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We compute the field-angle-resolved specific heat and thermal conductivity using realistic model band struc-
ture for the heavy-fermion superconductor CeCoIn5 to identify the gap structure and location of nodes. We use a
two-band tight-binding parametrization of the band dispersion as input for the self-consistent calculations in the
quasiclassical formulation of the superconductivity. Systematic analysis shows that modest in-plane anisotropy
in the density of states and Fermi velocity in tetragonal crystals significantly affects the fourfold oscillations
in thermal quantities, when the magnetic field is rotated in the basal plane. The Fermi surface anisotropy sub-
stantially shifts the location of the lines in the H-T plane, where the oscillations change sign compared to
quasicylindrical model calculations. In particular, at high fields, the anisotropy and sign reversal are found even
for isotropic gaps. Our findings imply that a simultaneous analysis of the specific heat and thermal conductivity,
with an emphasis on the low energy sector, is needed to restrict potential pairing scenarios in multiband super-
conductors. We discuss the impact of our results on recent measurements of the Ce-115 family, namely CeT In5

with T=Co,Rh,Ir.

PACS numbers: 74.25.Uv,74.20.Rp,74.25.Bt,74.25.fc

I. INTRODUCTION

Many heavy-fermion and other novel superconductors are
thought to possess nodes in the gap function on the Fermi sur-
face. Since the gap shape is directly related to the symme-
try of the pairing interaction, knowing the position of nodes
can shed light on possible pairing mechanisms. Magnetic
field-angle-resolved specific heat and thermal conductivity ex-
periments are able to provide detailed information about the
anisotropy of quasiparticle excitations near the Fermi surface,
and hence help identify the nodal directions in the bulk.1–4

To implement this procedure it is necessary to have high-
precision probes that detect small variations under changes
of the direction of the applied field. A series of remarkable
experiments proved already the viability of this approach.4–7

However it has proved non-trivial to interpret these exper-
iments in general. The oscillations in physical quantities,
as a function of the field direction, change sign depend-
ing on the magnitude of the applied magnetic field and the
temperature.3,8,9 The location of these inversion lines de-
pends sensitively on the topology of the Fermi surface and
the material-specific details of the (multi-) band structure.10,11

Obviously, this calls for the development of theoretical tools
that take material-specific properties into account. Further-
more, it suggests that a quantitative and unambiguous identi-
fication of the structure of the superconducting (SC) gap re-
quires the incorporation of realistic Fermi surface (FS) prop-
erties.

The unconventional heavy-fermion superconductor
CeCoIn5 is an ideal candidate for testing field-angle-resolved
probes due to the existence of large high-quality crystals and
accessible temperature and field ranges. Early field-angle-
resolved thermal conductivity and specific heat measurements
were controversial on whether CeCoIn5 has a superconduct-
ing gap with dx2−y2 or dxy symmetry.12,13 Recent specific
heat measurements observed the predicted inversion of the

oscillations at low temperature.6 This seemed to have settled
the dispute in favor of dx2−y2 pairing symmetry.

In this paper we incorporate first-principles electronic
structure calculations to obtain the realistic tight-binding
parametrization for Ce-115 (CeT In5 with T=Co,Rh,Ir) ma-
terials that reproduce the Fermi surface (FS) topology and
yield the Fermi velocities, and the density of states (DOS)
at the Fermi level. We use this FS parametrization as in-
put for self-consistent calculations of thermal properties in
the extended Brandt-Pesch-Tewordt (BPT) approximation of
the quasiclassical Eilenberger equation.8,9 Use of the tight-
binding parametrization allows for a numerically efficient
computation, while keeping the essential character of the low-
energy band structure that reflects on the hybridization be-
tween Ce 4f and In 5p states. Within this framework, we
consider candidate s- and d-wave order parameters, perform
a systematic study of the angle-resolved specific heat coeffi-
cient, γ = C/T , and thermal conductivity, κ, in a magnetic
field rotating in the Ce-In basal plane. Finally, we construct a
field-temperature phase diagram of the fourfold oscillations.

The main results of our calculations, which are applicable
to a wide range of systems with tetragonal point group sym-
metry, are: (1) For isotropic gap (s-wave) we find that mod-
erate FS anisotropies are sufficient to introduce field-angle-
dependent oscillations in the specific heat and thermal con-
ductivity in the superconducting state over a significant range
of temperatures and at intermediate to high magnetic fields.
In addition, the inversion of the oscillation pattern as a func-
tion of temperature shows that oscillations are not simply a di-
rect consequence of the anisotropy of the upper critical field.
Therefore not all such oscillations at intermediate fields can
be taken as proof of strong anisotropy in the superconducting
gap. This result agrees with our recent numerical study of the
iron-based superconductor TFe2Se2.11 (2) The complex field-
angle dependence of the specific heat and thermal conductiv-
ity for systems with anisotropic Fermi surfaces suggests that
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comparison of both quantities with material-specific theories
is required to identify the pairing symmetry and gap struc-
ture. This is already important for materials, where the Fermi
surface anisotropy is moderate, as is the case for the Ce-115
family.

The rest of the paper is arranged as follows. In Sec. II,
we present our tight-binding representation of the two FSs for
CeCoIn5. Detailed analytical and computational formalism of
the field-angle resolved specific heat and thermal conductivity
calculations is given in Sec. III. The results of the temperature
and magnetic field dependence of these quantities, and their
relative sign reversal in the field-angle oscillation for s-and
two d-wave pairing symmetries are given in Sec. IV. Some
comparison with the available data for CeCoIn5, CeRhIn5,
and CeIrIn5 is also included. Finally, we conclude in Sec. V.

II. ELECTRONIC STRUCTURE

First-principles calculations of CeCoIn5 demonstrate that
the bands crossing the Fermi level are dominated by strongly
hybridized 4f electrons of the Ce atom with weak overlap
coming from the 5p orbitals of the In atom.19,21 In this work
our basic aim is to parameterize the true shape of the FSs only,
while the overall dispersion feature at higher energy is irrele-
vant for thermodynamic and transport properties. Therefore,
we use an effective tight-binding model of the lowest energy
of three 4f−orbitals in a tetragonal lattice. As we are only
interested in the eigenvalues and not the eigenvectors of each
band, we absorb the orbital symmetry of contributing orbitals
into the tight-binding hopping parameters, which makes all
bands decoupled from each other. With this motivation we
write the tight-binding dispersion including up to third nearest
neighbor hopping on the x−y plane and only nearest neighbor
hopping along c−axis to obtain

ξk = −2
∑
i

(tici + t2ic2i)− 4txycxcy − EF . (1)

Here cαi = cos (αki) with i = x, y, z. EF is the Fermi en-
ergy. We obtain the values of the tight-binding parameters
after fitting to first-principles dispersions by Ref. 19 shown
in Fig. 1(a): (tx=ty ,tz ,t2x=t2y ,txy ,EF )=(-0.12,-0.05,0,0.09,-

0.55), and (-0.17,0.06,0,0.15,-0.47) in eV for the α and β
band, respectively. Note that t2z = 0. The other two bands
crossing the Fermi level have small areas and are not further
considered in our two-band model description of CeCoIn5.

