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We study the S = 1/2 Heisenberg (J) model on the two-dimensional (2D) square lattice in the
presence of additional higher-order spin interactions (Q) which lead to a valence-bond-solid (VBS)
ground state. Using quantum Monte Carlo simulations, we analyze the thermal VBS transition.
We find continuously varying exponents, with the correlation-length exponent ν close to the Ising
value for large Q/J and diverging when Q/J approaches the quantum-critical point (the critical
temperature Tc → 0). We identify the transition with a class of conformal field theories with charge
c = 1 and critical exponents varying between those of the 2D Ising model and the Kosterlitz-
Thouless (KT) fixed point. We find explicit evidence for KT physics by studying the emergence of
U(1) symmetry of the order parameter at T = Tc when Tc → 0.

PACS numbers: 75.10.Kt, 75.10.Jm, 75.40.Mg, 75.40.Cx

The S = 1/2 Heisenberg model on the two-dimensional
(2D) square lattice can host a quantum phase transition
between a Néel antiferromagnet (AFM) and a valence-
bond-solid (VBS) when other interactions are added1.
This transition between two different ordered ground
states has been the subject of a large body of work2.
In the J-Q model3, the pair exchange J is supplemented
by products of two or more singlet projectors on adjacent
links, with strength Q. For large Q/J the correlated sin-
glets destroy the AFM order, leading to the VBS crystal-
lization of singlets. Unlike geometrically frustrated sys-
tems, on which research on VBS states, and the AFM–
VBS transition were focused for a long time4–7, the J-Q
model is amenable to large-scale quantum Monte Carlo
(QMC) simulations8 and its AFM–VBS transition has
been studied extensively3,9–18. The model may realize
the unusual (“non-Landau”) deconfined quantum-critical
(DQC) point proposed by Senthil et al.19,20, where both
order parameters arise out of emergent spin-1/2 objects
(spinons), which at criticality are described by a CP1

gauge-field theory. Other, less exotic scenarios have also
been put forward, however11,21,22.

The putative DQC point is a manifestation of quan-
tum effects, due to Berry phases and emergent topologi-
cal conservation laws20,23 that potentially are at play in
many strongly-correlated quantum systems. Amenable
to unbiased QMC simulations, J-Q models offer unique
opportunities to examine the DQC proposal in detail
from various angles. Here we present results for the
VBS transition at finite temperature (T > 0), discussing
its universality, relationship to conformal field theory
(CFT), and the emergent U(1) symmetry20 associated
with the DQC point when approached at T > 0.

Universality of the VBS transition—The square-lattice
columnar VBS obtaining with the standard J-Q model
breaks Z4 symmetry and, thus, it should exist T > 0.
Thermal 2D Z4-breaking transitions normally do not
have fixed critical exponents, but belong to a univer-
sality class of CFTs with charge c = 1 exhibiting con-
tinuously varying exponents24,25. Realizations of these
transitions include the standard XY model with a field

h cos(4θi) (with spin angles θi)
26,27, the Ashkin-Teller

model28,29, and the Ising model with nearest- and next-
nearest neighbor interactions (the J1-J2 model)30,31. The
deformed XY model has a critical line connecting Ising
and Kosterlitz-Thouless (KT) fixed points32,33, while the
critical lines of the AT and J1-J2 models connect Ising
and 4-state Potts points. It is intersting to ask if any of
these scenarios are realized by the T > 0 VBS transitions
of the J-Q model. In this Letter we present strong evi-
dence for an Ising–KT critical line, with the KT transi-
tion obtaining when Q/J approaches its quantum-critical
value and the critical temperature Tc → 0. This agrees
with the DQC U(1) gauge-field description, where the
nature of the VBS state is dictated by a dangerously ir-
relevant operator2,19,20, which implies that the VBS fluc-
tuations should cross over from Z4 to U(1) symmetric as
the DQC point is approached. This has been observed
in ground-state studies of the VBS fluctuations of J-Q
models3,11,12. We here study the emergent U(1) along
the critcal line when Tc → 0.

The T > 0 VBS transition was previously studied by
Tsukamoto et al.34 by QMC simulations of the J-Q2

model, where the Q2 interaction is a product of two sin-
glet projectors. The results showed puzzling deviations
from the “weak universality” applying to the transitions
discussed above, where the critical correlation-function
exponent η = 1/4 but other exponents depend on sys-
tem details. Instead, η ≈ 0.5 was obtained34. Here we
consider the J-Q3 model12, where the Q3 terms consist
of stacked bond-singlet projectors on three adjacent lat-
tice links. This model has a more robust T = 0 VBS for
large Q3, while the J-Q2 model is near-critical even for
Q2/J → ∞. With the J-Q3 model we can systematically
study the T > 0 transition both far from the DQC point
and close to it. We find η = 1/4 to high precision.

