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We study the structure of the ground state wave functions of bosonic Symmetry Protected Topo-
logical (SPT) insulators in 3 space dimensions. We demonstrate that the differences with conven-
tional insulators are captured simply in a dual vortex description. As an example we show that a
previously studied bosonic topological insulator with both global U(1) and time-reversal symme-
try can be described by a rather simple wave function written in terms of dual “vortex ribbons”.
The wave function is a superposition of all the vortex ribbon configurations of the boson, and a
factor (−1) is associated with each self-linking of the vortex ribbons. This wave function can be
conveniently derived using an effective field theory of the SPT in the strong coupling limit, and
it naturally explains all the phenomena of this SPT phase discussed previously. The ground state
structure for other 3d bosonic SPT phases are also discussed similarly in terms of vortex loop gas
wave functions. We show that our methods reproduce known results on the ground state structure
of some 2d SPT phases.

PACS numbers:

I. INTRODUCTION

The disordered ground states of strongly interacting
quantum many-body systems can have much richer struc-
tures compared with classical disordered states. The
quantum richness of a system is encoded in the entan-
glement of its ground state wave function, and without
assuming any symmetry of the Hamiltonian, the ground
state wave function of a quantum many-body state can
have long range entanglement, which implies that the
system has a “topological order”. In the last few years,
motivated by the discovery of free fermion topological in-
sulators protected by time-reversal symmetry1–6, it was
realized that short range entangled state can still be fun-
damentally distinct from trivial product states, as long as
the system preserves certain global symmetry G. These
nontrivial quantum disordered phases with short range
entanglement are called “symmetry protected topologi-
cal” (SPT) phases. They are separated from the trivial
product state through sharp quantum phase transitions
in the bulk, either continuous or first order. In space di-
mension d = 1 the Haldane spin chain provides an old and
nice example of an SPT phase7,8. It has a bulk gap and
no fractional excitations but nevertheless has dangling
symmetry protected spin-1/2 moments at the edge9–12.
The Haldane chain thus provides an early example of an
interacting topological insulator.

In this paper we are mainly concerned with three di-
mensional symmetry protected topological insulators of
bosons/spin systems. A formal mathematical classifica-
tion13 of SPT phases based on group cohomology allows
a number of such phases to exist (depending on the global
symmetry) but sheds little light on the physical proper-
ties. The latter have been discussed recently in Ref. 14.
A characteristic feature of all SPT phases is the pres-
ence of non-trivial surface states at the interface with
a trivial insulator. Indeed though the bulk is gapped

and has no fractional excitations or topological order,
such an interface cannot be in a trivial insulating state.
Ref. 14 described the effective surface theory for a num-
ber of three dimensional bosonic topological insulators
and determined the structure of the allowed non-trivial
phases. These either spontaneously break the defining
global symmetry or if gapped have surface topological or-
der. Exotic symmetry preserving gapless states were also
shown to be possible. A key feature is that the surface
effective field theory realizes symmetry in a manner not
possible in strictly two dimensional systems. Bulk topo-
logical field theories and effective field theory descriptions
have also been provided.

In this work we will study the structure of the ground
state wave function of various such 3d bosonic SPT in-
sulating phases with global U(1) and time reversal (ZT

2 )
symmetries. The differences with conventional Mott in-
sulators are conveniently captured in a dual description
in terms of closed vortex loops. In Mott insulating phases
(conventional or topological) the vortex loops have pro-
liferated and the ground state wavefunction can be de-
scribed as a vortex loop gas (see Sec. II). We show that
when compared with the conventional insulator this vor-
tex loop gas has extra phase factors depending on the
topology of the vortex loop configuration. We demon-
strate that these wave functions simply capture all the
major phenomena of the SPT phases, both in the bulk
and at the boundary, that were discussed in Ref. 14. As
a key example, in Sec. III we discuss a non-trivial SPT
phase with symmetry either direct (U(1) × ZT

2 ) (as is
appropriate for a spin model realization of an interact-
ing boson system) or semidirect (U(1) ⋊ ZT

2 ) product.
Here the vortex lines should be viewed as ribbons with
a non-zero thickness and there is a phase −1 associated
with each self-linking of a vortex ribbon. We briefly also
discuss a different SPT phase that occurs for U(1)× ZT

2

where each vortex loop can be viewed as a 1d Haldane
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FIG. 1: The wave function of the 3d bosonic SPT discussed in
this paper is a superposition of all the configurations of vortex
ribbons with factor (−1) associated with each self-linking.

spin chain. These results are obtained by analysing both
the sigma model effective field theory and the topological
“BF” effective field theories proposed in Ref. 14 for these
phases.

