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Starting from the orthorhombic magnetically ordered phase, we investigate the effects of uniax-
ial tensile and compressive stresses along a, b, and the diagonal a+b directions in BaFe2As2 and
CaFe2As2 in the framework of ab initio density functional theory (DFT) and a phenomonologi-
cal Ginzburg-Landau model. While –contrary to the application of hydrostatic or c-axis uniaxial
pressure– both systems remain in the orthorhombic phase with a pressure-dependent nonzero mag-
netic moment, we observe a sign-changing jump in the orthorhombicity at a critical uniaxial pressure,
accompanied by a reversal of the orbital occupancy and a switch between the ferromagnetic and
antiferromagnetic directions. Our Ginzburg-Landau analysis reveals that this behavior is a direct
consequence of the competition between the intrinsic magneto-elastic coupling of the system and
the applied compressive stress, which helps the system to overcome the energy barrier between the
two possible magneto-elastic ground states. Our results shed light on the mechanisms involved in
the detwinning process of an orthorhombic iron-pnictide crystal and on the changes in the magnetic
properties of a system under uniaxial stress.

PACS numbers: 74.70.Xa,61.50.Ks,71.15.Mb,64.70.K-

I. INTRODUCTION

Since the discovery of high-Tc superconductivity in Fe-
based materials in 2008,1 an enormous amount of effort
has been invested to understand the microscopic behav-
ior of these systems. Iron pnictides and chalcogenides be-
come superconductors either by hole- or electron-doping
the systems, by application of external pressure or by
a combination of both. In particular, uniaxial pres-
sure is currently being intensively discussed as a pos-
sible route towards modifying the structural, magnetic
and even superconducting properties of these systems. A
regular sample below its magnetic and structural tran-
sition temperatures displays an equal number of oppo-
site twin orthorhombic domains, effectively canceling out
its anisotropic properties. To circumvent this issue and
obtain a single orthorhombic domain sample, uniaxial
tensile stress has been widely employed to detwin iron
pnictides like BaFe2As2 and CaFe2As2

2–8 and unveil its
anisotropic properties – which have been argued to origi-
nate from electronic nematic degrees of freedom.9–11 The-
oretically, although it is clear that in the tetragonal phase
the applied uniaxial pressure acts as a conjugate field to
the orthorhombic order parameter, condensing a single
domain,12 the nature of the detwinning process deep in-
side the orthorhombic phase remains an open question,
since different mechanisms might be at play – such as
twin boundary motion or reversal of the order parameter
inside the domains.8,13

Besides promoting detwinning, uniaxial strain has also
been shown to affect the thermodynamic properties of the
iron pnictides. Recent neutron scattering experiments
on BaFe2As2 under compressive stress along the in-plane
b direction reported a progressive shift to higher tem-

peratures of the magnetic transition6 - a behavior also
seen in BaFe2 (As1−xPx)2 by thermodynamic measure-
ments.14 – and an apparent reduction of the magnetic
moment6. Moreover, Blomberg et al. observed a sig-
nificant uniaxial structural distortion in BaFe2As2 under
tensile stress, suggesting an enhanced response to exter-
nal strain.7 More recently, it was found that epitaxially
strained thin films of FeSe on a SrTiO3 substrate show
an increase in critical superconducting temperatures up
to 65 K, the highest reported Tc so far.15 Clearly, crystal
lattice strain plays a key role for the magnetic, struc-
tural and superconducting properties in Fe-based super-
conductors and a better understanding of the microscopic
origin of such behavior is desirable.

In this work we combine density functional theory
(DFT) calculations and Ginzburg-Landau phenomenol-
ogy to analyze the effects of uniaxial compressive stress as
well as uniaxial tensile stress on the magnetic, electronic
and structural properties of BaFe2As2 and CaFe2As2 at
low temperatures, deep inside the ordered phase. Stress
is measured in terms of equivalent hydrostatic pressure,
P = Tr(σ̂)/3, where σ̂ is the stress tensor matrix and
positive and negative pressures correspond to applying
compressive and tensile stresses respectively. Our ab ini-
tio-derived estimates for the elastic constants in the or-
thorhombic phase agree well with experimental values.
While no sign of a true structural or magnetic phase
transition is observed in the range of pressures between
−2 GPa and 2 GPa, at a critical pressure we observe a
reversal of the magnetization, i.e. exchange of ferromag-
netic (FM) and antiferromagnetic (AFM) directions, si-
multaneous to a discontinuous change in the orthorhom-
bic order parameter a− b, which also changes sign. This
behavior has important consequences on the orbital dxz
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and dyz occupancies and is also related to the shift of the
magnetic ordering temperature, as we argue below.