The α and β bands give two concentric electron pockets at
the zone corner (M -point), see Fig. 1(b). The kz dispersion
of each band is more interesting and needs special attention.
Along the kz direction, both α and β FSs are more like corru-
gated cylinders: the α FS has a narrow waist at kz = 0, while
the β FS has a belly. Note that only nearest neighbor hop-
ping along the c axis is sufficient to obtain the qualitative kz
dispersion of all bands in agreement with the ab-initio band
structure22 and dHvA experiments20 [see Fig. 1(c)]. The op-
posite sign of the tz parameter is responsible for the opposite
shape of the α and β FSs (narrow waist vs. belly).

III. THEORY AND COMPUTATIONAL METHOD

For magnetic field H applied at angle α with respect to
the (100) direction, we compute the field-angle induced su-
perconducting DOS per spin, Nn(ω;H) (band index n =
1, 2) by solving the Eilenberger equation3,8,9,23 within the ex-
tended BPT quasiclassical approximation.24–26 The BPT ap-
proximation implies a uniform field H over the unit cell of
the Abrikosov vortex lattice (unit-cell averaged Green’s func-
tion). This produces quantitatively correct results near the up-
per critical field, and continues to yield semi-quantitatively
correct description over the range 0.5Hc2(T ) . H ≤ Hc2(T )
for isotropic gap,24,27,28 and to much lower fields for nodal and
strongly anisotropic gaps in single-band models.3,29,30

Here we summarize the key steps of the calculation, and
highlight the main technical differences between the single-
and multi-band systems following Refs. 8, 9, and 23. The
main object of interest, the quasiclassical Green’s function, is
assumed to be diagonal in the band space (n = 1, 2), since
bands are well separated in the Brillouin Zone, and have the
4×4 Gor’kov-Nambu matrix structure corresponding to sin-
glet pairing in each band,

Ĝ =

(
ĝ1 0
0 ĝ2

)
, ĝn =

(
gn iσ2fn

iσ2fn −gn

)
. (2)

The Green’s function in each band satisfies the Eilenberger
equation for given Matsubara frequency iων = iπT (2ν + 1),
which has a simple commutator form:31

[
(iων +

e

c
vn(kf ) ·A(R)) τ̂3 − ∆̂n(R,kf )− σ̂impn (iων), ĝn(R,kf ; iων)

]
+ ivn(kf ) ·∇R ĝn(R,kf ; iων) = 0 , (3)

where the Fermi velocity in band n is denoted by vn(kf ), with the wavevector kf on the respective FS. Since this is a homoge-
neous equation, it has to be complemented by the normalization condition of the Green’s functions:

ĝn(R,kf ; iων)2 = −π2. (4)

Furthermore, the off-diagonal Green’s functions and self-energies are related by symmetry:31 f
n
(R,kf ; iων) =

fn(R,−kf ; iων)∗ = fn(R,kf ;−iων)∗; ∆imp
n (R,kf ; iων) = ∆imp

n (R,−kf ; iων)∗ = ∆imp
n (R,kf ;−iων)∗.

The equations for the Green’s functions in two bands are coupled indirectly through the self-energies entering the Eilenberger
equation. The scattering of quasiparticles off impurities with concentration nimp is taken into account via the self-energy in each
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FIG. 1. (color online) Electronic structure of CeCoIn5: (a) Tight-binding fits of the two most relevant bands α (red) and β (green) to the
electronic dispersions of CeCoIn5 calculated in the local density approximation by Maehira et al.19 (b) α and β FSs at three representative kz
values, colored by corresponding Fermi velocity from low (green) to high (yellow). (c) Three dimensional rendering of the computed FSs for
α and β bands (bottom panel) compared with the dHvA experiments20 (top panel). The α FS has a narrow waist, while the β FS has a belly.
The color map of the calculated FSs gives the anisotropy of the magnitude of the Fermi velocities ranging from low (blue) to high (red).

band, σ̂impn , which is evaluated in the T -matrix approximation for the two-band system,32,33

σ̂impn ≡
(
D + Σimpn iσ2∆imp

n

iσ2∆imp
n D − Σimpn

)
= nimpt̂nn , T̂ = Û + Û〈Nf (kf )Ĝ(kf )〉FS T̂ . (5)

The T̂ matrix and the impurity scattering potential have the following structure in band space:

T̂ =

(
t̂11 t̂12

t̂21 t̂22

)
, Û =

(
u11 u12

u21 u22

)
. (6)

The angular brackets denote the integral over one or the other Fermi surface, as appropriate, e.g.:

〈 Nf (kf ) Ĝ(kf ) 〉FS = diagn=1,2

[∫
FSn

d2kf Nf,n(kf ) ĝn(kf )

]
, (7)

and the corresponding normal-state DOS at the Fermi level is Nf,n(kf ) ∼ 1/|vn(kf )|. Sometimes we will omit the subscript
FS for brevity.

