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Abstract

Rotation of polarization of light on transmission and reflection at materials with time-reversal

breaking (Faraday and Kerr effects, respectively) have been studied for over a hundred years. We

add to such phenomena by studying optical properties of magneto-chiral states which are states with

loop currents such that there is finite Hall effect at zero applied magnetic field. Qualitatively new

features arise in reflection and transmission in such a state. This state is shown to be induced

in underdoped cuprates given their observed magneto-electric loop-current order and certain lattice

symmetries. These results explain the observation of Kerr effects with unusual properties and help

further confirm the nature of the symmetry breaking in underdoped cuprates.
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I. INTRODUCTION

A very interesting experimental development in the novel physics in underdoped cuprates

is the discovery of an unusual Kerr effect [1] in underdoped cuprates. The unusual part of the

observation is that for a given sample and experimental conditions, the sign of the rotation

of the polarization angle is the same on opposite surfaces of the sample, while in the usual

Kerr effect the rotation angle must reverse. We will call this the Kapitulnik-Kerr (KK) effect.

In BISCCO-2201 [2] and HgBa2CuO4+δ [3], the temperature of onset of the effect TKK(x) is

within the experimental uncertainty consistent with T ∗(x) deduced from other measurements,

including time-reversal breaking observed by neutron scattering for the latter [4]. The sensitiv-

ity of the experiment gives clear evidence of a phase transition even though the detected Kerr

rotation corresponds to an effective magnetic moment which is less than 10−5µB/unit-cell. The

smallness of this effect compared to the order deduced by the polarized neutron experiment

(O(10−1)µB/unit-cell) suggests that the time-reversal breaking observed in KK is an effect in-

duced by the principal order parameter detected by neutrons. In several underdoped samples

of Y Ba2Cu3O6+δ [5], TKK(x) is consistently lower than T ∗(x) but the two head towards zero

at the same x, the quantum-critical point. A Kerr effect [6] and (the symmetry equivalent)

zero-field Nernst effect [7] are also observed in La2−xBaxCuO4 below a specific temperature but

deduction of T ∗ in it is uncertain.

The unusual phenomena in underdoped cuprates is a central aspect of the mystery of the

high temperature superconducting cuprates. Increasing experimental evidence has been ad-

duced which is consistent with the suggestion [8] that there is a transition to an unusual state

at T ∗(x), below which all thermodynamic and transport properties change. The specific state

suggested is a Magneto-electric (ME) state which breaks time-reversal through orbital current

loops within each unit-cell in a pattern that breaks inversion but preserves translational sym-

metry. Signatures consistent with such a state have been found in four different families of

cuprates by polarized neutron scattering [4]. In one of them the suggested dichroic Angle re-

solved photoemission (ARPES) experiments were also consistent with such an order. Recent

ultrasound experiments [10] as well as magnetization measurements [11] give clear evidence of

a thermodynamic phase transition at T ∗(x). But as explained below, such a loop-current order
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itself cannot have a Kerr effect.

Usually Kerr effect is due to ferromagnetic order. But sensitive magnetization measurements

[11] rule out onset of such moments to values greater than about 10−7µB/unit-cell. An ingenious

proposal [12] using variants of the symmetry of the magneto-electric order parameter gives a

Kerr effect without ferromagnetic order, but the specific symmetry elements required are not

consistent with more recent neutron scattering results [13]. It also does not give the unusual

newly discovered aspect of the KK effect. We present here the physical ideas and calculations

leading to the Kerr effect with the observed unusual feature which is also not ferromagnetic

and not in conflict with any equilibrium data that we are aware of.

A Kerr rotation is equivalent to having a finite antisymmetric imaginary part of the dielectric

tensor or equivalently off-diagonal or Hall conductivity σxy. Four loop-current states, in different

point-group symmetry are possible [19] in the two-dimensional three orbital/unit-cell cuprate

model without breaking translational symmetry. As pointed out by Fradkin and Sun [15]

and further elaborated [16], one of these possible loop-current states is a state with a finite

Anomalous Hall effect, i.e. σxy 6= 0 in zero magnetic field [18]. Such a state breaks time-

reversal but breaks chirality rather than inversion as in the ME state observed by neutrons.