Furthermore, by employing a phenomenological
Ginzburg-Landau model, we show that this behavior is
intimately connected to the magneto-elastic coupling of
the system, which by itself acts as an intrinsic conju-
gate field to the orthorhombic order parameter. As the
applied compressive stress is enhanced towards a critical
value, it eventually overcomes the effects of the magneto-
elastic coupling, rendering the zero-pressure state ener-
getically unstable and resulting in a simultaneous reversal
of the magnetization and the orthorhombic order param-
eter. Comparison of the DFT-derived critical uniaxial
pressures for CaFe2As2 and BaFe2As2, combined with
the Ginzburg-Landau result that the critical pressure is
proportional to the magneto-elastic coupling, suggests
that the latter is larger in CaFe2As2 than in BaFe2As2.
We also propose low-temperature detwinning measure-
ments to compare the experimental critical pressure with
our ab initio estimates in order to clarify the dominant
mechanism behind the detwinning process of orthorhom-
bic iron pnictide crystals.

The paper is organized as follows: in Section II we
summarize our computational methods, and in Section
III we present our DFT results. Section IV is devoted
to the Ginzburg-Landau analysis and comparison with
DFT calculations. Section V contains the discussions and
concluding remarks. Details about the ab initio method
are presented in the Appendix.

II. COMPUTATIONAL METHODS

Electronic structure calculations were performed
within DFT with the Vienna ab initio simulations
package (VASP)17 with the projector augmented wave
(PAW) basis18 in the generalized gradient approximation
(GGA). All our structural relaxations were performed
under constant stress using the Fast Inertial Relaxation
Engine (FIRE).19,20 For this purpose, we had to mod-
ify the algorithm accordingly (see Appendix A). Every
10 steps, we cycled through non-magnetic, ferromag-
netic, antiferromagnetic-checkerboard, stripe-type anti-
ferromagnetic (along unit cell axis a) and stripe-type an-
tiferromagnetic (along unit cell axis b) spin configura-
tions, and then we continued the relaxation with the low-
est energy spin configuration. As a final converged mag-
netic configuration in the orthorhombic phase we always
found stripe-type antiferromagnetic order either along a
or along b, as discussed below.

The energy cutoff in the calculations was set to 300 eV
and a Monkhorst-Pack uniform grid of (6× 6× 6) points
was used for the integration of the irreducible Brillouin
zone (BZ).

III. RESULTS AND DISCUSSION

A. BaFe2As2

Starting from the low-temperature orthorhombic
structure with stripe magnetic order, we performed struc-
ture relaxations under applied uniaxial tensile and com-
pressive stresses along a (AFM direction), b (FM di-
rection) and the plane-diagonal a+b direction for both
BaFe2As2 and CaFe2As2 (see inset of Figure 1 (a)). We
measure stress in units of the equivalent hydrostatic pres-
sure, P = Tr(σ̂)/3, with σ̂ denoting the stress tensor
matrix. We simulated pressures in the range between
−3 GPa and 3 GPa. In the tensile stress range, below
−2.7 GPa we observe in both systems that, for stress
along a, a sudden expansion in a and contraction in b
and c axes occurs. A similar situation arises when pulling
apart along b. This feature signals the extreme case of
absence of bonding within the material, and for this rea-
son this pressure range will be excluded from further dis-
cussion.

Figure 1 shows the evolution of lattice parameters for
BaFe2As2 as a function of uniaxial stress along a, b
and a+b. We consider both compressive stress (posi-
tive pressure) and tensile stress (negative pressure). At
P = 0 GPa, we have a (AFM direction) > b (FM di-
rection). BaFe2As2 remains in the orthorhombic phase
with nonzero increasing magnetic moment for large ten-
sile stress (negative pressure). Pulling apart (i.e. P < 0)
along the (longer) AFM direction a (Figure 1 (a)) the
system expands along a, strongly compresses along c and
shows almost no changes along b; similarly, pulling apart
along the (shorter) FM direction b (Figure 1 (b)) b ex-
pands, c compresses and a shows almost no changes ex-
cept at the pressure P = −0.22 GPa (Figure 1 (e)). At
this point, BaFe2As2 shows a sudden jump in the or-
thorhombicity where a becomes the shorter axis and b
becomes the longer axis. This interchange happens with
a rotation of the magnetic order by 90 degrees, i.e. the
FM direction becomes parallel to the a axis while the
AFM direction becomes parallel to the b axis. We will
discuss this feature further below. Note that tensile stress
along a+b acts similarly on both a and b directions,
which expand, while the c direction strongly compresses
(Figures 1 (c) and (f)).