For each T and H the order parameters are calculated self-consistently from the coupled gap equations of the two-band model

∆n(R,kf ) = T
∑
ων

∑
m

〈
Vnm(kf ,kf

′) Nf,m(kf
′) fm(R,kf

′; iων)
〉
FS
. (8)

We use a factorized pairing potential at the Fermi surface as Vnm(kf ,kf
′) = Vnm Yn(φ)Ym(φ′), with Yn(φ) the basis
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function that depends only on the azimuthal angle, see Figs. 2
and 3. This means that the order parameters are also factor-
ized, ∆1,2(kf ) = ∆1,2Y1,2(φ). We couple the bands, for
simplicity, by purely interband pairing V12 = V21 = −V ,
and assume same symmetries and angular variations on both
bands Y1(φ) = Y2(φ). While the detailed microscopic anal-
ysis of the pairing interaction in CeCoIn5 is beyond the scope
of our paper, this is the simplest choice that ensures that super-
conductivity in the same angular momentum channel arises si-
multaneously in both bands, and that the temperature and field
dependence of both gaps is similar, as required for consistency
with experiment. While there are indications that in CeCoIn5

there is a small excitation gap that closes at very low fields,
of order 0.1% of the upper critical field,34 it seems likely that
this gap is proximity induced on the parts of the Fermi sur-
face with low f -electron content that we do not consider here.
Since all the experiments measuring the field-angle anisotropy
are carried out at fields, which are at sufficiently high H/Hc2,
we consider only Fermi surface sheets with strong pairing and
large gaps. It is worth mentioning that the interband pairing
captures both nodeless s± and nodal dwave pairing scenarios.

Generally, for arbitrary interaction matrix Vnm, the cou-
pled gap equations support two solutions for the amplitudes
(∆1,∆2). The physical solution corresponds to the high-
est transition temperature Tc0, that is, the greatest eigenvalue
Vmax of the interaction matrix,(

V11〈Nf,1Y2
1 〉 V12〈Nf,2Y2

2 〉
V21〈Nf,1Y2

1 〉 V22〈Nf,2Y2
2 〉

)(
e1

e2

)
= Vmax

(
e1

e2

)
.

(9)
The effective interaction strength Vmax and the cutoff Ωc can
be eliminated using standard techniques in favor of the bare
transition temperature, Tc0 = 1.13Ωc exp(−1/Vmax),31 and
the gap amplitudes in different bands are given by the eigen-
vector of the interaction matrix,(

∆1

∆2

)
=

(
e1

e2

)
∆ . (10)

Upon projecting out this vector from Eq. (8), the system of the
self-consistency equations is reduced to a single equation for
the order parameter ∆ of the dominant instability.

Since the only coupling between bands is via the self-
consistency equations of the order parameter and the self-
energies, the solutions for the propagators in each band
can be formally obtained from the transport equation (3)
with given ∆n and σn in the same way as for single-
band systems.8,9 We express the gradient term via the rais-
ing and lowering operators (a†, a) for the vortex solu-
tions corresponding to the superposition of different har-
monic oscillator functions:26 vn(kf ) ·

(
∇R − i 2e

c A(R)
)

=
1√
2Λ

(
vn,−(kf )a† − vn,+(kf )a

)
. The (x, y) projections of

the Fermi velocity on the plane perpendicular to the direction
of the field ẑ have to be rescaled by the anisotropy factor Sf ,

vn,± = vn,x(kf )/
√
Sf ± ivn,y(kf )

√
Sf . (11)

The relevant parameter that determines the excitations in the
SC state at a particular point on the Fermi surface is the com-
ponent of the (rescaled) Fermi velocity normal to the applied

field,

v⊥n (kf ) =
√
vn,x(kf )2/Sf + vn,y(kf )2 Sf . (12)

The corresponding energy scale is

v̄f,n(φ,H) ≡ v⊥n (kf )

2Λ
, (13)

where Λ = (~c/2|e|H)1/2 is the magnetic length, which is of
order of the intervortex distance, and φ is the FS angle with
respect to the kx axis. The anisotropy parameter Sf is chosen
to give the correct form of the vortex lattice in the linearized
Ginzburg-Landau (GL) equations for ∆. This allows us to
consider only the lowest Landau level,8

∆(R) = ∆
∑
ky

C
(n)
ky

eiky
√
Sfy

4
√
SfΛ2

Φ0

(
x− Λ2

√
Sfky

Λ
√
Sf

)
.

(14)
For tetragonal symmetry this parameter depends on the an-

gle that the applied field makes with the symmetry axis c (in
this paper θH = π/2),

Sf =

√
cos2 θH +

K||

K⊥
sin2 θH . (15)

Here K|| (along c-axis) and K⊥ (in-plane) are the coefficients
of the gradient terms in the GL expansion for the gradients
along the c-axis and in the ab-plane respectively. For our
two-band system they depend on the degree of mixing of the
bands in a particular superconducting state ∆. For the state
(∆1,∆2) = (e1∆, e2∆) they are determined by the right,
~e = (e1, e2)T , and left, ~e′ = (e′1, e

′
2), eigenvectors of the in-

teraction matrix in Eq. (9), corresponding to eigenvalue Vmax
with ~e′ · ~e = 1.

K|| =
(e′1 , e

′
2)

Vmax

(
V11 V12

V21 V22

)(
e1 〈v2

1cNf1Y2
1 〉

e2 〈v2
2cNf2Y2

2 〉

)
, (16)

K⊥ =
(e′1 , e

′
2)

Vmax

(
V11 V12

V21 V22

)(
e1 〈v2

1aNf1Y2
1 〉

e2 〈v2
2aNf2Y2

2 〉

)
.(17)

With these remarks in mind, we can directly use the single-
band results for the unit-cell averaged Green’s functions in the
single Landau level approximation [we follow the notation of
Eqs. (46)-(48) in Ref. 8]:

gn(iων ,kf ;H) = −iπ√
1−i
√
π 1

v̄2
f,n

W ′
(
iω̃ν,n
v̄f,n

)
∆̃n∆̃n

, (18)

fn(iων ,kf ;H) = ign
√
π

v̄f,n
W
(
iω̃ν,n
v̄f,n

)
∆̃n. (19)

Here iω̃ν,n = iων −Σimpn (iων ,kf ;H) and ∆̃n = ∆n(kf ) +
∆imp
n (iων ,kf ;H) are the Matsubara frequency and the order

parameter renormalized by the impurity self-energies in each
band n, σ̂impn . W ′(z) is the first derivative of the complex-
valued function W (z) = exp (−z2)erfc(−iz). One can fur-
ther cast this in a form similar to that of a uniform supercon-
ductor by introducing the new self-energy Σn according to
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i
√
π/v̄2

f,n W ′n(iω̃ν/v̄f,n) ≡ (iων − Σn)−2. The effective
self-energy Σn now contains effects from both the impurity
scattering and the effects of orbital magnetic field.

In contrast to the Doppler shift approximation, both the real
and the imaginary parts of Σn contribute to the SC DOS, and
their interplay as a function of energy, H and T , determine
the sign reversal in the fourfold oscillation of the SC DOS.
These effects have been extensively studied earlier using a
single quasi-cylindrical FS and nodal gap, and a minimal 2D
model for two-band systems, see for example Refs. 3, 8, 9, and
23.