It preserves the product of time-reversal and chirality. We shall call such a state a Magneto-

chiral state (MC) and show that it has the observed KK effect. We also show that for lattice

distortions or potentials of a specific point group (or lower) symmetry, the ME state consistent

with observations in neutron scattering must necessarily induce the MC state. We suggest

that the coincidence of TKK and T ∗ is due to the fact that BISCCO-2201 and HgBa2CuO4+δ

have lattice distortions already present at T ∗(x) but that in Y Ba2Cu3O6+δ , they set in at a

temperature below T ∗(x). This is consistent with recent experiments which show structural

distortion at below about TKK(x).

This paper is organized as follows: We begin by briefly describing the ME and the MC states.

This is followed by the proof that in presence of specified lattice distortion, the MC state must

accompany the ME state. We then calculate σxy for this state to give an estimate for it in

relation to experiments. Finally we show by an extension of the methods used in Ref.(14) for

Kerr effect due to time-reversal symmetry breaking and the Faraday effect due to time-reversal

preserving gyrotropy that the MC state combines features of both such that it has the special
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FIG. 1: The possible magneto-electric Loop current (A) and the Magneto-chiral current (B) Orders

in underdoped cuprates

new features of Kerr effect observed by Kapitulnik et al.

II. THE MAGNETO-ELECTRIC STATE AND THE MAGNETO-CHIRAL STATE

The magneto-electric loop current state in cuprates is described by the order parameter Ωx̂′

in each unit-cell, where

Ωx̂′ =

∫

unit−cell

d2r
(

L(r)× r
)

(1)

L(r) is the orbital magnetic moment at a point r measured from the center of each cell. The

current loops in a unit-cell leading to the two orbital-magnetic moments in each unit-cell are

shown in Fig. (1A). Such a state breaks time-reversal and inversion, and preserves only one

of the four reflection symmetries of the square lattice, that in the direction x̂′ = 1√
2
(x̂ + ŷ).

(There also exists an equivalent possible state Ωŷ′ ; ŷ′ · x̂′ = 0.) As discussed already [15, 16],

such an order parameter has σxy = 0. Although each k state carries a Hall-current, states

k and −k states carry Hall current in opposite directions because the magneto-electric state

breaks inversion,while preserving the product of inversion and time-reversal. The net effect is

zero anomalous Hall current.
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As shown in (19), the three orbital model for cuprates in fact gives five translational sym-

metry preserving loop current states in distinct point group symmetries for the square lattice.

The Loop ordered states were deduced in a mean-field approximation by first expressing the

nearest neighbor interactions Hnn in the Cu-O and the O-O bonds in terms of the biquadratics

of the five possible closed loops of currents in a cell. As derived in Eq. (D10) of Ref. (19), the

gauge-invariant, spin-singlet, and translation-preserving parts of the interactions

Hnn =
∑

<R,R′>

Vpdnd,R(nx,R′ + ny,R′) + Vppnx,Rny,R′ (2)

can be written in terms of current loops:

∑

i

(

−
Vpd

16

)[

|Ωi,s|
2 + |Ωi,x′|2 + |Ωi,y′|

2 +
1

2
|Ωi,(x2−y2)|

2
]

−
(Vpp

8

)

|Ωi,s̄|
2, (3)

In (2), < R,R′ > denote the O nearest neighbors of a given Cu site as well as the O nearest

neighbors of a given O site. In (3), i labels the unit-cells and the labels s, s̄, x′, y′ and x2 − y2

denote loop currents in different point group representations. All the five current loops Ωi,α

[20] are depicted in Fig. (5) of Ref. (19); we have reproduced the current loop state Ωi,x′

and Ωi,s̄ in Fig. (1). As is clear from this figure, the latter breaks time-reversal and is chiral.

We refer to such a state as Magneto-chiral (MC). Such a a state has a finite Hall effect in

zero magnetic field (AHE) [15–17]. The effective one-particle Hamiltonian for such a state is

H(AHE) =
∑

k Hk(AHE) is

Hk(AHE) =











0 itsx itsy

−itsx 0 t′sxsy + ircxcy

−itsy t′sxsy − ircxcy 0











(4)

with sx,y = sin(kx,ya)/2; cx,y = cos(kx,ya)/2. In Fig. (1B), the flux through the central square

is ∝ r/t and that in the four surrounding triangles is ∝ −1
4
r/t.