Under application of compressive stress (positive pres-
sure), we observe in all three cases a strong expansion
along c and a compression along the direction of applied
stress (a, b or a+b). For the cases where pressure is
applied along a or b, we observe almost no changes or a
slight expansion along b and a, respectively. Since a > b
at zero stress, we observe the inversion of axes followed
by a jump in orthorhombicity and a 90 degree rotation
of the magnetization when stress is applied along a at
P = 0.22 GPa (Figures 1 (a) and (d)). This inversion of
axes, with b > a for all higher compressive stress values
means that the spin configuration shown in the inset of
Figure 1 (a) should now be turned by 90 degrees, with b
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FIG. 1: (Color online) Evolution of the unit cell parameters in BaFe2As2 under application of uniaxial stress in the equivalent
hydrostatic pressure range [−2 GPa, 2 GPa] (a) along a, (b) along b and (c) along a+b. Panels (d)-(f) show the corresponding
zoom of the pressure dependence of the lattice parameters in the range [−0.3 GPa, 0.3 GPa]. Negative pressures correspond
to tensile stress while positive pressures correspond to compressive stress. Note, that the relationship between axes and iron
moments shown in the inset in (a) is valid for P ‖ a < 0.22 GPa, in (b) for P ‖ b > −0.22 GPa. For a discussion of the reversal
of AFM order, see the text.

pointing along the AFM direction. Such an inversion is
also observed for compressive stress along a+b at much
larger pressures of P = 2 GPa.

Figure 2 shows the evolution of magnetic moment, vol-
ume and As height in BaFe2As2 as a function of stress.
The three quantities show a clearly monotonic behav-
ior independent of the applied stress direction except for
small jumps at the pressures P = −0.22 GPa (for stress
along a) and P = 0.22 GPa (for stress along b) where
the tetragonal condition is almost fulfilled (a ≈ b) (Fig-
ures 2 (b), (d), (f)). We also note here how magnetic
moments in BaFe2As2 respond to different direction of
pressure application. The highest rate of suppression, of
roughly 0.1µB/GPa is achieved when pressure is applied
within the ab-plane, while application of pressure along
the c-axis actually results in magnetic moment increase
by 0.03µB/GPa20. Even though DFT calculations over-
estimate the value of the ordered Fe magnetic moment at
P = 0 GPa, it is to be expected that the relative changes
in magnetic moment should provide a reliable description
of the situation of BaFe2As2 under pressure as shown in
previous studies.20–23

Except for the pressures P = −0.22 GPa (for stress
along a) and P = 0.22 GPa (for stress along b), stress
always enforces a certain degree of orthorhombicity and
the system remains magnetically ordered with a decreas-
ing ordered moment as a function of compressive stress
(Figure 2 (a)). Moreover, since the c axis continually ex-
pands from negative to positive pressures, hAs increases
accordingly as a function of stress (Figure 2 (e)). These

features have a direct consequence on the electronic prop-
erties of the system.

As an illustration, we show in Figure 3 the (non-spin
polarized) Fermi surface of BaFe2As2 under application
of uniaxial stress P = −0.07 GPa and P = 1.7 GPa
applied along a in the 1Fe/unit cell equivalent Brillouin
zone. We would like to note that correlation effects be-
yond DFT as implemented in DFT+DMFT (dynamical
mean field theory), which are known to give a good agree-
ment between the calculated Fermi surfaces and angle-
resolved photoemission measurements in the Fe pnic-
tides,24–29 have not been included here. Modest tensile
stress of 0.07 GPa leads to the disappearance of the 3dxy
hole pocket around Γ̄ in the kz = 0 plane (see Figure 5 (a)
in Ref. 20). On the other hand, when compressive stress
is applied, the hole pockets around Γ̄ significantly change
in size, and additionally at a pressure of 1.7 GPa, small
electron pockets, of majority 3dxy and 3dz2 character, ap-
pear along the Γ̄− M̄ directions of the BZ (Figures 3 (c)
and (e)). The increase of the 3dxy hole pocket size with
increasing uniaxial stress can be explained by the reduc-
tion of Fe-Fe distances along the a axis, leading to an
increased contribution of 3dxy - 3dxy bonding. In fact,
the effects of tensile and compressive stress on the elec-
tronic structure shown for the example of stress along a
can be seen also in our calculations for both stress along
b and along a+b.