The transport and thermodynamic coefficients are calcu-
lated by using the retarded Green’s functions through ana-
lytic continuation, iων → ω + i0, in the propagators found
above. We begin with the total electronic specific heat from
both bands, C = C1 + C2, which is given by the deriva-
tive of the net entropy, C = T (∂S/∂T ). Because the low-

temperature approximation given by8

Cn(α) ≈ 2

∫ ∞
−∞

dω
ω2〈Nn(ω,kf ;H)〉FS

4T 2cosh(ω/2T )2
, (20)

remains valid almost up to the normal-state transition region,
it can be employed to describe the behavior of the heat ca-
pacity over most of the phase diagram. Detailed numerical
calculations show that the high-temperature sign reversal line
is robust, but will be shifted to slightly higher temperatures by
approximately 0.1Tc0 for the FS parametrization considered
here compared to the calculations using the low-temperature
approximation in Eq. (20).

In the semiclassical theory of electron transport in which
the interband transitions are neglected, the thermal conduc-
tivity is the sum of the contributions from both bands, κ =
κ1 + κ2, with9,29

κxxn (α) = 2

∫ ∞
−∞

dω
ω2

2T 2cosh(ω/2T )2
(21)

×〈vxn(kf )2Nn(ω,kf ;H)τn(ω,kf ;H)〉FS .

Here the field-induced SC DOS per spin in each band, Nn(ω,kf )/Nf,n(kf ) = −Im gR(ω,kf ;H)n/π, the factor 2 accounts
for the spin degeneracy, and the transport lifetime is due to both impurity and vortex scattering9,23,29

1

2τn(ω,kf ;H)
= −Im Σimpn (ω,kf ;H) +

√
π

1

|v̄f,n(kf ;H)|
Im [gRn (ω,kf ;H)W (ω̃/|v̄f,n(kf ;H)|)]

Im gRn (ω,kf ;H)
|∆̃n(kf ;H)|2 .(22)

When T → 0 we recover the standard expressions for the Sommerfeld coefficient, γn ≡ Cn/T → 2
3π

2〈Nn(0,kf ;H)〉FS ,
and for the linear coefficient of the thermal conductivity κxxn /T → 1

3π
2〈vxn(kf )2Nn(0,kf ;H)τn(0,kf ;H)〉FS . Since the

Green’s function, given by Eq. (18), takes the standard BCS form at H = 0, we also recover the universal thermal conductivity
for gaps with nodes on the FS.35–39 At low fields the approximation breaks down, but for nodal superconductors it provides
a good interpolation from low to high fields, and, in the regime 1 � 1/τimp∆n � H/Hc2 reproduces the well-known

√
H

field-dependence of the density of states in d-wave superconductors40,41 up to logarithmic corrections.8,9,29

Since the function x2/cosh(x/2)2 peaks at x ∼ 2.5T , the anisotropy of the heat capacity at low temperatures is qualitatively
determined by the anisotropy in the total SC DOS, N(ω = 2.5T,kf ;H). Using the expansion of the error function, we obtain
two limiting values for W ′(z): W ′(0) = 2i/

√
π and W ′(z � 1) ≈ −i/

√
πz2. Thus the SC DOS for each band n becomes

Nn(ω;H) = 〈Nn(ω,kf ;H)〉FS ≈



〈
Nf,n(kf )

[
1 + 2

(
∆̃n(kf ;H)
|v̄f,n(kf ;H)|

)2
]−1/2

〉
FS

, ω � v̄f,n,〈
Nf,n(kf )

[
1−

(
∆̃n(kf ;H)

ω̃

)2
]−1/2

〉
FS

, ω � v̄f,n.

(23)

The first line in Eq. (23) only makes physical sense when the
BPT approximation is valid at low energies, i.e., for nodal and
strongly anisotropic gaps. In that case at low T (low energy)
and low fields, where ∆n(kf ;H) only weakly depends on
the direction of the field, the SC DOS depends predominantly
on the orientation of v̄f,n(kf ;H) relative to the minima of
∆n(kf ;H). At ω = 0 the inversion of the SC DOS as a
function of the field for nodal gaps can be obtained in analogy
with Refs. 8 and 42.

At higher energies, the second line of Eq. (23) has the

BCS form apart from the replacement of the bare energies
and gaps by their impurity renormalized counterparts. There-
fore the field-angle variation enters via the anisotropy of these
self-energies as well as via the field dependence of the gaps,
∆n(kf ;H), for determining the anisotropy of the upper criti-
cal field. The latter effect is only relevant in the vicinity of the
transition to the normal state, where the result is valid for both
nodal and nodeless gaps, including the fully isotropic situa-
tion. Crucially, for anisotropic Fermi surfaces the anisotropy
in the self-energies and the order parameter is weighted by
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FIG. 2. (color online) Fermi surfaces (FSs) and Fermi velocities at
kz = 0 (left panel) and kz = π/c (right panel). The relative magni-
tude of the Fermi velocities (in arbitrary units) is given by the length
of the (red and green) arrows in the top panels. The bottom panels
show the Fermi velocities along the Fermi lines of the corresponding
kz slice.

the normal-state angle-dependent DOS, Nf,n(kf ), leading to
a complex behavior including the switching of the minima and
maxima found in this work. However, in this regime the en-
ergy width of the Fermi weighting factor in the integral ex-
ceeds the gap amplitude and a full numerical evaluation is
required. Our results are consistent with the general obser-
vations based on such an expansion.

For each pairing symmetry, the coupled order parameters
are computed self-consistently at each temperature T and for
a given value of the magnetic field H applied at the angle α to
the (100) direction. We calculate the field-angle oscillations in
the H-T phase diagram for a mesh of 35 field points between
zero andHc2, 100 temperature points from zero to Tc0, and 31
field-angle points α from zero to 90◦ to extract the anisotropic
terms in the heat capacity and thermal conductivity. For all
the calculations, we consider purely intraband impurity scat-
tering, u12 = u21 = 0, u11 = u22 = u0, in the clean limit,
2Γ1 = 1/τimp,1 = 2nimp/πNf1 = 0.01× 2πTc0, where Tc0
is the bare transition temperature, Nf1 is the density of states
on the first band (α-band), and the scattering phase shift is
chosen to be δ = arctan(πNf1u0) = π/2 (unitarity limit).
Note that for the pairing considered in this work, with the
same gap symmetry on both Fermi surface sheets, inclusion
of weak interband impurity scattering would not change the
results qualitatively.

