnetic (T=100 K) and antiferromagnetic

(T=2 K) α-Mn2O3 obtained by Rietveld refinements using neutron powder diffraction data (BT-1).

In both cases, the space group is Pbca (#61). The model assumed isotropic atomic displacement

parameters (Uiso), which were constrained according to the atom type (i.e. Mn or O). The refined

values were Uiso(Mn) = 0.0031(2) Å2 and Uiso(O) = 0.0049(1) Å2 at 100 K and Uiso(Mn) =

0.0021(3) Å2 and Uiso(O) = 0.0040(1) Å2 (O) at 2 K. Numbers in parentheses refer to one standard

deviation as calculated in GSAS.

100 K (χ2 = 1.16) 2 K (χ2 = 2.54)

a 9.4104(1) 9.4078(1)

b 9.4509(1) 9.4488(1)

c 9.3706(1) 9.3739(1)

Atom Site x y z x y z

Mn(1) 4(a) 0 0 0 0 0 0

Mn(2) 4(b) 1/2 1/2 1/2 1/2 1/2 1/2

Mn(3) 8(c) 0.2598(5) 0.2854(3) -0.0105(5) 0.268(1) 0.280(1) -0.011(1)

Mn(4) 8(c) 0.2867(3) 0.0017(8) 0.2436(4) 0.2880(9) 0.009(2) 0.246(1)

Mn(5) 8(c) 0.0127(5) 0.2456(6) 0.2827(3) 0.012(1) 0.237(1) 0.2833(9)

O(1) 8(c) 0.4253(3) 0.1241(4) 0.3511(4) 0.4276(8) 0.1240(9) 0.3502(8)

O(2) 8(c) 0.1399(3) 0.3509(4) 0.4068(2) 0.1395(8) 0.3513(9) 0.4074(7)

O(3) 8(c) 0.3579(3) 0.4175(4) 0.1218(3) 0.3586(9) 0.4169(9) 0.1209(7)

O(4) 8(c) 0.0838(3) 0.3725(4) 0.1402(3) 0.0738(7) 0.3712(9) 0.1385(9)

O(5) 8(c) 0.3797(3) 0.1477(4) 0.0789(3) 0.3821(8) 0.1509(9) 0.0803(7)

O(6) 8(c) 0.1554(3) 0.0882(3) 0.3609(4) 0.1563(8) 0.0882(9) 0.3586(8)

dently for each Mn site significantly improved the fit. The resulting m-values, which at 2 K

range from approximately 3 µB to 4 µB, are consistent with those expected for Mn3+ ions.

The collinear model most consistent with the experimental results is shown in Table VII. It

is identical to that determined computationally (Fig. 4).

We explored potential deviations from the collinearity using the algorithms implemented

in SARAh. A relatively large number of RMC cycles (3,000 for 2 basis-vector mixing coeffi-

cients per site and 10,000 for 3 coefficients per site) were found necessary to locate a model



TABLE VI: Mn-O distances at 300 K and 100 K (in Å). Numbers in parentheses refer to one

standard deviation as calculated in GSAS.

300 K 100 K

Atom

Mn(1) 2.03(2) (×2) 1.949(3) (×2)

2.02(1) (×2) 1.944(3) (×2)

1.97(2) (×2) 2.129(3) (×2)

Mn(2) 2.04(2) (×2) 1.953(3) (×2)

1.90(1) (×2) 2.117(3) (×2)

2.04(2) (×2) 1.923(3) (×2)

Mn(3) 2.17(2) 1.88(1) 2.200(5) 1.879(5)

2.03(2) 2.31(2) 1.987(5) 2.327(5)

1.92(1) 2.00(2) 1.915(5) 1.961(5)

Mn(4) 2.00(2) 2.20(2) 2.033(6) 2.181(7)

1.90(1) 1.96(2) 1.934(5) 1.959(6)

2.35(2) 1.88(1) 2.269(7) 1.859(5)

Mn(5) 1.90(2) 1.96(2) 1.889(5) 1.943(5)

2.26(2) 1.91(2) 2.358(6) 1.916(5)

1.98(2) 2.18(2) 2.026(5) 2.134(5)

that provides an adequate fit (a goodness-of-fit χ2 ≤ 3) to the data. Detailed refinements

of the magnetic structure were performed at 40 K and 2 K. Multiple refinements that start

from randomly selected values of the mixing coefficients were run to verify the robustness

of the best-fit structural model at 2 K.