In Figure 4 we analyze the orbitally-resolved density
of states at the Fermi level N(EF). Applying stress both
along a and b has the same effect on the total density
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FIG. 2: (Color online) (a) Evolution of the magnetic moments
of iron, (c) of the unit cell volume and (e) of the pnictogen
height under uniaxial pressure in the range [−2 GPa, 2 GPa].
Panels (b), (d) and (e) show the corresponding zoom of
the pressure dependence of these quantities in the range
[−0.3 GPa, 0.3 GPa]. Negative pressures correspond to ten-
sile stress while positive pressures correspond to compressive
stress.

of states of both BaFe2As2 and CaFe2As2, but there is
a selective orbital order as shown in Figure 4. N(EF)
is predominantly of 3dxz character when a > b and of
3dyz character when a < b. This means that the dom-
inant character switches from 3dyz to 3dxz at σ̂ ‖ a ≈
0.22 GPa, and from 3dxz to 3dyz at σ̂ ‖ b ≈ −0.22 GPa
as expected.

B. CaFe2As2

The lattice parameters of CaFe2As2 under application
of compressive stress along a, b and a+b directions show
a similar overall behavior compared to BaFe2As2 (see
Figure 5) except for some important shifts of the pres-
sures at which the system exchanges the FM and AFM
directions. When stress is applied along the a direction,
we observe at P = 0.67 GPa a jump in the orthorhombic
order parameter, with a sign-change, accompanied by a
reversal of the magnetic AFM and FM directions. How-
ever, analogously to the case of BaFe2As2, this is not
followed by a suppression of the magnetic moments of
iron. In fact, the c axis expands with applied stress and
at P = 0.67 GPa the c lattice parameter in CaFe2As2 is
too large for the formation of an interlayer As-As covalent

bond, necessary for a transition to a collapsed tetragonal
phase and suppression of magnetic moments as observed
under hydrostatic or c-axis uniaxial pressure.20–22,31 For
tensile stress along the (shorter) b direction, the reversal
of AFM and FM directions happens at P = −0.33 GPa
followed by a jump in the orthorhombicity. The magnetic
response of CaFe2As2 is highly anisotropic as well, but
contrary to the case of BaFe2As2, the magnetic moments
in CaFe2As2 are most effectively suppressed when pres-
sure is applied along c. We measure a rate of about
0.1µB/GPa20. Application of pressure within the ab-
plane results in a suppression of the magnetic moment
at a rate of 0.02µB/GPa.

In order to investigate the possibility of a structural
and/or magnetic phase transition at higher pressures, we
concentrate now on compressive stress along the diag-
onal of the ab-plane. We find that orthorhombicity is
preserved up to 7.7 GPa, where a sharp transition to a
tetragonal phase appears. This transition is of first-order
type like the orthorhombic to collapsed tetragonal phase
transition under application of hydrostatic or uniaxial
pressure along the c axis20 but in this case, changes of
magnetic and structural properties take opposite direc-
tions; the c axis undergoes a sudden expansion of about
9.5%, and a and b axes contract while the iron magnetic
moments order ferromagneticaly and sharply increase in
value by around 25%. Interestingly though, contrary to
the application of hydrostatic and uniaxial pressure along
c axis, the volume change here is significantly smaller,
namely an expansion by about 0.9%. These features are
not observed in BaFe2As2 when we compress along the
diagonal of the ab-plane up to pressures of 10 GPa.

C. Elastic constants in the orthorhombic phase

Using data for the response to the uniaxial stress along
a, b and c20 axes we can directly evaluate the elastic con-
stants Cij in BaFe2As2 and CaFe2As2 corresponding to
the orthorhombic deformations. We define elastic con-
stants to be such that

σi =
∑
j

Cijuj ,

where σi and uj are stress and strain tensor components
respectively, and indices i and j can be xx, yy, zz. Strains
are defined to be uxx = (a−a0)/a0, uyy = (b−b0)/b0 and
uzz = (c−c0)/c0, where a0, b0 and c0 are equilibrium unit
cell dimensions (P = 0 GPa). We first directly obtain
Sij = [C−1]ij by performing linear fits to ui(σj) and C
is then obtained by inverting the resulting matrix. For
BaFe2As2, the elastic constant matrix is

C =

95.2± 4.3 20.4± 3.4 40.8± 4.5
27.3± 4.8 130.8± 6.1 64.0± 7.0
43.7± 4.5 47.7± 4.6 81.0± 5.6