IV. RESULTS

A. Field-induced superconducting DOS anisotropy and the
role of Fermi surface topology

As discussed above, an important aspect influencing our re-
sults is that, for the realistic band structure, the contributions
from different segments of the Fermi surfaces to the net den-
sity of states are weighted differently according to both the
factor Nf,n in Eq. (23), and the segment length of the Fermi
surface with a given direction of the Fermi velocity. Fig. 2
shows the profiles of the Fermi velocity and the correspond-
ing weighting factors. The key point is that, in a tetragonal
system, vf,n can have a fourfold anisotropy in the plane that
either enhances or competes with the gap anisotropy in deter-
mining the contribution to the net DOS in the superconducting
state, see Fig. 3(a). The detailed interplay of the two depends
not only on the value of the angle-resolved DOS, but also on
the direction of the Fermi velocity.

Indeed, naively one might expect that the relatively large
contribution to Nf,n from the near-45◦ direction, combined
with the node of the dx2−y2 at the same angle in Fig. 3(a)
should enhance the field-angle anisotropy for that symmetry
of the superconducting state relative to the dxy case when the
direction of the greatest Nf,n is fully gapped. In fact, the
opposite is true, see Fig. 3(b): the oscillations are enhanced
for dxy symmetry.

This is an indication that the flat parts of the Fermi surface
with large values of the Fermi velocity, see Fig. 2, contribute
more to the total DOS, when the field is at 45◦ and all four
flat parts are ’active’. When the field is along 0◦ or 90◦, only
two flat parts contribute. In contrast, the four ’active’ corners
with smaller velocities, and hence slightly larger Nf,n(kf )
give a smaller contribution simply because their arc length is
a smaller fraction of the total Fermi surface length in the re-
spective kz slice. It follows that dxy-pairing, which has nodes
in the flat parts of the FS, exhibits enhanced C(α = 45◦). In
contrast, the dx2−y2 profile, gaps those regions of the Fermi
surface and thus anisotropy of C is suppressed. Hence the ex-
act role of the Fermi surface shape and curvature in the field-
angle oscillations is highly non-trivial.

At higher temperatures the simple low-T expression in
Eq. (7) is only qualitatively correct, and both detailed
calculations3,8,42,43 and experiments6,44,46? demonstrated that
the anisotropy in the heat capacity is reversed relative to the
low-T result. The lower panel in Fig. 3 shows the field-
induced SC DOS as a function of quasiparticle energy below
the SC gap for α = 0◦ and α = 45◦ for all three pairing
symmetries considered here. We immediately see that the SC
DOS at these angles switch and reverse magnitude, which re-
flects in the sign reversal of the oscillations in specific heat as
a function of temperature. Note that, due to the presence of
Fermi velocities in κ in Eq. (7), a one-to-one correspondence
between SC DOS and κ is not straightforward for FS that lack
continuous rotational symmetry in the plane.

We show below that for realistic and material-specific
anisotropic FS, we still find the sign reversal of the heat ca-
pacity oscillations for d-wave pairing, which was previously
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FIG. 3. (color online) Fermi surface anisotropy of the normal-
state DOS and SC gaps contrasted with the field-angle anisotropy
of the Sommerfeld coefficient and the SC DOS. (a) The calculated
FS anisotropy of the normal-state DOS juxtaposed with gap func-
tions of three pairing symmetries. All the SC gaps are computed
at the FS and all curves are shifted by their corresponding mini-
mum value, except for the s-wave gap. (b) Specific heat coeffi-
cient γ(α) = C(α)/T , normalized to its value at Tc, calculated at
T/Tc0 = 0.1 and H/Hc2 = 0.1 for d-wave gaps and H/Hc2 = 0.5
for the s-wave gap. (c)-(e) Field-induced total SC DOS at T = 0 vs.
energy at two representative field angles α = 0◦ and 45◦ for all three
pairing symmetries. Here we used H/Hc2 = 0.5 for s wave and 0.1
for both d waves. Note the low- and high-energy crossings in the SC
DOS (arrows) are related to the low- and high-T sign reversals in the
oscillations of γ and κ in Fig. 4.

reported for the rotationally symmetric cases. Hence this sign
change is a generic feature of of nodal gaps. However, the key
finding in this work is that for moderately anisotropic FSs,
measurably large field-angle dependence in the heat capac-
ity and thermal conductivity is obtained at high fields already
for isotropic gaps, which can lead to misinterpretations if an-
alyzed solely in this field range and in terms of simple har-
monics of the SC pairing symmetries. We stress that multi-
band effects add additional complexity to any analysis, due to
competing FS anisotropies. For example, we have previously
shown that if the FS anisotropy in different bands is opposite
(out-of-phase) to each other, then it can lead to additional sign
reversals in the field-angle dependence of the thermodynamic
quantities for s-wave gap, very similar to what was earlier ob-
tained for nodal gaps only.11 Furthermore, bands with differ-
ent DOS lead to different amplitudes and shapes of the self-
consistent value of the SC gaps (i.e., generally ∆1 6= ∆2). In
this case, the obtained numerical results become less intuitive
to interpret and a simple one-to-one mapping between oscilla-
tions and nodes is lost. However, at low temperature and low

field the generic understanding of the anisotropy as a conse-
quence of the nodal structure alone, remains valid. We give a
detailed comparison of the different regimes below.

B. Temperature evolution of field-angle-resolved oscillations

We present the full angle-dependent profiles of γ(α) =
C(α)/T and κ(α)/T for several temperatures at a representa-
tive low field (H/Hc2 = 0.1) for the two nodal gaps, and, for
comparison, for an isotropic s-wave gap at a moderate field
(H/Hc2 = 0.5) in Fig. 4. In accordance with our earlier cal-
culation for KyFe2−xSe2 in Ref. 11, we find that a substantial
oscillation in γ and κ is present for isotropic s-wave pairing.
The amplitude of the oscillation increases with stronger kz-
dispersion. As in simple models,8 close to the inversion line
the oscillations are not a simple sum of the twofold and four-
fold harmonics, but have a more complex profile.