Model and methods—We next discuss the QMC calcu-
lations and data analysis on which we base our conclu-
sions. The J-Q3 Hamiltonian is defined as

H = −J
∑

〈i,j〉

Pij −Q3

∑

〈ijklmn〉

PijPklPmn, (1)
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FIG. 1. (Color online) Extraction of Tc for system at q = 5.
Shown in (a) are, in order of higher to lower curves on the left
side, results for ξ1/L versus T for system sizes L = 96, 48, 24,
and 12. Crossing points giving Tc(L) estimates are shown
in (b), using both ξ1 and ξ2 with sizee pairs (L, 2L). The
data were fit to the form Tc(L) = Tc(∞)+ a/Lw in the range
1/L ∈ [0, 0.08] (ξ1) and [0, 0.06] (ξ2), yelding Tc = 0.249(3) in
the case of χ1. For the ξ2 fit, Tc(∞) = 0.249 was fixed.

where Pij is a nearest-neighbor bond-singlet projector;

Pij =
1
4
− Si · Sj , (2)

here on the square lattice with L2 sites. We define the
coupling ratio q = Q3/J . The point separating the AFM
and VBS ground states is qc = 1.500(2)12. We use the
stochastic series expansion (SSE) QMCmethod with loop
updates35–37 to compute quantities useful for extracting
the critical temperature and exponents of the T > 0 VBS
transition for q > qc.

We define the VBS correlation length using the J-term
(bond) susceptibility,

χb1,b2 =

∫ β

0

dτ
〈

Pb2(τ)Pb1 (0)− 〈Pb〉
2
〉

, (3)

where Pb is a singlet projector (2), with b a bond con-
necting sites ib, jb. The susceptibilities can be computed
easily with the SSE method, because the projectors are
terms of the Hamiltonian and, thus, appear in the sam-
pled operator sequences. With n(b) denoting the number
of J-operators on bond b, the susceptibility is38

χb1,b2 =
〈

n(b1)n(b2)− 〈n(b)〉2 − δb1,b2n(b1)
〉

/β. (4)

This estimator works well when q is not too large. When
q > 10 the measurements become noisy due to the low
density of J-operators.

To detect columnar VBS order, we consider the bonds
b1 and b2 oriented in the same (x or y) lattice direction
and denote by χα(r), α = x, y, the spatially averaged
distance-dependent susceptibility. The VBS susceptibil-
ity χx

VBS is the q = (π, 0) Fourier transform of χx(r)
(and analogously for y). The columnar VBS breaks the
lattice rotational symmetry, and we can define two cor-
relation lengths. Using the x susceptibility and defining
q0 = (π, 0), q1 = (π + 2π/L, 0) and q2 = (π, 2π/L) we
have the correlation lengths parallel and perpendicular
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FIG. 2. (Color online) (a) The critical temperature extracted
from ξ1/T (open circles). Also shown are results (solid circles)
where the VBS susceptibility exhibits the best scaling behav-
ior when γ = 7/4 is fixed. (b) The exponent ν versus q. The
vertical dashed lines in both panels mark the quantum-critical
ratio qc

12. The curves are guides to the eye.

to the x bonds for an L× L lattice;

ξx1 =
L

2π

√

χx
VBS(q0)

χx
VBS(q1)

− 1, ξx2 =
L

2π

√

χx
VBS(q0)

χx
VBS(q2)

− 1,

(5)
and analogously for y. Average valuess of x, y quantities
are denoted in the following without superscript.
Critical temperature—To illustrate how Tc is deter-

mined, Fig. 1(a) shows ξ1/L versus T at q = 5 for several
system sizes. According to finite-size scaling theory39,
ξ1/L for different L should cross at Tc when L → ∞.
Due to scaling corrections, the crossing point Tc(L1, L2)
between two system sizes, which we here take as L and
2L, drifts slowly with L and converges as the system size
increases. We use the crossing point for both ξ1 and ξ2 to
extract Tc and check the consistency of the two results.
Fig. 1(b) shows two sets of Tc(L) point obtaied from