In 2d a result with a similar flavor has been derived
by Levin and Gu15 for an SPT phase with Ising, i.e Z2,
symmetry in terms of a domain wall loop gas with phase
factors. In Sec. IV we reproduce this result using our
methods. We also discuss the ground state wavefunc-
tion structure of the 2d boson topological insulator with
U(1)× ZT

2 symmetry. We use this to obtain a dual vor-
tex description of this state, and show that the physics
is correctly captured.

II. WAVE FUNCTION OF TRIVIAL 3D BOSE

MOTT INSULATOR

Let us start with briefly reviewing the trivial Mott in-
sulating phase of bosons. This is conveniently modeled
by a quantum disordered phase of interacting U(1) ro-
tors on a 3d lattice, which is described by the Hamilto-
nian H =

∑

<i,j> −t cos(θi − θj) + U(n̂i)
2. The boson

creation operator bi = eiθi and ni is the corresponding
U(1) charge at site i. θi and ni are canonically con-
jugate. The quantum disordered phase of the rotors is
equivalent to the familiar Mott insulator phase and oc-
curs when t/U ≪ 1. In the strong coupling limit t → 0,
the ground state wave function is a trivial direct product
state:

|Ψ〉 =
∏

i

|n̂i = 0〉 ∼
∏

i

∫ 2π

0

dθi|θi〉. (1)

The wave function of the quantum disordered phase with
finite but small t/U can be derived through perturbation
on wave function Eq. 1. For our purposes it is useful to
consider a simple approximate form of the wave function

that captures the physics of the Mott phase :

|Ψ〉 ∼

∫ 2π

0

∏

dθ exp[
∑

<i,j>

−K cos(θi − θj)]
∏

l

|θl〉, (2)

where K ∼ t/U ≪ 1. This wave function is a superposi-
tion of configurations of θi with a weight that is the same
as the Boltzman weight of the 3d classical rotor model.
The standard duality formalism of the 3d classical ro-
tor model leads to the dual representation of this wave
function:

|Ψ〉 ∼

∫

D ~A
∑

~J

exp[−

∫

d3x
1

2K
(~∇× ~A)2 + i2π ~A · ~J ]

× | ~A(x), ~J(x)〉, (3)

Vector field ~J takes only integer values on the dual lattice,
and it represents the vortex loop in the phase θ. In order

to guarantee the gauge invariance of ~A, ~J must have no

source in the bulk: ~∇· ~J = 0. The vortex loop ~J can only
end at the boundary, which corresponds to a 2d vortex.

The U(1) gauge field ~A induces long range interactions
between vortex loops with coupling strength K. In the
limit K → 0, i.e. the strong coupling limit of the original
rotor, the wave function Eq. 3 for quantum disordered
lattice bosons becomes a equal weight superposition of
all vortex loop configurations, with a weak long range
interaction.

Quite generally the Mott insulating phase is obtained
when the vortex loops have proliferated. Consequently
the ground state wave function can be described as a loop
gas of oriented interacting vortex loops. The discussion
above provides a derivation of this loop gas wave function
starting from a simple but approximate microsopic boson
wave function. A crucial point about the structure of the
loop gas wave function for the trivial Mott insulator is
that it has positive weight for all loop configurations.

III. WAVE FUNCTION OF 3D BOSONIC SPT

PHASES

A 3d SPT phase with U(1) symmetry is also a quantum
disordered phase of rotor θi, thus it is expected that its
wave function is still a superposition of vortex loop con-
figurations. However, more physics needs to be added
to the vortex loops in order to capture the novel physics
of the SPT phase. One of the central results of this pa-
per is to determine the structure of this vortex loop gas
wave function for the 3d SPT phases with U(1) and time-
reversal symmetry discussed in Ref. 14. We first focus
on one example which occurs for both U(1)×ZT