GPa (1)
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FIG. 3: (Color online) Fermi surface of BaFe2As2 for two pressure values of uniaxial stress applied along the a axis shown in
the 1Fe/unit cell equivalent BZ (see Ref. 35 for the BZ path definition). Panels (a) and (b) show kz = 0 cuts of the Fermi
surface at pressures of -0.07 GPa and 1.7 GPa respectively, while panels (c) and (d) show vertical cuts along the diagonal of
the BZ for pressures of -0.07 GPa and 1.7 GPa. Grey lines on panels (a) and (b) denote boundaries of the 2 Fe/unit cell BZ.

Utilizing Voigt and Reuss averages,32 defined as

BVoigt =
1

9
(C11 + C22 + C33 + 2(C12 + C13 + C23))

BReuss = (S11 + S22 + S33 + 2(S12 + S13 + S13))−1

it is possible to estimate the bulk modulus. Voigt and
Reuss averages yield 61.9±5.1 GPa and 69.3±7.5 GPa, re-
spectively, which is in good agreement with our previous
estimate20 and the experimental value of 59 ± 2 GPa.33

For CaFe2As2, the elastic constant matrix is given by

C =

148.7± 18.5 45.6± 12.3 55.5± 12.7
63.9± 21.4 182.4± 18.4 81.2± 17.5
61.4± 14.7 63.1± 11.4 68.8± 11.3

GPa

(2)
which results in bulk modulus of 84.3 ± 14.8 GPa and
77.7± 17.2 GPa using Voigt and Reuss averages, respec-
tively. Both values are in good agreement with experi-
mentally determined values of 82.9± 1.4 GPa 34 and the
estimate based on fits to Birch-Murnaghan equation of
state.20

IV. PHENOMENOLOGICAL
GINZBURG-LANDAU MODEL

To aid the interpretation of the ab initio results, we
develop a phenomenological magneto-elastic Ginzburg-
Landau model to capture the physics of the simultane-
ous sign-changing jump of the orthorhombicity and re-
versal of the AFM and FM directions. As pointed out

by Refs. 9,11,36, the magnetic structure of the iron pnic-
tides consists of two interpenetrating Néel sublattices,
with magnetizations M1 and M2 of equal amplitude that
can point either parallel or anti-parallel to each other (see
Figure 6).

By including also the orthorhombic order parameter
δ = (a− b) / (a+ b), we obtain the Ginzburg-Landau free
energy:

F =
am
4

(
M2

1 +M2
2

)
+
um
16

(
M2

1 +M2
2

)2 − gm
4

(M1 ·M2)
2

+
as
2
δ2 +

us
4
δ4 +

λ

2
δ (M1 ·M2) + σδ

(3)

Here, am ∝ T−TN , as ∝ T−Ts, um, us > 0, and gm > 0.
The last condition ensures that the ground state is the
striped magnetic configuration (i.e. collinear M1 and
M2). We also must have um > gm in order for the mag-
netic free energy to be bounded. λ > 0 is the magneto-
elastic coupling and σ is the stress field conjugate to the
orthorhombic order parameter. The sign of λ is set to de-
scribe the experimental observation that ferromagnetic
bonds are shorter than anti-ferromagnetic bonds. Al-
though this model does not take into account the physics
of the magnetically-driven structural transition, which
comes from fluctuations beyond the Ginzburg-Landau
analysis we perform below,11 it captures the main fea-
tures of the ab initio results.

The magnetic ground state is completely determined
by the magnitude M = |M1| = |M2| and the relative
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angle θ between M1 and M2. Then, minimization of the
free energy leads to three coupled equations for M , θ,
and δ:

∂F

∂M
= (am + λδ cos θ)M +

(
um − gm cos2 θ

)
M3 = 0

(4)

∂F

∂δ
= asδ + usδ

3 +
λ

2
M2 cos θ + σ = 0 (5)

∂F

∂θ
=
gm
4
M4 sin 2θ − λ

2
M2δ sin θ = 0 (6)

The last equation allows three possible solutions: θ = 0,
θ = π, and cos θ = λδ/

(
gmM

2
)
. We focus only on the

θ = 0, π solutions, since they are the energy minimum at
zero stress. In the ordered phase, where am, as < 0, we
obtain the self-consistent equation for δ:

−
(
|as|+

λ2

2 (um − gm)

)
δ + usδ

3 = − λ |am| cos θ

2 (um − gm)
− σ

(7)
For σ = 0, the mean-field equations and the free energy
are invariant upon changing δ → −δ and θ → θ + π.
Thus, we have two degenerate solutions: δ > 0 and anti-
parallel M1 and M2, θ = π, (denoted hereafter δ+) or
δ < 0 and parallel M1 and M2, θ = 0 (denoted hereafter
δ−). The presence of a finite strain σ lifts this degeneracy.