ξ1 and ξ2. Both curves can be fitted with the form
Tc(L) = Tc(∞) + a/Lw but the parameters are differ-
ent. The two curves appoach Tc from different directions.
The ξ1 data have large deviations from the fitted function
only for small systems (L . 12), while ξ2 shows correc-
tions extending up to larger L and the size dependence is
non-monotonic. The data nevertheless extrapolate con-
sistently to a common Tc in the thermodynamic limit.
To demonstrate this, we show in Fig. 1(b) a fit to the ξ1
data, giving Tc = 0.249(3). (which has a smaller statis-
tical error than the value from ξ2). We also show a fit to
the ξ2 data, where Tc(∞) is fixed at the result from ξ1.
Results for other q points were extracted in the same

way, making sure that ξ1 and ξ2 data extrapolate con-
sistently and using the ξ1 results (which always have
smaller errors) for further analysis. This procedure be-
comes increasingly challenging as the quantum-critical
point qc is approached and Tc → 0. The corrections to
the asymptotic form became more profound and larger
systems have to be used. In addition, the SSE calcula-
tions become more time-consuming, since L ≫ 1/T is
required for the simulated effective classical system to be
firmly in the 2D limit. The largest system was L = 192
at q = 5/3. Tc is shown versus q in Fig. 2(a).
Critical exponents—we next present an analysis of the
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FIG. 3. (Color online) (a) Scaling behavior of the critical
VBS susceptibility for systems at q = 5. Here T was ad-
justed to give the best linear scaling on the log-log plot, giv-
ing γ/ν = 1.750(1). (b) The size-scaled susceptibility under
the assumption η = 1/4 versus T for several system sizes.
The crossing point is consistent with Tc extracted from the
correlation length.

scaling behavior of the VBS susceptibility, which exactly
at Tc should follow the form

χVBS(Tc) ∼ Lγ/ν , (6)

where γ/ν = 2 − η. Here we can use Tc extracted above
from the correlation length scaling. Alternatively, we can
adjust the temperature until the best power-law scaling
is obtained. If sufficiently large system sizes are used the
two methods should of course deliver consistent results.
This is indeed the case, as shown in Fig. 2(a). An ex-
ample of the best power-law scaling is shown for q = 5
in Fig. 3(a). Here the corrections to scaling appear to
be very small (i.e., a straight line can be well fitted on
the log-log scale even when systems as small as L = 10
are included) and the temperature, T = 0.253, is only an
error bar off the Tc value extracted from ξ1/L. A series
of fits with a bootstrap analysis to estimate the errors
yielded γ/ν = 1.750(1), or η = 0.250(1). We find consis-
tency with η = 1/4 at similar level of precision for all q
values studied.
Fig. 3(b) demonstrates a different way to analyze the

susceptibility and test the assumption η = 1/4, by graph-
ing χVBSL

−7/4 versus T is for different system sizes. All
curves cross essentially at the same point, which confirms
the scaling power γ/ν = 7/4 in Eq. (6). The remarkable
absence of drift in the crossing points of χVBSL

−7/4 (in
contrast to the significant drift found for the normalized
correlations lengths) makes this quantity a perfect candi-
date for carrying out a finite-size data collapse to extract
correlation length exponent ν, which we consider next.
Shown in Fig. 4 are data sets for system sizes L = 48

to 112 at q = 10/3, graphed versus tL1/ν , where t is the
reduced temperature, t = (T − Tc)/Tc, and the critical
temperature was determined in the manner above to be
Tc = 0.217. The correlation lengt ν was adjusted to
give the best data collapse, as measured with respect
to a polynomial fitted simultaneously to all data points
for L = 80, 96, 112 in the range tL1/ν ∈ [−0.5, 3]. A
zoom-in on this window is shown in the inset. The fit
was restricted to the larger sizes in order to minimize the
effects of neglected scaling corrections, and the window of
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FIG. 4. (Color online) Data collapse of the VBS susceptibility
for system s at q = 10/3. The inset shows data for L =

80, 96, 112 in the range tL1/ν
∈ [−0.5, 3] for which the fitting

procedure was carried out. The main part shows data in a
larger window and including also smaller systems. The fit
yelded ν = 1.70(5).

tL1/ν values was chosen to obtain a statistically sound fit.
This procedure along with an analysis of the statistical
errors gave ν = 1.70(5). When q is tuned towards qc,
larger system sizes are required to achieve good collapse
due to more pronounced scaling corrections, as already
mentioned above. As an example, at q = 5/3, we used
system sizes L = 112, 128, 160, 192.
All our results for Tc and ν versus q are shown in Fig. 2.