For nodal dxy and dx2−y2 pairings, the behavior of os-
cillations of γ(α) and κ(α) is similar to results obtained
for quasicylindrical FSs,23 however the amplitude of oscil-
lations and, crucially, the location of sign reversals in the
H-T phase diagram are modified. Earlier such sign-reversal
features were discussed only for highly anisotropic or nodal
gap structures.3,6,8,23,44,46 Our material-specific results caution
against straightforward interpretation of oscillations at inter-
mediate fields as evidence of nodes, emphasizing the need to
probe low energy excitations.

We extract the amplitudes of the fourfold oscillations by
defining

C4α(T ) ≡ ΠC
0 −ΠC

45, (24)

where ΠC
α = [C(α, T )/T ]/[CN/Tc] and

κ4α(T ) ≡ [Πκ
0 + Πκ

90]/2−Πκ
45, (25)

where Πκ
α = [κxx(α, T )/T ]/[κxxN /Tc], and CN and κN are

the corresponding normal-state values at Tc. This defini-
tion removes any twofold, sixfold, etc., contribution from
κ(α) originating from the field parallel or perpendicular to
the vortex lines.47 In fact, it is straightforward to show that
for any function f(α) =

∑M
n=0 a2n cos(2nα) the definition

in Eq. (25) projects out any other harmonic contribution up
to M = 5, resulting in κ4α = 2a4. We verified numerically
that the amplitudes of twelvefold and higher order harmonics
are negligible. On the other hand, the definition in Eq. (24) is
less robust, but very convenient. It gives C4α = 2a4, when
a2 = a6 = a10 = 0, which is sufficient when sample mis-
alignment is negligible and when used away from the sign
reversal line.

C. H-T phase diagram

In figure 5 we compile our results of the thermal quanti-
ties into a contour map of the amplitude of the fourfold os-
cillations in the H-T phase diagram for γ = C/T (top row)
and κ/T (bottom row) for one nodeless and two nodal gaps.
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FIG. 4. (color online) Calculated oscillations of the heat capacity and thermal conductivity as a function of the field direction relative to the
x axis. (a1) Sommerfeld coefficient γ = C/T normalized to its normal-state value CN/Tc0 at fixed field H/Hc2 = 0.5 for s wave, plotted
from low to high T in units of T/Tc0 (bottom to top curves). Each curve is colored by the sign of the fourfold oscillation; a uniform color
map is used for values below−0.025 and above 0.025. (b1) Same as in (a1) but for the normalized thermal conductivity coefficient κ/T . (c1)
The fourfold amplitudes of γ (dashed line) and κ/T (solid line) are plotted as a function of T . For direct comparison the results for nodal dxy
(H/Hc2 = 0.1) and dx2−y2 (H/Hc2 = 0.33) symmetries are plotted in panels (a2)-(a3), (b2)-(b3), and (c2)-(c3), respectively. Note that the
non-vanishing of κ4α as temperature approaches the phase transition line in panels (c1) and (c3) is a consequence of the in-plane anisotropy
of Hc2.

Recall that for quasicylindrical (rotationally-invariant in the
basal plane) FSs the specific heat oscillations simply change
sign between the dxy and dx2−y2 symmetries.8 While the
overall characteristics of the phase diagram remains qualita-
tively the same for material-specific cases, substantial quanti-
tative changes result from the inclusion of realistic Fermi sur-
faces and the directional- and band-dependent contributions
to the DOS. Important for the comparison with experiment,
we find that the location of the sign-reversal lines for nodal
gaps shown in Figs. 5(a2) and 5(a3) shifted compared to the
earlier simple models, due to the interplay of the SC order pa-
rameter with the FS anisotropies. As a consequence, the sign

of the fourfold oscillations, C4α and κ4α, may be different
over a wider range of temperatures and fields. This is to be
contrasted with the results for rotationally symmetric Fermi
surfaces, where the two were found to switch sign almost at
the same temperatures and fields. We also verified that for s-
wave pairing the high-T sign reversal is robust and remains
at nearly the same location for a single-band superconductor
with identical FS.

Note also that at intermediate to high temperatures and
fields there is very little in the heat capacity oscillation profile
that distinguishes the isotropic gap from that of the dx2−y2

symmetry, see Fig. 5 panels (a1) vs. (a3). However, there is
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FIG. 5. (color online) Contour maps of fourfold amplitude oscillations of normalized specific heat C4α (row a) and normalized thermal
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pairing is not valid at low H , we shaded the corresponding area where our approach is not applicable.

a much more significant difference in transport, Fig. 5 pan-
els (b1) vs. (b3), which implies that a simultaneous study of
both C(α) and κ(α) is highly desirable to gain confidence
about the underlying pairing symmetry in any multiband sys-
tem where the low-temperature, low-field regime is experi-
mentally unreachable. Of course, once the low energy sec-
tor at low T and low H is accessed, the differences between
different symmetries, and especially between the nodal and
isotropic gaps, becomes obvious. Therefore, in general a
rather detailed comparison between measurements and cal-
culations of the C4α and κ4α phase diagrams should be em-
ployed to draw conclusions about the pairing symmetries.

D. Comparison with experiments

The superconducting Ce-115 compounds are well suited for
the study of field-angle oscillations. Accordingly, there have
been a number of experiments investigating the anisotropy of
the thermal conductivity and the heat capacity under the ro-
tated field. Here we compare the experimental results with
our findings, previously shown in Fig. 5. Since the upper crit-

ical field is Pauli-limited, and our calculation does not account
for the Zeeman splitting, we cannot expect our results to map
directly onto the measurements near Hc2. Nevertheless we
believe that a qualitative comparison can be made, especially
for systems with strong paramagnetism in the low-field part
of the phase diagram, which, when rescaled to the appropriate
values of the upper critical field, is essentially identical to that
computed in the absence of the Zeeman term.51

CeCoIn5: The unconventional nature of superconductiv-
ity was recognized early on through the discovery of power-
law dependence in the temperature behavior of the spe-
cific heat and thermal conductivity,52,53 magnetic penetration
depth,54–57 and spin-lattice and muon-spin relaxation rates58,59

consistent with predictions for nodal lines in the gap. On sym-
metry grounds the anisotropy of the upper critical field van-
ishes near Tc0, Hc2(0◦) = Hc2(45◦). In our calculations, we
find that noticeable anisotropy emerges for T/Tc0 . 0.7. In
this range Hc2(0◦) > Hc2(45◦) for both s and dx2−y2 pair-
ing symmetries, while the anisotropy is opposite for dxy pair-
ing, i.e., the nodal directions have a lower Hc2 value. The
anisotropy for s and dx2−y2 gap is in qualitative agreement
with theHc2 measurements of CeCoIn5 by Settai et al.,60 who
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CeIrIn5 by Kashara et al.50 The symbol size gives the corresponding reported amplitude of the oscillation, whereas the filled color depicts its
sign. We find reasonable agreement between theory and experiment in both sign and amplitude of oscillations.

reported Hc2(0◦) > Hc2(45◦) at low temperatures. The mea-
sured anisotropy is only a few percent, which would be consis-
tent with the assumption that the band electron g-factor, and
hence the Pauli limiting field is isotropic in the plane, and
the weak anisotropy is due to a residual orbital effect. Re-
markably, the opposite relationship, Hc2(0◦) = 11.8 T <
Hc2(45◦) = 11.9 T was found in Ref. 61. So far the experi-
mental discrepancy of the in-plane Hc2 anisotropy remains an
open puzzle.