2 and for
U(1)⋊ ZT

2 . We show that the ground state is described
by a superposition of vortex loop configurations |Cv〉, but
each vortex loop should be viewed as a “ribbon” rather
than a line, and a self-linking of this ribbon contributes
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exactly factor (−1) (Fig. 1):

|Ψ〉 ∼
∑

Cv

(−1)Ntψ0 [Cv] |Cv〉, (4)

where Nt is the number of self-linkings. Here ψ0 [Cv] is
the weight of that vortex configuration in a trivial Mott
insulator. The self-linking of a vortex ribbon is the link-
ing number between the loops defined by the 2 ends of
the ribbon.
This wave function Eq. 4 explains the key phenomena

of the 3d SPT phase discussed in Ref. 14. In Ref. 14, us-
ing a 2+1d boundary field theory, it was proved that the
vortex of the U(1) rotor at the boundary of this SPT is a
fermion.29. A vortex at the boundary is the end (source)
of the vortex ribbon in the bulk. As was discussed in
Ref. 16, and as shown below, exchanging the ends of rib-
bons is equivalent to twisting one of the ribbons by 2π,
which according to Eq. 4 should contribute factor (−1).
Thus the bulk wave function Eq. 4 already implies that
the vortex at the boundary must be a fermion.
The wave function Eq. 4 can be derived either using

a bulk non-linear sigma model effective field theory for
the SPT phase or using a bulk topological “BF” field
theory. We will present both these derivations below. In
Appendix B we present a lattice regularized space time
path integral for these SPT phases which is equivalent to
these effective field theories, and which may be preferred
by some readers.
In order to describe the 3d SPT with either U(1)⋊ZT

2

or U(1)× ZT
2 symmetry, Ref. 14 proposed the following

nonlinear Sigma model that involves a five component
unit vector ~n = (n1, · · · , n5), with a topological Θ−term
at Θ = 2π:

S =

∫

d3xdτ
1

g
(∂µ~n)

2 +
iΘ

Ω4
ǫabcden

a∂xn
b∂yn

c∂zn
d∂τn

e,(5)

where Ω4 is the volume of a four dimensional sphere with
unit radius. Eq. 5 has an enlarged SO(5) symmetry,
but later we will reduce this symmetry down to physi-
cal U(1)⋊ ZT

2 or U(1)× ZT
2 .

In 3+1d, an order-disorder phase transition occurs
while tuning g. We will focus on the quantum disordered
phase with strong coupling g. Since Θ = 2π in Eq. 5, its
quantum disordered phase has the same bulk spectrum
as the case with Θ = 0. Thus coupling constant g flows
to infinity in the quantum disordered phase and this is
the limit we will focus on in this paper.
The physical meaning of the Θ−term in a NLSM is

usually interpreted as a factor exp(iΘ) attached to every
instanton event in the space-time. Then this interpreta-
tion would lead to the conclusion that Θ = 2π is equiva-
lent to Θ = 0. However, this interpretation is very much
incomplete, because it only tells us that theories with
Θ = 2π and 0 have the same partition function when
the system is defined on a compact manifold. These two
theories actually have very different ground state wave
functions. In order to expose the wave function, we need

to keep an open boundary of time. In this case the wave
function can be derived using the following path integral:

〈~n(x)|Ψ〉〈Ψ|~n′(x)〉

∼

∫

D~n(x, τ) exp(−S)~nτ=+∞=~n′,~nτ=−∞=~n. (6)

The ground state wave function |Ψ〉 can then be obtained
straightforwardly in the strong coupling limit g → +∞:

|Ψ〉 ∼

∫

D~n(x)W [~n]|~n(x)〉

W [~n] = e
i2π
Ω4

∫
d3x

∫
1

0
du ǫabcden

a∂xn
b∂yn

c∂zn
d∂un

e

. (7)

Here ~n(x, u) is an extension of the real space config-
uration ~n(x) that satisfies ~n(x, 0) = (0, 0, 0, 0, 1), and
~n(x, 1) = ~n(x). Eq. 7 is a superposition of all the config-
urations of the O(5) vector field ~n(x), with a weight that
is proportional to the real space Wess-Zumino-Witten
(WZW) term W [~n] at level-1. Thus the ground state
wave function of Eq. 5 with Θ = 2π is fundamentally
different from the case with Θ = 0. A similar relation
between the bulk Θ−term of 1+1d O(3) NLSM and its
ground state wave function was discussed previously in
Ref. 17, in the context of 1d spin chain.
Now let us reduce the artificial SO(5) symmetry of

Eq. 5 to U(1) and ZT
2 . We decompose the five component

vector ~n as ~n = (sin(α)~φ, cos(α)φ0), where ~φ is a unit
four component vector, and φ0 = ±1 is an Ising order
parameter. We further define two bosonic rotor operators
b1 ∼ φ1 + iφ2, b2 ∼ φ3 + iφ4. Under the U(1) and ZT