III. COUPLING BETWEEN MAGNETO-ELECTRIC AND MAGNETO-CHIRAL

STATES

We now show that ME state must be accompanied by the MC state in a lattice with a specific

symmetry. The required symmetry of the lattice is such that it has the same broken inversion
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FIG. 2: Berry curvature as a function of filling for the conduction (and with a change of sign) of the

valence band for indicated values of the effective flux coefficient r/t. The inset gives the Anomalous

Hall coefficient deduced, σxy/(e
2/h) for a conduction band filling of near 1/2, representative of the

underdoped cuprates.

and reflection symmetries which are broken by Ωi,x′ in the ”perfect” square lattice. Specify

such broken lattice symmetries by ǫx̂′. Then it follows that an invariant in the free-energy

density of the form

αǫx̂′ ·Ωi,x′Ωi,s̄ (5)

is allowed. Therefore a state with 〈Ωs̄〉 6= 0 is mandated if 〈Ωx̂′〉 6= 0. Its magnitude is given

by αχAHEǫx̂′ · 〈Ωx̂′〉, where the (positive) free-energy of the AHE in the ”perfect” lattice is

(1/2χAHE)|Ωs̄|
2.

We can show how 〈Ωs̄〉 is induced by 〈Ωx̂′〉 by generalization to a distorted lattice of the

procedure by which (3) was obtained. Consider a Cu-O lattice such that the effective inter-

site potentials (and the transfer integrals) in the Cu-O bonds and/or the O-O bonds have the

point-group symmetry of a given domain of the magneto-electric state. This could happen with

just the movement of the two O atoms within a unit-cell without the Cu changing their square
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lattice configuration or more complicated arrangements could be envisaged [21]. The simplest

realization of the idea is if, for example, the top-right and the bottom-left Cu-O and O-O bonds

have different potentials Vpd ± δV x′

pd , Vpp ± δV x′

pp . It is obvious that with such perturbations the

five current loops of Eq. (3) are not mutually orthogonal. Specifically, one generates to leading

order the terms,

δV x′

pd

32

(

Ωs̄Ωx̂′ +Ωx̂2−ŷ2Ωŷ′

)

. (6)

This means that if ground state already has 〈Ωx̂′〉 6= 0, a finite 〈Ωs̄〉 must be generated due to

the symmetry broken by δV x′

pd , so that there is an anomalous Hall effect. If the ground state

already has 〈Ωŷ′〉 6= 0, a finite 〈Ωx̂2−ŷ2〉 is generated and there is no anomalous Hall effect. The

situation changes correspondingly for a perturbation δV y′

pd .

IV. CALCULATION OF ANOMALOUS HALL CONDUCTIVITY

The zero-field σxy for the Magneto-chiral state given by (4) is now calculated. For t′/t < 1,

the Chern number of the 3 bands are −1, 0 and 1 from the bottom respectively. The Chern

number is not sensitive to r/t for any full band. For partially filled conduction bands, we can

integrate the Berry curvature up to the chemical potential. The resulting Chern number as a

function of band-filling is shown in Fig. (2) for t′/t = 0.1, r/t = 0.1 and r/t = 0.01. The point

to note is that the Chern density in the (non-overlapping) valence and the conduction band

are concentrated more and more sharply towards the top of the former and the bottom of the

latter as r/t decreases. Therefore for a given filling of the conduction band the observable σxy

(and its consequences), which sums over the contributions of the bands integrated up to the

chemical potential [18] decrease rapidly towards 0 as r/t decreases.

In the inset of the figure we show the deduced σxy/(e
2/h) for a conduction band filling of near

1/2, representative of the underdoped cuprates. The result that σxy ∝ r/t can be also be easily

derived analytically, for a chemical potential not close to the edge of the bands, by expanding

the wave-function in r/t and calculating the Chern integral and noting that the correction is of

O(r/t)3. This fails near the edge of the band as for a full band the chern-number is independent

of r/t.
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V. SPECIAL FEATURES OF THE KERR EFFECT

We now discuss the new features brought about in a Kerr effect experiment by the MC state

because a finite σxy alone does not fully characterize its chirality breaking aspect. The relation

between the applied electric field Ei and the displacement Dj for an applied magnetic field or

a time-reversal breaking order given by (See, for example, Eq. (101.6) of Ref. (14)) by:

Ei = η′ikDk + i(G× 〈D〉)i (7)

where the dielectric function ǫik = ǫ′ik + iǫ′′ik, η ≡ ǫ−1 and G is related to the dielectric tensor

and to the order parameter. This is allowed because G is an axial time-reversal odd vector so

that i(G × D) is a polar time-reversal even vector just as E. For the simple situation of an

external magnetic field or a spatially homogeneous time-reversal breaking order parameter gk,

Gi = −
1

|Det ǫ|
ǫ′ikgk, (8)

igk specifies the magnitude and the direction of time-reversal odd vector. igk in the text-book

examples is due to a magnetic field or magnetization uniform over the sample. The expectation

value put on D is to indicate that the effect is due to polarization produced due to the change

in wave-functions which is linear in the applied electromagnetic field and which is finite in any

unit-cell. This hardly needs stating in the usual case but is crucial for the effects we consider

below.