The best fit was obtained by restricting the magnetic moments to the orthorhombic

(010) plane. The fit of the several magnetic reflections was visibly improved in the non-

collinear model (Fig. 10(c), Fig. 11). The best-fit Γ1 models at both 40 K and 2 K feature

similar patterns of magnetic ordering (Table V). No additional improvement was obtained

by varying all three mixing coefficients per site after 20,000 RMC cycle; possibly, even

this number of cycles was insufficient to identify a global minimum. In the best-fit non-

collinear model, the magnetic moments are aligned preferentially with the a-axis but exhibit



TABLE VII: Magnetic-moment (m) components for the Mn atoms in the best-fit Γ1 models at 2

K and 40 K. The atomic coordinates at 2 K are given in Table V. The magnetic-ordering model

assumed my=0. The refined magnitudes of m (units of µB) are indicated for the inequivalent Mn

sites. Magnetic moments for the remaining Mn sites are generated as described in Table VIII. The

refinements at 2 K and 40 K were performed independently with the random starting models for

the basis-vector mixing coefficients. The angle between the mtot and the a-axis is defined as φ (◦).

Numbers in parentheses refer to one standard deviation as calculated in GSAS.

2 K 40 K

Atom mx mz mtot φ mx mz mtot φ

Mn(1) -2.6 1.6 3.1(1) 32 -2.3 1.4 2.7(1) 32

Mn(2) -3.4 -0.7 3.5(1) 12 -3.0 -0.8 3.1(1) 15

Mn(3) 3.2 -1.4 3.5(1) 23 3.0 -0.3 3.0(1) 5

Mn(4) 3.0 1.3 3.3(1) 24 2.9 0.3 2.9(1) 6

Mn(5) -3.5 -2.3 4.2(1) 34 -3.4 -1.0 3.5(1) 16

TABLE VIII: Effects of generators of Pbca symmetry on magnetic moments refined experimentally.

Generator mx mz

(x,1/2-y,1/2+z) -1 -1

(1/2+x,y,1/2-z) -1 +1

(1/2-x,1/2+y,z) +1 -1

significant (up to 32◦) deviations from this direction; the deviations from collinearity become

especially pronounced at 2 K.

Discussion

The theoretical lattice parameters of orthorhombic α-Mn2O3 change significantly when

the magnetic structure changes from ferromagnetic to the antiferromagnetic lowest-energy

collinear state (Table II), demonstrating significant spin-strain coupling. The ground state

lattice parameters are within about 0.1% of experiment, phenomenally good agreement that

demonstrates the accuracy of DFT calculations using the PBEsol exchange correlational
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FIG. 10: A low-angle portion of the neutron diffraction pattern collected at 2 K showing ex-

perimental (red/dots) and calculated (blue/line) neutron diffraction profiles. Note that all the

reflections with 2θ ≤ 32◦ were absent at 100 K (Fig. 9); these reflections, all indexable according to

the primitive nuclear-structure unit cell, originate from magnetic ordering. The calculated profiles

correspond to (top) the Γ3 model by Regulski et al. with magnetic moments aligned with the

c-axis, (middle) the Γ1 model with magnetic moments collinear with the a-axis, and (bottom) the

Γ1 model with non-collinear magnetic moments residing in the ac plane. The Γ1 models provide a

superior fit relative to the Γ3 model. A non-collinear alignment of magnetic moments significantly

improves the fit for several magnetic reflections (outlines using a dashed line).
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FIG. 11: Experimental (red/dots) and calculated (blue/line) neutron diffraction profiles (BT-1) for

α-Mn2O3 at 40 K (top) and 2 K (bottom). The calculated profiles correspond to the Γ1 model with

the non-collinear array of magnetic moments in the ac plane. The agreement factors are χ2 = 1.22

and Rwp = 5.21% (40 K) and χ2 = 2.53 and Rwp = 6.89% (2 K).
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FIG. 12: Calculated magnetic interaction parameters between Mn ions in α-Mn2O3. Positive

values for J favor antiferromagnetic alignment. Mn subscripts refer to the different Mn sites in the

orthorhombic phase. Error bars indicate plus and minus one standard deviation of the parameter,

based on cross-validation calculations.

along with on-site U and J parameters to treat d-electron correlations in Mn.

The lowest DFT collinear state found and the best low-temperature experimental fit

to a collinear model are identical, although they were achieved completely independently,

suggesting that the nature of the magnetism in α-Mn2O3 is largely solved. The secondary



components of the best noncollinear spin arrangements of model and experiment (Table III

and Table VII) appear different at first glance, but in fact, the two are related by the approx-

imate relationship m⊥(model) ≈ cos(2πx)m⊥(expt.), with x the crystallographic positional

coordinate. The source of the discrepancy is not clear, but the agreement is noteworthy given

the approximations involved in the computational approach. Note that the experimental

results show clear preferences for magnetic moments along particular directions; the DFT

approach neglected spin-orbit coupling, and thus the effect of magnetic moment direction

could not be studied.