2 ,
we take these variables to transform as

ZT
2 : b1, b2 → b1, b2 (U(1)⋊ ZT

2 ),

b1, b2 → −b∗1,−b
∗
2 (U(1)× ZT

2 ),

φ0 → −φ0,

U(1) : b1 → eiθb1, b2 → eiθb2. (8)

We assume the system favors ~φ over φ0. If the time-
reversal symmetry is preserved, namely 〈φ0〉 = 0, the
WZW term in the wave function Eq. 7 reduces to a theta

term for the 4-component unit vector ~φ in 3 + 0 dimen-
sions. Thus we get the following wave function:

|Ψ〉 ∼

∫

D~φ(x)

× exp(

∫

d3x
iπ

12π2
ǫabcdǫµνρφ

a∂µφ
b∂νφ

c∂ρφ
d)|~φ(x)〉

=

∫

D~φ(x) (−1)Ns |~φ(x)〉. (9)

This wave function is a superposition of all configurations

of ~φ(x) in real space, with a θ−term defined in 3d real
space, at precisely θ = π. Ns is the Skyrmion number

of the four component vector ~φ, since π3[S
3] = Z. The
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FIG. 2: (a). When the symmetry is U(1)×U(1) the bulk wave
function is a superposition of two flavors of vortex loops with
factor (−1) attached to each linking. (b−f), braiding between
two flavors of vortices at the boundary effectively creates one
extra linking to the bulk vortex loops, which according to
the bulk wave function would contributes factor (−1). This
implies that the two flavors of vortices at the boundary have
mutual semion statistics.

value θ = π in the wave function is protected by time-
reversal symmetry ZT

2 . If this Z
T
2 symmetry is broken, θ

in this wave function will be tuned away from π.

For our purposes we need to introduce anisotropies
that reduce the symmetry from O(4) to U(1) × U(1).
Then the θ term (at θ = π) implies that there is a phase
factor −1 each time the vortex loops of the two boson
species link18. Thus this two species boson Mott insu-
lator has a wave function which is a superposition of all
vortex loops of the two species with a crucial factor of
(−1)L where L is the total number of linked opposite
species vortex loops. In contrast for the trivial Mott in-
sulator of the two boson species system, the weight for all
vortex loop configurations can be taken to be positive.

It is implicit in the discussion in terms of a four com-

ponent unit vector ~φ that classical configurations of the
b1,2 fields are always such that b1,2 cannot simultane-
ously vanish. As the amplitude of either of these fields
vanishes in their vortex core this implies that the vortex
loops of the two species cannot intersect. Thus a config-
uration with a linking of the two vortex loops cannot be
deformed to one without a linking.
This bulk wave function Eq. 9 also implies that at the

2d boundary, the vortex of b1 and vortex of b2 (sources
of vortex loops) have a mutual semion statistics, because
when one flavor of vortex encircles another flavor through
a full circle, the bulk vortex loops effectively acquire one
extra linking (Fig. 2), which according to the bulk wave
function would contribute factor (−1).

Let us now provide an alternate derivation of this result
using the bulk topological BF theory for the SPT phase
also proposed in Ref. 14. This theory takes the form

2πL3D =
∑

I

ǫµνλσBI
µν∂λa

I
σ +Θ

∑

I,J

KIJ

4π
ǫµνλσ∂µa

I
ν∂λa

J
σ

(10)
Here BI

µν is a rank-2 antisymmetric tensor that is re-
lated to the current of boson of species I = 1, 2 through
jIµ = 1

2π ǫµνλσ∂νB
I
λσ. a

I
µ is a 1-form gauge field which de-

scribes the vortices of the bosons. Specifically the mag-
netic field lines of aI are identified with the vortex lines
of the boson of species I. For the SPT state of interest
the K matrix is simply σx. The parameter Θ = π (not to
be confused with the theta parameter in the sigma model
description). The crucial difference with the trivial Mott
insulator is the second Θ term. To get the ground state
wavefunction we again evaluate the Euclidean path inte-
gral with open temporal boundary conditions. Using the
well known fact that the Θ term is the derivative of a
Chern-Simons term we end up with the following ground
state wave functional:

ψ
[

aIi , B
IJ
jk

]

∼ ei
Θ

8π2

∫
d3xǫijkK

IJaI
i ∂ja

J
kψ0

[

aIi , B
IJ
jk

]

(11)