Let us generalize this result to time-reversal breaking states that also break chirality, partic-

ularly of the kind shown in Fig. (1B) for Cuprates in which the magnetization consist of a part

which is pointing up in one part of the unit-cell and down in the other and is zero averaged over

the unit-cell. These magnetizations are produced by a pair of inequivalent current loops in each

unit-cell. This is more obvious if one draws the unit-cell as rectangular in shape than as shown

in Fig. (2B). One loop is bounded by four O-ions and encloses a Cu-ion at its center, the other

also is bounded by four O-ions and has no ion inside it. Each loop is described mathematically

by its chirality and the direction of the effective magnetic field through it [19]:

igµ(x, y) = igµ(x∂/∂y − y∂/∂x)µẑ. (9)

Here igµẑ signifies the magnitude and the direction of the field through the loops µ = 1, 2 and

the operator (x∂/∂y−y∂/∂x)µ specifies its chirality. (This operator should be considered to be
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acting with respect to the center of each loop). Both the direction of the field and the chirality

are reversed in µ = 1 compared to µ = 2. On applying an external electromagnetic field, the

crystal linearly responds by generating a polarization and therefore a contribution to D(x, y)

in each unit-cell which has the same symmetry as the order parameter. There is then a spatial

variation of D(x, y) in each unit-cell of the form xy(x2 − y2) in one loop, and −xy(x2 − y2)

in the other. This must happen because the chiral operator (x∂/∂y − y∂/∂x) has the same

symmetry as xy(x2 − y2). Since the two loops are chemically inequivalent, the the magnitude

g1 6= g2. So in the presence of an external electro-magnetic field, local field effects induce a pair

of chiral variation in D(x, y) inside each unit-cell, the same in each unit-cell for long-wavelength

response. It follows that, below the loop order transition,

gẑ ≡
∑

µ

gµ〈(x∂/∂y − y∂/∂x)D(x, y)〉µẑ 6= 0. (10)

when the expectation values are calculated with wave-functions functions changed linearly in

the applied electromagnetic field Ei. The sum over the two loops in each unit-cell is finite.

The MC loops of Fig. (1) occur in two varieties of domains, the one shown and one with the

direction of currents reversed. We note the important fact that the two domains have identical

values of gẑ because reversal of chirality reverses the direction of magnetic field. The special

nature of the magneto-chiral effect may be better understood by comparing the above to the

case of a chiral polar molecule lying in each (two-dimensional) unit-cell in which case there is

no ẑ to think about or a ferromagnet when there is no chirality to think about. In either of

those cases different domains would have opposite signs of the relevant gẑ.

One can now proceed with the standard methods of calculating electromagnetic propagation,

for example, as given in Ref. (14 -Sec.101). Let the refractive index for normal incidence on

the Cu-O planes in say the +ẑ direction and assuming a tetragonal symmetry be n0 in the

state without the broken time-reversal symmetry. [25]. The refractive indices in the presence

of MC order for electromagnetic propagation for anti-clockwise (right-handed) and clockwise

(left-handed) circular polarization, looking along the wave-vector, are given by

n∓ = n0 ∓ g, (11)
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with corresponding polarizations given by

Dx = ∓iDy. (12)

There is then a rotation of linear polarization. The direction of rotation is determined by the

sign of g. Consider propagation in the −ẑ direction. Then without the chirality operator, as

for the usual Faraday or Kerr effect, the direction of rotation (with respect to the −ẑ axis) is

opposite to the direction of rotation in the first experiment. But the action of the chirality

operator operator is now opposite to that for incidence in the +ẑ direction. Therefore the

direction of rotation is the same as before. The unusual feature of the Kapitulnik-Kerr effect

is thus obtained. One of the consequences of this is that in a Kerr effect experiment, where

light travels the same route in two different directions, there would be no effect but for optical

absorption proportional to the length. This is just as in purely gyrotropic materials.