The experimental results (Table VII) for total magnetic moment per site, mtot, are more

variable than the computational values (Table III), which are similar for all Mn sites. As

noted above, the theoretical moments are simply the differences in the number of spin up

and spin down electrons within spheres of somewhat arbitrary radius 1.24 Å centered on each

Mn; therefore the calculated moments are not directly comparable with the experimental

values. Also, thermal spin fluctuations at 40 K decrease the experimentally measured mtot

from the values measured at 2 K and increase the differences in measured mtot among the

different Mn sites (Table VII). The values of the experimental and computed magnetic

moments are reasonable for high-spin Mn3+ ions.

FIG. 13: Linkages between Mn in α-Mn2O3 limited to a subset of those with strong antiferromag-

netic interactions as determined in this work gives the lowest energy collinear magnetic structure

on the Mn(3), Mn(4), and Mn(5) sites.



FIG. 14: Similar to Fig. 13, with the Mn-Mn pairs with the five strongest AFM interactions shown.

One additional interaction, not shown in Fig. 13, is indicated by dotted lines here, and leads to

frustrated triangles, which presumably is the origin of the noncollinear ground state magnetism.

The pair magnetic parameters, as determined from the fit to the DFT results, are shown

as a function of Mn-Mn distance in Fig. 12. The strongest terms are antiferromagnetic

terms for exactly those Mn-Mn pairs that (1) are approximately 3.5 Å to 3.6 Å apart, (2)

share one close O atom bonded to each, and (3) have a Mn-O-Mn angle for these bonds less

than 125◦. These Mn-O-Mn pairs involve two Mn(3), Mn(4), or Mn(5) atoms and have very

unequal Mn-O distances. Within the Mn-Mn pairs the magnitude of the antiferromagnetic

interaction strictly decreases with increasing length of the longer Mn-O distance.

Aside from the Mn(1, 2)-Mn(1, 2) interaction at about 4.7 Å, which differs from zero

by six standard deviations, all interactions beyond 4.0 Å are within about two standard

deviations of zero. The calculated four-body terms are all within two standard deviations

of zero, and only a single such term is more than one standard deviation away from zero.

Note that negligible four-body interactions are deduced from the calculations rather than

being assumed a priori. Conversely, by not assuming that all strong magnetic interactions

are mediated by shared oxygen atoms, a significant interaction between Mn(1, 2)-Mn(1, 2)

pairs at about 4.7 Å separation is discovered here.

Two pair interactions of approximate magnitude 0.085 eV per pair are nearly degenerate

in energy and Mn-Mn distance, such that they can not be distinguished in Fig. 12. If the



Mn-Mn links corresponding to the 3 strongest terms and one of the 0.085 eV terms are drawn

(Fig. 13), then the magnetic structure for the Mn(3), Mn(4), and Mn(5) sites based on these

interactions, all antiferromagnetic, is completely determined to be that of the computational

and experimental collinear ground state. On the other hand, if links corresponding to both

0.085 eV terms are drawn (Fig. 14), then there are frustrated triangles where antiferromag-

netic interactions can not be satisfied for all bonds. A triangle of vector spins with frustrated

antiferromagnetic interactions has a (possible degenerate) ground state with a noncollinear

spin arrangement; we believe this is the origin of the noncollinear antiferromagnetism of

α-Mn2O3.

We only looked at the ground state magnetic structure, but the finite temperature mag-

netic correlations could also be investigated using the DFT-based model, which would allow

the nature of possible AFM-AFM transitions in α-Mn2O3 (6) to be determined.

Conclusions

First principles density functional theory DFT+U and cluster expansion model calcu-

lations, along with independent experimental neutron diffraction structure analyses, were

used to determine the low-temperature crystallographic and magnetic structure of bixbyite

α-Mn2O3. Both approaches independently gave nearly identical crystallographic and mag-

netic structures, with identical antiferromagnetic ordering along a principal magnetic axis

and secondary ordering along a single orthogonal axis, differing only by a phase factor in the

modulation patterns. The agreement between the two approaches suggests that the ground

magnetic state of α-Mn2O3 is largely solved.

The computational methods exploited a Bayesian approach that allows the number of

parameters in the cluster expansion model to exceed the number of input structure energies

without sacrificing energy predictability. The individual magnetic coupling parameters were

determined, showing that specific frustrated antiferromagnetic interactions determine the

magnetic structure. The experimental approach benefited from optimized sample synthe-

sis, which produced crystallite sizes large enough to yield a clear splitting of peaks in the

neutron powder diffraction patterns, thereby enabling magnetic-structure refinements under

the correct orthorhombic symmetry.

The approaches used here should prove suitable for similar problems of magnetic ordering



in other complex oxides whose magnetic states are determined by a large and frustrated set

of antiferromagnetic interactions.
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