Tc clearly decreases when q approaches qc and ν grows
rapidly, changing from 1.065(5) at q = 10 to 2.7(1) at
q = 5/3. The behavior suggests that ν diverges when
q → qc, which would mean that the critical line corre-
sponds to the c = 1 Ising–KT scenario, with the KT
universality applying in the limit q → q+c and 2D Ising
universality (ν = 1) applying in the extreme limit far
from the quantum-critical point (which cannot strictly
be achieved within the J-Q3 model, but ν is already close
to the Ising value for q = 10; the largest q studied here).
This scenario is also supported by the fact that there is
no specific-heat peak at Tc, i.e., the exponent α < 0.
Emergent U(1) symmetry—The varying critical expo-

nents are related to evolving critical VBS fluctuations.
We investigate these by following the distribution of the
components (Dx, Dy) of the VBS order parameter. The
columnar VBS operator for x-bonds are defined as

D̂x =
1

N

∑

r

(−1)xPr,r+x̂, (7)

and D̂y is defined analogously. An SSE-sampled con-
figuration can be assigned definite “measured” values
(Dx, Dy) by the operator-counting procedure discussed
above in the context of the susceptibility (3). We ac-
cumulate the probability distribution P (Dx, Dy), which
reflects the nature of the VBS fluctuations. In anal-
ogy with XY models with dangerously-irrelevant Z4

perturbations40, one would expect the four-fold sym-
metric VBS distribution to develop signatures of U(1)
symmetry. This has previously been observed when ap-
proaching the quantum-critical point at T = 0. We now
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FIG. 5. (Color online) Dimer-order distribution P (Dx, Dy)
for system size L = 32 (left panels) and L = 64 (right panels)
in the close vicinity of Tc. The coupling ratios (temperatures)
are q = 10 (T = 0.29) in (a),(b); q = 10/3 (T = 0.218)
(c),(d); q = 5/3 (T = 0.08) in (e),(f). In (f) the distributions
is somewhat affected by unequal sampling (due to long QMC
autocorrelation times) in different angular sectors.

approach this point by following the T > 0 critical line.
Fig. 5 shows results for several combinations of the sys-
tem size and the coupling ratio. While clearly four-fold
symmetric distributions apply for large q, the histograms
become more circular as the quantum-critical point is ap-
proached. Like at T = 012, one can expect the distribu-
tion to be effectively U(1) symmetric when L (or some
other the course-graining scale) is less than a lengt-scale
Λ, with Λ → ∞ as q → qc. For the system sizes studied,
L < Λ at q = 5/3, while for the larger q in Fig. 5 the sys-
tem sizes exceed Λ. These observations provides direct

evidence for U(1)-symmetric VBS fluctuations leading to
the large ν found here close to qc.
Discussion—All our calculations show consistently

that the thermal VBS transition in the J-Q3 model has
critical exponents varying in a range expected in a par-
ticular subclass of c = 1 CFTs. The exponent η is con-
stant at η = 1/4, in agreement with weak universality,
and ν grows rapidly as the quantum-critical point is ap-
proached, indicating an emergent U(1) symmetry of the
VBS order parameter and a KT transition obtaining in
the limit Tc → 0+. We expect that the same behavior
should apply also in the J-Q2 model, but that cross-over
behaviors associated with the proximity to the quantum-
critical point for all Q2/J in that model may make it
difficult to extract the exponents there34. Since micro-
scopic details should not matter, by universality our re-
sults should apply to a wide range of VBSs.
The significance of establishing the nature of the T > 0

critical line is that it puts the phase diagram of the J-Q
model firmly within an established CFT. For T → 0+,
the effective (2 + 1)D system, obtained in a quantum–
classical mapping through the path integral, is still finite
in the “time” dimensions, and, thus, the KT scenario can
apply. Exactly at T = 0 the effective system is fully 3D
and a different criticality must apply (that of the puta-
tive DQC point). While we cannot strictly rule out a
change of behavior to a first-order transition for very low
temperatures11,14,22 (i.e., the c = 1 CFT mapping would
hold only down to some low temperature), there are no
indications of this in any of our results. Note, in partic-
ular, that in finite-size scaling at a first-order transition
one should see ν = 1/d41, where d is the dimensionality
(i.e., d = 2 in our case when Tc > 0). Instead, at the
lowest Tc reached here, ν ≈ 3.
The non-commutability of the limits L → ∞ and

1/T → ∞ is also associated with interesting cross-overs,
which we have observed here but not studied in detail.
Further investigations of this aspect of the AFM–VBS
transition are warranted.
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