Suppose the sample has multiple domains of the ordered phase in the region of incidence.

Normally, this would lead to zero effect in either pure Kerr or pure Gyrotropic propagation.

In our case, a reversed domain reverses both the chirality and the flux of the order parameter

and so the same direction of rotation is to be expected irrespective of the domains because the

sign of g is independent of the domain. This is an important point. In any situation of broken

symmetry, there are bound to be domains whose characteristic length is much smaller than the

spot size (O(1 micron)) of the optical beam. To get a finite effect, it is essential that the sign

of the effect be independent of the domain. This also explains another remarkable feature of

the experiments - the sign of the effect does not depend on the history of the sample studied

[22].

The σxy calculated in Fig. (2) used in the usual expression for the rotation angle gives a

rough measure measure of the Kerr rotation angle [1] because of the loss necessary to get a net

effect in propagation in opposite directions. The measured KK rotation angle is of O(10−6)

radians, compared to O(1) radian for, say Fe. It is hard to estimate the precise number to

compare with experiments since many of the parameters, especially the lattice distortions, are

not quantitatively known. We may however get such a number from Fig.(2) using that the

principal order parameter measured by neutron scattering is of O(0.1)µB/triangle and if the

distortion produces δVpd/Vpd of O(10−2).
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This discussion of optical properties of magneto-chiral systems may well have more general

applications than to the cuprates alone. Note in particular that all the Anomalous Hall states

of the Haldane kind [18] are magneto-chiral, although to our knowledge this appears to be

the first case of realization of such a state. Also any magneto-electric material with inversion

symmetry breaking independently may be expected to have unusual optical properties related

to those described here.

VI. COMPARISON WITH ALTERNATE IDEAS

Several ideas have been put forth to explain the observed Kerr effect in cuprates. We have

already commented on an earlier work by Orenstein (12).Three papers suggesting that the effect

is caused by intrinsic chirality have since been put forth. Two of them rely on structural chirality

[23]. The idea is that some form of charge modulation (i.e. stripes) occurs which is helical with

helicity axis normal to the planes. We find it unnatural to ignore that at least in two families

of compounds an order parameter which is O(104) larger occurs with T ∗(x) ≈ TKK(x) and that

although there is disparity between the two in one of the compounds, both extrapolate to 0 at

nearly the same point xc. An alternate idea [24] is that the magneto-electric order observed in

the cuprates actually rotates among its four possible directions in going from one plane to the

other periodically and is therefore chiral. This may be tested by neutron scattering experiments

but it has the problem that the magnitude of the order observed by neutron scattering if made

chiral is orders of magnitude larger than that required for the observed Kerr effect.

VII. SUMMARY

This paper has (1) shown a new class of polarization phenomena in reflection and trans-

mission of electromagnetic waves in magneto-chiral materials, (2) shown that with appropriate

lattice symmetry breaking loop current states of the magneto-electric variety induce loop cur-

rent states (magneto-chiral states) which have anomalous Hall effects, σxy 6= 0 for H = 0, (3)

found that for (multiband) metals with chemical potential not too far from half-filling, the

magnitude σxy/(e
2/h) is expected to be very small, (4) shown that given the observation of
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the loop current state consistent with magneto-electric variety as the major order parameter

in underdoped cuprates, the satellite order of the magneto-chiral kind explains the novel ob-

servations of Kapitulnik et al. The two novel features in the experiments are that the same

direction of rotation of polarization is obtained on reflection from opposite surfaces and that

the domains expected in actual samples do not destroy the effect nor does heating and cooling

through the onset temperature.

Acknowledgements: We acknowledge conversations about the experimental results, several of

them before publication with Aharon Kapitulnik and Steve Kivelson, as well as for discussions

of the possible explanations. Thanks are also due to Peter Armitage, Patrick Lee and Victor

Yakovenko for useful communications. This research is partially supported by NSF under grant

DMR-1206298.

1 Present Address: James Franck Institute, University of Chicago

[1] A. Kapitulnik, Talk at ICTP, Trieste, Sept. 2012,

Available at http://www.stanford.edu/ aharonk/ICTP(8:2012).pdf

[2] Rui-Hua He, et al., Science 331, 1579 (2011).

[3] Hovnatan Karapetyan, et al., (preprint).