Here ψ0 is the wave functional for the trivial Mott insu-
lator. The wave functional for the SPT insulator is thus
modified by a phase factor given by a 3 + 0 dimensional
Chern-Simons term. As is well known the Chern-Simons
term is related to a counting of the total linking num-
ber of the configuration of the magnetic flux lines of the
gauge fields. Specializing to the case at hand we see that
in the presence of a 2π flux line of a1, there is a phase
factor Θ = π whenever a 2π flux line of a2 links with
it. Thus we reproduce the result that there is a phase of
π associated with each linking of opposite species vortex
lines.
Finally if the U(1)×U(1) symmetry is broken down to

diagonal U(1), then the vortex loops of the two species
will be confined to each other. The resulting common
vortex loop of the rotor b ∼ b1 ∼ b2 becomes a ribbon,
whose two edges are the vortex loops of b1 and b2. Fur-
ther for simplicity we assume that there is an energetic
constraint at short distances that prevent two vortex lines
of the same species from approaching each other. In par-
ticular we assume that the binding length scale of the
opposite species vortex loops is smaller than the allowed
separation between same species vortex loops. Then
the vortex ribbons cannot intersect each other. Such
a “hard-core” constraint on the short distance physics
should not affect the universal long distance behavior of
the wavefunction30. Note that the binding of the two
species of vortex loops gives a physical implementation
of the mathematical concept of ‘framing’ used to describe
the topology of knots. The linking between the two fla-
vors of vortex loops becomes a self-linking of the ribbon.
Thus wave function Eq. 9 reduces to wave function Eq. 4.
As we mentioned before, this bulk wave function Eq. 4
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implies that the end point of a vortex ribbon at a 2d
boundary is a fermion.
Similarly bulk external sources for vortex ribbons will

also be fermions. Such sources are points in three dimen-
sional space where we force the vortex lines to end. In
the original boson Hilbert space vortex lines cannot of
course end. So these bulk vortex sources are to be re-
garded as probes of the system where we locally modify
the Hilbert space. The statistics of these bulk external
vortex sources is readily understood from the bulk wave
function and is discussed in Appendix C. A quick hint
of the fermionic statistics comes from asking about the
behavior under 2π spatial rotations. The vortex ribbon
emanating from a vortex source is twisted by 2π, and
this has an extra phase −1 compared to the untwisted
ribbon. Thus the vortex source has ‘topological’ spin1/2
as expected if it is a fermion.
All these results concur with the boundary theory dis-

cussed in Ref. 14. There a boundary field theory for the
SPT is derived, which is a 2+1d NLSM with four compo-

nent vector ~φ, and there is a 2+1d space-time Θ−term at
precisely Θ = π. This space-time Θ−term implies that
the vortex of b2 carries 1/2−charge of b1, and vice versa.
Thus vortices of b1 and b2 have a mutual semion statis-
tics. When the symmetry is broken down to one single
U(1), the 2d vortex at the boundary becomes a bound
state of the two flavors of vortices: thus eventually this
bound vortex becomes a fermion.
Ref. 14 also described a different interesting SPT phase

with U(1) × ZT
2 symmetry. There the surface theory is

such that the surface vortex carries a Kramers doublet
in its core. A bulk effective field theory of this phase
is also obtained14 by starting with the O(5) non-linear
sigma model (Eq. 5) with anisotropies but with a different
realization of symmetry from the one described above.
For instance, we can decompose five component vector ~n
in a different way: ~n = (Re[b], Im[b], Nx, Ny, Nz), where
b is a rotor field that transforms under ZT

2 : b → −b∗.
~N is a three component vector that changes sign under
ZT
2 but is uncharged under the global U(1). The 3+1d

Θ−term in Eq. 5 implies that the vortex loop of b is in

a 1d Haldane phase of vector ~N . We may now break the
symmetry down to just U(1)×ZT

2 . Then a vortex at the
boundary must carry a Kramer’s doublet, because it is
effectively the edge of the 1d Haldane-like phase (with
ZT
2 symmetry) along the vortex loop. This is the “Phase

1 SPT” with symmetry U(1)× ZT
2 discussed in Ref.14.

Let us now consider the ground state wave function
for this phase which in terms of the 5-component vector
is still given by Eqn. 7. Now the interpretation of the
WZW term is different. As is familiar from discussions of
deconfined quantum criticality in terms of sigma models
with WZW terms18–20 in 2 + 1 dimensions, with these
symmetries an external source for a vortex line carries

spin-1/2 of the O(3) rotation that acts on the ~N vector.
If the O(3) symmetry is broken down to ZT

2 , then the
vortex source still has a Kramers doublet. This of course
is completely consistent with the picture that each vortex

FIG. 3: (a) Skyrmion of O(3) vector ~n in 2d space. (b) If the
SO(3) symmetry is broken down to Z2, the Skyrmion becomes
a domain wall of Z2 order parameter nz.

may be viewed as a Haldane chain. Thus the ground state
wave function in this case can be viewed as a vortex loop
gas of Haldane chains.