After defining:

δ0 =

√
|as|
us

+
λ2

2us (um − gm)

h+ =
1

usδ30

(
λ |am|

2 (um − gm)
− σ

)
h− =

1

usδ30

(
λ |am|

2 (um − gm)
+ σ

) (8)

the self-consistent equations for the two solutions δ+ and
δ− become simply:

−
(
δ±
δ0

)
+

(
δ±
δ0

)3

= ±h± (9)

and we obtain analytic expressions for the two possible
solutions:

δ± (h±) =± δ0

(h±
2

+

√
h2±
4
− 1

27

) 1
3

+

(
h±
2
−
√
h2±
4
− 1

27

) 1
3

 (10)

The interplay between the external stress field σ and the
magneto-elastic coupling λ becomes evident in Eqs. (8)-
(10). For σ = 0, λ acts as an external field of the same
magnitude for both the δ+ and δ− solutions, i.e. it gives
rise to non-zero h+ = h− in the equations of state (9),
making these two solutions degenerate. Now, consider
that for σ = 0 the system chooses the minimum δ+ (i.e.
δ > 0 and θ = π). By increasing the external stress to
a small value σ > 0, the effective field h+ is suppressed,
whereas the field h− is enhanced. Although the solution
δ− (i.e. δ < 0 and θ = 0) has a lower energy, the solution
δ+ is still a local minimum, since the effective field h+
is still finite. This situation persists until σ increases to
the point where the field h+ becomes negative and large
enough to make the δ+ solution not a local minimum.

In particular, to determine when the δ+ solution ceases
to be a local minimum, we analyze when one of the eigen-
values of the Hessian matrix

(
∂2F/∂qi∂qj

)
becomes neg-

ative (with generalized coordinates qi = M, δ, θ). The
three eigenvalues µi are given by:

µ± =
1

2

[
as + 3usδ

2 + 2M2 (um − gm)
]

± 1

2

√
[as + 3usδ2 − 2M2 (um − gm)]

2
+ 4λ2M2

µ0 =
M2

2

(
gmM

2 − λδ cos θ
)

(11)

For the δ+ (δ > 0, θ = π) solution, the only eigenvalue
that can become negative with increasing σ is µ−. We

find that this happens when the condition δ+
δ0

= − 3
2h+ is
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FIG. 5: (Color online) Evolution of the unit cell parameters in CaFe2As2 under the application of uniaxial stress in the range
[−2 GPa, 2 GPa] (a) along a, (b) along b and (c) along a+b. Negative pressures correspond to tensile stress while positive
pressures correspond to compressive stress. Note, that the relationship between axes and iron moments shown in the inset in
(a) is valid for P ‖ a < 1 GPa, in (b) for P ‖ b > −0.6 GPa.

FIG. 6: (Color online) Magnetic structure of the iron pnic-
tides consisting of two interpenetrating Néel sublattices, with
magnetizations M1 and M2.

met, corresponding to an effective field h+ = − 2
3
√
3
, i.e.

to the critical stress:

σc =
λ |am|

2 (um − gm)

+
2us

3
√

3

(
|as|
us

+
λ2

2us (um − gm)

)3/2 (12)

At σ = σc, the solution δ > 0, θ = π is not a local
minimum any longer and the system jumps to the new
minimum with δ < 0, θ = 0, where not only the sign
of the orthorhombicity is reversed, but also the angle
between the magnetizations of the two sublattices (i.e.
the AFM and FM directions). This behavior is shown in
Figure 7 for a particular set of parameters.

To compare with the DFT results, we performed a
slight modification with respect to the calculations pre-
sented in the previous section. To ensure that the ex-
ternal stress couples mainly to the orthorhombic mode δ
and not to the longitudinal elastic mode ε, such that it
does not change the volume of the system, we simulta-
neously applied positive (compressive) pressure along a
and equal-amplitude negative (tensile) pressure along b.
By doing this, we avoid terms such as M2ε in the free
energy, rendering the comparison between the ab initio
and the Ginzburg-Landau results more meaningful.