[4] B. Fauque, Y. Sidis, V. Hinkov, S. Pailhes, C.T. Lin, X. Chaud, and P. Bourges, Phys. Rev. Lett.

96, 197001 (2006); Y. Li, V. Baledent, N. Barisic, P. Bourges, Y. Cho, B. Fauque, Y. Sidis, G.

Yu, X. Zhao, and M. Greven, Nature (London) 455, 372 (2008); H. A. Mook, Y. Sidis, B. Fauque

, V. Baledent, and P. Bourges, Phys. Rev. B 78, 020506 (2008); V. Baldent, B. Fauque, Y. Sidis,

N. B. Christensen, S. Pailhs, K. Conder, E. Pomjakushina, J. Mesot, and P. Bourges, Phys. Rev.

Lett. 105, 027004 (2010); S. De Almeida-Didry, et al., Phys. Rev. B 86, 020504.

[5] Jing Xia, et al., Phys. Rev. Lett. 100, 127002 (2008).

[6] Hovnatan Karapetyan, Phys. Rev. Lett. 109, 147001 (2012).

[7] Lu Li, et al., Phys. Rev. Lett. 107, 277001 (2011).

[8] C.M.Varma, Phys. Rev. B, 55, 14554 (1997); M. E. Simon and C. M. Varma, Phys. Rev. Lett.

89, 247003 (2002).

12



[9] A. Kaminski et al., Nature (London) 416, 610 (2002).

[10] A. Migliori, M2S Meeting, Washington, D.C. (2012); A. Shekhter et al., arXiv:1208.5810

[11] B. Leridon et al, EPL 87 17011 (2009).

[12] J. Orenstein, Phys. Rev. Lett. 107, 067002(2011).

[13] Specifically, the proposal, Fig. 2b in Ref.(12) requires moments in the unit-cell to be tilted with

respect to the c-axis such that the sum of the in-plane moments in a unit-cell is 0. The ”tilt”

was indeed at first deduced in polarization analysis of neutron scattering[4] at the (101) Bragg

spot. But more recent polarized measurements, at the (100) Bragg spot, also are deduced to have

a ”tilt” (Philippe Bourges and Yvan Sidis, Comptes Rendus Physique 12, 461 (2011)). This is

contrary to the structure factor if the in-plane moments in a unit-cell add to 0. Meanwhile, the

neutron scattering measurements have been explained, (Yan He and C.M. Varma, Phys. Rev. B

86, 035124 (2012)) as a quantum effect which is also required to understand the new magnetic

collective modes observed.

[14] L.D. Landau, E.M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media, Second

Edition, Butterworth-Heinemann Ltd., Oxford (1995).

[15] K. Sun and E. Fradkin, Phys. Rev. B 78, 245122 (2008).

[16] Yan He, Joel Moore, and C. M. Varma, Phys. Rev. B 85, 155106

[17] P.A. Lee has suggested to us that there may be a finite σxy in the model with partially filled

conduction band even when the restrictions of the model needed to get the analog of Haldane’s

topological phase are not met. We have checked this and found it to be so, Yan He, P. A. Lee

and C.M. Varma (to be written).

[18] F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988) F.D.M. Haldane, Phys. Rev. Lett. 93, 206602

(2004).

[19] Vivek Aji, Arcadi Shehter and C.M. Varma, Phys. Rev. B 81, 064515 (2010).

[20] There is a change in notatation from Ref.(19) to this paper. What were being referred to as L in

that reference are being referred to as Ω, reserving the name L for orbital angular momenta.

[21] There may in fact be small changes in the periodicity of the lattice due to some of the perturba-

tions; for example in BISCCO, the BiO layer is incommensurate with respect to the Cu-O(2) layer

and so a small incommensurate distortion of the latter is mandated. This leads to the variations

13



in the interaction energies and the kinetic energies taken into account here. But at the leading

level, one need not consider the variation of the Cu-O(2) from its ideal structure.

[22] A. Kapitulnik, private communication

[23] P. Hosur, et al., Phys. Rev. B 115116 (2013)

J. Orenstein and J. Moore, Phys. Rev. B 87 165110 (2013).

[24] Sergey S. Pershoguba, Kostyantyn Kechedzhi, Victor M. Yakovenko, arXiv:1303.2982

[25] The orthorhombic symmetry of some of the cuprate crystals only produces corrections to the

considerations in this paper, while it is of-course the dominant effect when considering questions

of bireferingence

14