IV. GROUND STATE WAVE FUNCTION OF 2D

SPT PHASES

A. 2d SPT phase with Z2 symmetry

Let us now switch gears to SPT phases in 2d. We be-
gin by making contact the work of Levin and Gu15 on
the Ising SPT phase. The simplest SPT phase in 2d has
a Z2 global symmetry. In Ref. 15, a lattice model for
this phase has been discussed. The ground state wave
function was argued to be a sum over all domain wall
configurations with a factor (−1)Nd where Nd is the to-
tal number of domain wall loops. We now show how to
reproduce this results within the methods of this paper.
In 2 + 1 space-time dimensions many SPT phases are

conveniently described by starting with an effective non-
linear sigma model field theory in terms of a four com-

ponent unit vector ~φ. The field theory action reads

S =

∫

d2xdτ
1

g
(∂µ~φ)

2 +
i2π

12π2
ǫabcdǫµνρφ

a∂µφ
b∂νφ

c∂ρφ
d,(12)

The crucial ingredient is the Θ term for the 4-component
unit vector at Θ = 2π. This action Eq. 12 has an SO(4)
symmetry, and this SO(4) symmetry contains a subgroup

Z2 symmetry ~φ → −~φ. Eventually we will break the ar-
tificial SO(4) symmetry of Eq. 12 down to this Z2 sub-
group.
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In the paramagnetic phase, i.e. in the limit g → +∞,
the bulk ground state wave function is

|Ψ〉 ∼

∫

D~φ(x) exp{
i2π

12π2
×

∫

d2x

∫ 1

0

du ǫabcdǫµνρφ
a∂µφ

b∂νφ
c∂ρφ

d} |~φ(x)〉,(13)

which is a superposition of all configurations of ~φ(x) with
a real space WZW weight.
Now let us decompose the four component vector into

~φ = (cos(α)φ0, sin(α)~n), where φ0 = ±1 is an Ising
order parameter, and ~n is a unit three component vector:
(~n)2 = 1. We also break the SO(4) symmetry down to
Z2 × SO(3) symmetry:

Z2 : φ0 → −φ0, ~n→ −~n,

SO(3) : Rotation of ~n. (14)

Under this symmetry reduction, if the system energeti-
cally favors vector ~n over φ0 (favors α = π/2), the wave
function Eq. 13 reduces to

|Ψ〉 ∼

∫

D~n(x) exp{
iπ

8π

∫

d2x ǫabcǫµνn
a∂µn

b∂νn
c} |~n(x)〉

=
∑

Ns

(−1)Ns |~n(x)〉, (15)

where Ns is the number of Skyrmions of O(3) vector ~n
in the 2d space. As long as we keep the Z2 symmetry
~φ → −~φ, the expectation value of φ0 is zero, then each
Skyrmion will contribute a phase factor exactly (−1).
Now let us further break Z2 × SO(3) symmetry down

to Z2 × SO(2):

Z2 : φ0 → −φ0, ~n→ −~n,

SO(2) : Rotation of nx, ny. (16)

Also we assume that the system favors nz over nx and ny,
then each skyrmion becomes a domain wall of Z2 order
parameter nz(x) (Fig. 3). Now the wave function Eq. 15
reduces to a superposition of configurations of Z2 order
parameter nz(x):

|Ψ〉 ∼
∑

nz

(−1)Nd |nz(x)〉, (17)

where Nd is the number of closed domain wall loops of
nz(x). Eventually we can also break the residual SO(2)
symmetry, and the wave function Eq. 17 is unchanged.
The wave function Eq. 17 is exactly the one derived

from the lattice model of 2d SPT phase with Z2 symme-
try15. In the appendix we will also demonstrate that the
effective field theory Eq. 12 implies that, after coupling
this SPT phase to a dynamical Z2 gauge field, the π−flux
of this Z2 gauge field has a semion statistics, which is
consistent with the result in Ref. 15.