The ab initio obtained behavior of δ as a function of
σ, defined in the way described above, is shown also
in Figure 7. We find a qualitative agreement with
the Ginzburg-Landau results, showing that the exter-
nal stress indeed competes with the magneto-elastic cou-
pling, helping the system to overcome the energy barrier
between the δ+ (δ > 0, θ = π) and δ− (δ < 0, θ = 0)
solutions. A quantitative comparison becomes difficult
because the DFT calculations are performed deep in the
ordered phase, where higher order terms in the Ginzburg-
Landau expansion become more important. Further-
more, it is also possible that some of the magnetic pa-
rameters (am, um and gm) have themselves some implicit
pressure dependence in this regime. Nevertheless, we can
use Eq. (12) as a benchmark to discuss differences in the
BaFe2As2 and CaFe2As2 compounds. Clearly, Eq. (12)
shows that σc increases with increasing magneto-elastic
coupling. Therefore, the fact that σc is three times larger
for CaFe2As2 than for BaFe2As2 suggests that, all other
parameters being equal, the magneto-elastic coupling is
larger in CaFe2As2 than in BaFe2As2. This may have im-
portant impact on the coupled magnetic and structural
transitions displayed by these compounds, as discussed in
Refs. 11,36,37, and as such deserves further investigation
in the future.
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FIG. 7: (a) Orthorhombic order parameter δ = a−b
a+b

(in units

of δ0 =
√
|as|
us

+ λ2

2us(um−gm)
) as a function of the applied

stress σ (in units of σ0 = λ|am|
2(um−gm)

). We used parameters

such that λ|am|
2(um−gm)usδ

3
0

= 2. The jump happens when the

δ > 0 solution is no longer a local minimum, and is accom-
panied by a reversal of the angle between the two sublattice-
magnetizations M1 and M2, i.e. a reversal of the AFM and
FM directions. (b) DFT results for the strain-dependent or-
thorhombic order parameter δ ≡ a−b

a+b
. The blue curve is for

BaFe2As2 and the red curve, for CaFe2As2.

V. DISCUSSION AND CONCLUSIONS

In this paper, we analyzed the effects of tensile and
compressive stress along a, b and a+b on BaFe2As2
and CaFe2As2 by means of DFT calculations under con-
stant stress conditions with the help of the FIRE al-
gorithm, combined with a phenomenological Ginzburg-
Landau model. Starting from the low-temperature mag-
netically ordered orthorhombic phase, we found in the
pressure range between −2 GPa and 2 GPa no real struc-
tural phase transitions in both systems except for a pro-
nounced orthorhombicity jump accompanied by a 90 de-
gree rotation of the magnetic order. FM and AFM direc-
tions are interchanged, as are the orbital occupations dxz
and dyz. This inversion of axes is a direct consequence of
the interplay between the intrinsic magneto-elastic cou-
pling and the applied stress, as revealed by our Ginzburg-
Landau analysis. The proportionality between the criti-
cal stress where this inversion happens and the value of
the magneto-elastic coupling suggests that in CaFe2As2
the magnetic and structural degrees of freedom are more
strongly coupled than in BaFe2As2, which may be related

to the differences observed in their magnetic and struc-
tural transitions.37 We also point out that the estimates
for the bulk moduli of BaFe2As2 and CaFe2As2 derived
from our ab initio results are in good agreement with the
experimental measurements.

Our calculations also provide important insight on the
impact of uniaxial stress on the magnetic properties of
the pnictides. Fig. 2 shows that the magnetic moment at
zero temperature always decreases (increases) with com-
pressive (tensile) stress, regardless of the axis that is per-
turbed. Unlike the jump in the orthorhombicity and the
reversal of the FM and AFM directions, this is a con-
sequence not of the magneto-elastic coupling, but of the
changes in the pnictogen height promoted by the uniax-
ial stress. This is an important prediction of our first-
principle calculations that can be tested experimentally.
Interestingly, recent neutron diffraction experiments6 on
BaFe2As2 observed that upon application of compressive
stress along the b axis, the magnetic moment is sup-
pressed from 1.04µB to 0.87µB . Given the small val-
ues of applied pressure, it could be that this suppression
is due to a reduction of the volume fraction of the do-
mains whose moments are oriented out of the scattering
plane, as pointed out by the authors of Ref. 6. Never-
theless, in view of our current results, it would be inter-
esting to either apply higher pressures to completely de-
twin the samples at low temperatures or to apply tensile
stress to make a comparison with the case of compressive
stress. We note that Ref. 6 also found an enhancement
of the magnetic transition temperature TN in the same
detwinned samples. Phenomenological models14,30,36 at-
tribute this effect to changes in the magnetic fluctuation
spectrum of the paramagnetic phase promoted by the
uniaxial stress. In this regard, it would be interesting
in future ab initio studies to systematically investigate
the changes in the nesting feature of the Fermi surface
(Fig. 3) as function of the uniaxial stress - specifically,
changes in the (π, π) susceptibility peak.