The original interpretations of the field-angle-resolved ther-
mal conductivity12 and specific heat13 measurements contra-
dicted each other regarding the location of the d-wave nodal
lines in CeCoIn5. The controversy was finally settled by the
observation of the inversion in the specific heat oscillations by
An et al.6 In Fig. 6(a1) and (b1) we plot both the C4α and κ4α

experimental data points (symbols). The agreement between
theory and experiment is quite convincing for dx2−y2 -wave
symmetry and rules out pairing scenarios of either s or dxy
gap.

CeRhIn5: The high-pressure, angle-resolved specific heat
measurements of CeRhIn5 by Park et al.48 showed a clearly
delineated fourfold oscillation with C(0◦) < C(45◦), which
was interpreted in favor of d-wave symmetry. The measure-
ments were performed down to temperatures as low as 0.3
K (0.3T/Tc) and in fields between 0.2 and 0.9 T. At the pres-
sure of 1.47 GPa the superconductivity coexists with antiferro-
magnetism with superconducting transition Tc = 1.04 K and
in-plane Hc2 = 1.2 T at 0.3 K. The measured in-plane Hc2

anisotropy was negligible. As we noted before, in this region
of theH-T phase diagram both s-wave and dx2−y2 -wave gaps
are nearly indistinguishable giving rise to fourfold oscillations
with the minimum of C(α) occurring at H ‖ (100). Support-
ing the d-wave interpretation, T - and H-dependent measure-
ments down to 0.3 K and 0.05 T exhibited power-law behavior
consistent with unconventional superconductivity with nodes,
i.e., C/T ∼ T and C/T ∼

√
H , respectively. Additional ex-

periments at higher pressure (2.3 GPa), i.e., in the purely su-
perconducting phase, and at T/Tc = 0.14 andH/Hc2 = 0.09
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showed evidence of fourfold oscillations with a negative am-
plitude C4α of order 4%.49 However, to unequivocally rule
out the possibility of s-wave pairing, based on field-angle-
resolved measurements alone, experiments would have to be
performed at temperatures significantly below Tc/3, where
the exponential T -dependence of the fully gapped excitation
spectrum becomes visible. Power laws were also seen in other
pressure measurements of the specific heat, spin-lattice and
muon-spin relaxation rates down to T/Tc ≈ 0.15.59,62,63 In
chemically doped CeRh1−xIrxIn5 a T 3 dependence was seen
in 1/T1 just below Tc, which tends toward linear in T at lower
temperatures as is typical of dirty d-wave superconductors.64

In Fig. 6(a2) we plot the C4α experimental data points (sym-
bols) on top of the phase diagram for dx2−y2 gap. The field-
angle-dependent experiments taken by themselves are incon-
clusive, though combined with the reported T and H depen-
dences are strongly suggestive of dx2−y2 -wave superconduc-
tivity in CeRhIn5.

CeIrIn5: There is an ongoing controversy about the pair-
ing symmetry in this compound, because of its two differ-
ent superconducting domes, namely one as a function of Rh
doping and the other as a function of pressure. In addi-
tion, there is disagreement over the interpretation of the ther-
mal conductivity data. On one side, the field-angle-resolved
measurements50 and power-law dependence in temperature
were argued as evidence for d-wave gap with vertical line
nodes, similar to the sister compound CeCoIn5,53,65 while on
the other side thermal conductivity measurements, in partic-
ular the temperature and magnetic field dependence of the
residual value of κ/T along different axes, were interpreted
in favor of a three-dimensional hybrid gap with a horizontal
line node.66–68 The hybrid gap proposal was inspired by simi-
lar gap functions studied some time ago for the heavy-fermion
superconductor UPt3.37,39,69 To further complicate the inter-
pretation, the results by Shakeripour et al. were also argued
to be consistent with vertical line nodes.70 In addition, power
laws were reported for magnetic penetration depth and spin-
lattice-relaxation rate.58,64,71 The temperature behavior of the
anisotropic penetration depth was interpreted to be consistent
with vertical line nodes but not with point nodes and a hor-
izontal line node of the hybrid gap.71 However, the conclu-
sive evidence for the in-plane gap variation comes from very
recent angle-resolved specific heat measurements at ambient
and finite pressure. Lu et al.46 (circles) reported fourfold os-
cillations inside the pressure dome of CeIrIn5 with sign rever-
sal of the oscillations at high temperatures between 0.4 and
0.6Tc. These data taken together with a low-T anisotropy
of Hc2(0◦) > Hc2(45◦) and the fact that this compound be-
longs to the same family of Ce-115s was strongly suggestive
of two-dimensional dx2−y2 -wave pairing with vertical line
nodes. Unfortunately, the temperature in Ref. 46 was too high
to formally exclude isotropic s-wave pairing, see the phase
diagram in Fig. 5(a1) versus (a3). The specific heat data of
Ref. 7, on the other hand, were taken down to 80 mK, that
is 0.2Tc. Therefore, the specific heat oscillations are support-
ive of the dx2−y2 gap scenario. Data from both experiments
are included in the comparison in Fig. 6(a3). In addition
field-angle-resolved thermal conductivity data were reported

by Kasahara et al.,50 which are shown in Fig. 6(b3). Com-
bined with the specific heat oscillations, they provide strong
support for this pairing symmetry. Hence at present the over-
whelming majority of experiments supports the dx2−y2 -wave
superconductivity with vertical line nodes in CeIrIn5.