With a full SO(4) symmetry, the edge states of Eq. 12
with precisely Θ = 2π is the nonchiral SU(2)1 conformal
field theory (or equivalently as an SO(4) non-linear sigma
model with a level-1 WZW term). Since the original

SO(4) symmetry is reduced to its Z2 subgroup ~φ→ −~φ,
we have to argue that the edge state of Eq. 12 survives
under this symmetry reduction. Because the Z2 sym-

metry acts on all four components of ~φ, in the bound-
ary WZW model, terms allowed by the Z2 symmetry are
∑

i,j gijφiφj (i, j = 0, 1, 2, 3). If these terms are relevant,
it leads to spontaneous Z2 symmetry breaking and two
fold degeneracy at the boundary. Thus the edge state
cannot be completely trivial (gapped and nondegenerate)
as long as the Z2 symmetry is preserved.

B. 2d SPT phase with U(1)⋊ ZT

2 symmetry

Finally we consider the 2d bosonic topological insula-
tor which occurs when the global symmetry is U(1)⋊ZT

2 .
This may be described by starting again with the same
4-component non-linear sigma model but with the follow-
ing implementation of the physical symmetry. We write
φ2−iφ3 = b and let b have charge-1 under the global U(1).
Under ZT

2 , we demand b → b, φ0 → −φ0, φ1 → −φ1. As
before we again assume first an anisotropy that prefers ~n
over φ0 so that the ground state wave function is given
by Eqn. 15. Now we introduce further anisotropy to
reduce to the desired U(1) ⋊ ZT

2 . The defects of the
charged field b are of course point vortices. In the core of

these vortices the amplitude of b is suppressed and the ~φ
points entirely in the φ1 direction. There are two differ-
ent vortices - known as merons - depending on whether
in the core φ1 = ±1. Each meron may be viewed as
half a skyrmion and has Ns = sgn(φ1)1/2. Thus the
ground state wave function is then a sum over all pos-
sible configurations of the two kinds of meron vortices
with phase factors e±iπ

2 for the two kinds of vortex. Let
nv± be the vortex number of either species at site i in a
lattice description. Then we require that the total vor-
ticity Nv =

∑

i nv+ + nv− = 0. Then the phase factor in

the wave function ei
π
2

∑
i
(nv+−nv−) = (−1)

∑
i
nv− . Thus

there is a relative phase of −1 associated with − vortices
compared to + vortices.

We now argue that this structure of the wave function
matches what is known about the 2d bosonic topological
insulator. Consider a dual description of such an insu-
lator. From our arguments above there are two kinds of
vortex fields Φv± corresponding to the two meron vor-
tices. The dual vortex theory will have a Lagrangian

Ld =
∑

s=±

|(∂µ − iaµ)Φvs|
2 + ...+

κ

2
(ǫµνλ∂νaλ)

2 (18)

Here aµ is the usual fluctuating non-compact U(1) gauge
field whose flux density is the original boson number.
There must in addition be terms where the meron cores



7

tunnel into each other:

λ
(

Φ†
v+Φv− + h.c

)

(19)

We begin by ignoring these and we will reinstate them
later. Under time reversal a vortex must go to an anti
vortex (as the boson phase is odd) and the meron cores
flip into each other. Thus under ZT

2

Φv+ → ±Φ†
v− (20)

In the trivial insulator all vortex configurations con-
tribute with the same sign and we must choose Φv+ →

+Φ†
v−. But for the topological insulator there is a relative

− sign between the two vortex species. Thus we must

choose Φv+ → −Φ†
v−. Condensing vortices that trans-

form in this manner will give us the boson topological
insulator. Now let us include the meron core tunneling
term. Then the two vortex species mix with each other
so that we identify a single vortex Φv = Φv+ ∼ Φ∗

v−. Its

transformation under time reversal is Φv → ±Φ†
v where

the + sign describes the trivial insulator and the − the
topological insulator. This is exactly the same transfor-
mation law for the vortices that is dictated by the edge
theory analysis of the 2d boson topological insulator21,22.
Thus the wave function description we developed cap-
tures the physics of this state, and further gives a bulk
dual vortex description.