Finally, we comment on the impact of our results to the
understanding of the detwinning mechanism of iron pnic-
tide compounds. In the tetragonal phase, rather small
uniaxial stress P < 10 MPa is enough to completely de-
twin the sample, giving rise to a single domain.6,8,13 This
can be understood as fluctuations above the structural
transition temperature giving rise to long-range order in
the presence of a symmetry-breaking field.11 The situa-
tion is however very different deep in the orthorhombic
phase, where twin domains are already formed. Experi-
mentally, it is known that larger pressures are necessary
to completely detwin the system in this case,8,13 although
specific values have not been reported, to our knowledge.
One possible detwinning mechanism is the reversal of
the orthorhombicity of one domain type, while the do-
main walls remain pinned. This corresponds precisely
to the situation studied here, where the orthorhombic-
ity jumps at a certain critical uniaxial pressure. Our
ab initio results show that such a critical pressure for
BaFe2As2 would be around 200 MPa – one order of mag-
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nitude larger than the pressure values necessary to detwin
the sample in the tetragonal phase.

Of course, other mechanisms can also give rise to de-
twinning in the ordered phase, such as domain wall mo-
tion. Therefore, we propose controlled detwinning ex-
periments at low temperatures in BaFe2As2 to measure
the critical pressure necessary to form a single domain.
Values comparable to the ones discussed here would be
a strong indication for reversal of the order parameter
inside fixed domains. Which mechanism is at play in the
iron pnictides may have important consequences for the
understanding of the impact of the external stress on the
anisotropic properties measured in detwinned samples
– particularly the in-plane resistivity anisotropy,7,8,11

which is likely affected by domain wall scattering.38

Appendix A: Modification of the FIRE algorithm

Within the FIRE19 algorithm, the energy minimization
is achieved by moving the system’s position r according
to the following equation of motion:

v̇(t) =
F (t)

m
− γ(t)|v(t)|

[
ev(t) − eF (t)

]
, (A1)

where ex denotes the unit vector along x, with x =
v(t),F (t), t is time and γ(t) is a time-dependent fric-
tion parameter which assures that the system is moving
down the energy hypersurface in an optimal manner as
long as the power P (t) = F (t)·v(t) is positive. If P (t) be-
comes negative, the procedure is stopped and relaxation
is reinitialized in the direction of the steepest descent.

In order to use FIRE for relaxation of periodic systems,
we change from the configuration space of 3N atomic
Cartesian coordinates rα, α = 1 . . . N , to an extended

system of 3N + 9 coordinates r̃α = (sα, ĥ), consisting
of lattice vectors which are contained in columns of the
3 × 3 matrix ĥ = (hij), and fractional atomic positions
sα within the unit cell, where Cartesian and fractional

positions are related by rα = ĥsα.
When (A1) is rewritten in terms of coordinates r̃α, one

just needs to find the appropriate expression for forces
F̃ α, that is, derivatives of energy with respect to the
coordinates r̃α. Since stress and strain tensors, σ̂ and û,
can be defined through

σ̂ = − 1

V

∂E

∂û
, Ĥ =

(
Î + û

)
ĥ,

where Î is the identity matrix and Ĥ is the lattice matrix
after an infinitesimal deformation, it is easy to show that

∂E

∂sα
=
∑
β

∂E

∂rβ
∂rβ

∂sα
=

∂E

∂rα
ĥ
T

= F αĥ
T
,

∂E

∂ĥ
=
∂E

∂û

∂û

∂ĥ
=
∂E

∂û

(
ĥ
T
)−1

= −V σ̂
(
ĥ
T
)−1

,

(A2)

so that forces in the extended coordinates are given by

F̃ α =

[
F αĥ

T
,−V σ̂

(
ĥ
T
)−1]

. (A3)

Forces F α and stresses σ̂ are obtained from the electronic
structure code, and are inserted directly into Eq. (A3),

taking into account that σ̂ = σ̂ext − σ̂int, that is, total
stress is the sum of internal and external stresses applied
to the surface of the unit cell.
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