V. DISCUSSION AND CONCLUSIONS

We performed realistic model calculations of the field-
angle-resolved specific heat and thermal conductivity using
a tight-binding parametrization of the electronic structure
within a two-band model of superconductivity, which is rel-
evant for the Ce-115 heavy fermions. Our systematic analy-
sis of field-angle dependence showed that modest anisotropies
in the density of states and the in-plane Fermi velocities of a
tetragonal crystal contributes significantly to the fourfold os-
cillations in the vortex state, when the magnetic field is rotated
in the basal plane. As evidence we showed that such oscilla-
tions exist at intermediate to high fields even for an isotropic
s-wave gap. Remarkably, the sign reversal of fourfold oscil-
lations occurs not only for nodal d-wave gaps, but also for an
isotropic s-wave gap as the temperature is decreased. This is
one of the main findings of this work and implies that away
from the low temperature and low field region it may be dif-
ficult to distinguish different pairing symmetries based on the
field-anisotropy of a single probe alone.

Finally, we compared the results of the field-angle-resolved
calculations within our model with recent experimental data
on different members of the Ce-115 family. The behav-
ior of the self-consistently determined thermal quantities for
nodal dx2−y2 -wave gap is consistent with experimental re-
ports for CeCoIn5. The same phase diagram is also consis-
tent with specific heat data for CeRhIn5 and CeIrIn5. Since
both CeRhIn5 and CeIrIn5 have similar electronic structure
as CeCoIn5 near the Fermi energy, we believe that our Fermi
surface parametrization is valid for all three compounds. Con-
sequently, very similar phase diagrams should result for all
three materials for which material-specific calculations dras-
tically improved the agreement between theory and experi-
ment. The comparison with experimental data is restricted
to low fields, since the superconductivity in this material is
Pauli-limited,14,15 and there are indications of a quantum crit-
ical point in the vicinity of the upper critical field at zero tem-
perature, Hc2(0).16,17 Thus the regime near the upper criti-
cal field at low temperatures is beyond the scope of the cur-
rent treatment. We find that within our realistic model of the
Fermi surface parameters the fourfold anisotropy map is in
better agreement with experiments on CeCoIn5, if we assume
a weak dispersion along the kz axis. Note that the relatively
small anisotropy of the upper critical field in this material does
not have direct connection with the anisotropy of the electron
dispersion, as it likely stems from the Pauli limiting of su-
perconductivity. Since the electronic band structure is very
similar among the Ce-115s near the Fermi energy, we expect
that our findings for CeCoIn5 are also relevant for CeRhIn5

and CeIrIn5 under pressure. Considering that questions re-
main about the exact superconducting gap structure and po-
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tential spin-fluctuation nesting in the Ce-115s,18 a definitive
theoretical account of field-angle-resolved measurements is
warranted.

We conclude with a note of caution for interpreting field-
angle-resolved oscillations. Our self-consistent two-band
model calculations demonstrated that simple observations of
oscillations and sign reversals in either C(α) or κ(α) are not
direct evidence for the presence of nodes or minima in the
gap structure. Such conclusions can be drawn either from
low-energy measurements, or at higher temperatures and field
from a comprehensive simultaneous analysis within the same
framework of bothC(α) and κ(α) measurements. Only a sys-
tematic analysis of the fourfold oscillations in the H-T phase
diagram can constrain the space of possible pairing scenarios

for a given material.
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56 S. Özcan, D. M. Broun, B. Morgan, R. K. W. Haselwimmer, J. L.
Sarrao, S. Kamal, C. P. Bidinosti, P.J. Turner, M. Raudsepp, and
J. R. Waldram, Europhys. Lett. 62, 412 (2003).

57 E. D. Bauer, F. Ronning, C. Capan, M. J. Graf, D. Vandervelde,
H. Q. Yuan, M. B. Salamon, D. J. Mixson, N. O. Moreno, S. R.
Brown, J. D. Brown, R. Movshovich, M. F. Hundley, J. L. Sarrao,
P. G. Pagliuso, and S. M. Kauzlarich, Phys. Rev. B 73, 245109
(2006).

58 Y. Kohori, Y. Yamato, Y. Iwamoto, T. Kohara, E. D. Bauer, M. B.
Maple, and J. L. Sarrao, Phys. Rev. B 64, 134526 (2001).

59 W. Higemoto, A. Koda, R. Kadano, Yu Kawasaki, Y. Haga, D.
Aoki, R. Settai, H. Shishido, and Y. Onuki, J. Phys. Soc. Jpn. 71,

1023 (2002).
60 R. Settai, H. Shishido, S. Ikeda, Y. Murakawa, M. Nakashima,

D. Aoki, Y. Haga, H. Harima and Y. Onuki, J. Phys.: Condens.
Matter 13, L627 (2001).

61 Murphy et al., Phys. Rev. B 65, 100514 (2002).
62 R. A. Fisher, F. Bouquet, N. E. Phillips, M. F. Hundley, P. G.

Pagliuso, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Phys. Rev. B
65, 224509 (2002).

63 T. Mito, S. Kawasaki, G.-q. Zheng, Y. Kawasaki, K. Ishida, Y.
Kitaoka, D. Aoki, Y. Haga, and Y. Onuki, Phys. Rev. B 63,
220507(R) (2001).

64 S. Kawasaki, M. Yashima, Y. Mugino, H. Mukuda, Y. Kitaoka, H.
Shishido, and Y. Onuki, Phys. Rev. Lett. 96, 147001 (2006).

65 C. Petrovic, R. Movshovich, M. Jaime, P. G. Pagliuso, M. F.
Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Europhys.
Lett. 53, 354 (2001).

66 H. Shakeripour, M. A. Tanatar, S. Y. Li, C. Petrovic, and L. Taille-
fer, Phys. Rev. Lett. 99, 187004 (2007).

67 H. Shakeripour, C. Petrovic, and L. Taillefer, New Journal of
Physics 11, 055065 (2009).

68 H. Shakeripour, M. A. Tanatar, C. Petrovic, and L. Taillefer, Phys.
Rev. B 82, 184531 (2010).

69 M. J. Graf, S.-K. Yip, and J. A. Sauls, Phys. Rev. B 62, 14393
(2000).

70 I. Vekhter and A. B. Vorontsov, Phys. Rev. B 75, 094512 (2007)
71 D. Vandervelde, H. Q. Yuan, Y. Onuki, and M. B. Salamon, Phys.

Rev. B 79, 212505 (2009).