V. DISCUSSION

In summary, we have demonstrated in this work that,
although most of the novel phenomena of a SPT phase
occur at its boundary, its bulk ground state wave func-
tion is indeed drastically different from a trivial direct
product disordered phase. This bulk wave function can
be conveniently derived from the effective field theory of
the SPT phase. The structure of the ground state wave
functions in terms of dual vortex configurations derived
in this work provide a simple physical picture of the phe-
nomena associated with these SPT phases.
The dual ground state bulk wave function provides a

nice intuitive understanding of the differences between
ordinary and topological boson insulators. However in
this paper we haven’t attempted to explicitly construct
microscopic models for these phases. Progress in this
direction is reported very recently in Refs. 23,24 which
appeared this paper was submitted.
Finally we note that for the 3d boson topological insu-

lators, there is some superficial similarity with the wave
functions of Walker and Wang25 though a detailed under-
standing of the relationship is presently not clear to us.
The Walker-Wang models also have ground state wave
functions as string net configurations with amplitude de-
termined by a 2+1-d topological quantum field theory.
In some cases these can correspond to SPT phases (see
Ref. 24). However it is not clear how the strings in the

Walker-Wang models are related to the physical bosons;
in particular they are not to be identified with physi-
cal vortex loops. Exploring the connections between the
wave functions in these Walker-Wang constructions of
SPT phases and our dual wave functions is an interest-
ing avenue for future research.
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Appendix A: Appendix: Dynamical Z2 gauge fields

in the 2d Ising SPT

In this appendix we demonstrate that the effective field
theory Eq. 12 not only gives us the correct ground state
wave function (Eq. 17) of the 2d Ising SPT phase, after
coupling the SPT phase to a Z2 gauge field, the topolog-
ical Θ−term of Eq. 12 also leads to nontrivial statistics
of the dynamical π−flux (vison) of the Z2 gauge field.
First of all, Eq. 12 can be rewritten as a SU(2) princi-

ple chiral model, by introducing SU(2) matrix field G =

φ0σ0 + i~φ · ~σ. G has SU(2)−left and SU(2)−right trans-

formations: G → V †
LGVR. Let us “gauge” SU(2)−left

and SU(2)−right transformations with dynamical U(1)
gauge fields aµσ

z and bµσ
z , i.e. replace ∂µG with ∂µG+

iaµσ
zG + ibµGσ

z . According to Ref. 26,27, after inte-
grating out matrix field G, gauge fields aµ and bµ both
acquire a Chern-Simons term:

Scs =

∫

d2xdτ
i2

4π
ǫµνρaµ∂νaρ −

i2

4π
ǫµνρbµ∂νbρ. (A1)

This is because Eq. 12 also describes a U(1) bosonic SPT
with Hall conductivity 2.
A dynamical U(1) gauge field with level−k has the fol-

lowing properties: its charged quasiparticle carries gauge
flux 2π/k, and this quasiparticle has a statistics angle
π/k. Thus the Chern-Simons action Eq. A1 gives the
π−flux of U(1) gauge field aµ and bµ a semion statis-
tics, with statistics angle +π/2 and −π/2 respectively.
Notice that the two U(1) gauge groups share the same
Z2 transformation G → −G, thus we can break the two
U(1) gauge fields down to one Z2 gauge field, then the
dynamical π−flux of this Z2 gauge field has two differ-
ent flavors with semionic statistics angle +π/2 and −π/2
respectively.
In Ref. 15, using their lattice model, the authors con-

cluded that the dynamical π−flux of this Z2 gauge field
has a semion statistics. Here we have derived the same
result using our field theory Eq. 12.

Appendix B: Lattice version of effective field theory

In this Appendix we briefly discuss a lattice regular-
ized version of the bulk effective field theory for the 3d
SPT phases discussed in this paper. We will also briefly
review the considerations leading to the bulk effective
‘BF + FF’ effective theory of Ref. 14. This enables a
further elaboration of the discussion in the main text on
the properties of external sources of bulk vortex lines.
To set the stage first consider the Euclidean lattice

action for 3+1-D XY model in Villain form:

S′ =
∑

rµ

g

2
(jµ)

2 + ijµ (∇µθr − 2πmµ) (B1)
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Here mµ is an integer defined on the links. Physically it
defines the integer vortex current

Jµν = ǫµνλκ∇λmκ (B2)

It is slightly more convenient to go to a ‘gauge’ where we
explicitly sum over m0 which has the effect of forcing j0
to be an integer. We can then drop m0 from the action.
Let us also define aµ = 2πmµ. Now consider two species
of bosons, i.e 2 XY models . We put one XY model on
a 4d cubic lattice and the other on a different 4d cubic
lattice such that the spatial links of one lattice penetrate
the spatial plaquettes of the other. (This different treat-
ment of time and space is not necessary but it helps to
visualize). Formally the lattice sites of one lattice are
(l0, lx, ly, lz) with lµ = integer and for the other lattice
we have (l0, lx + 1

2 , ly +
1
2 , lz +

1
2 ). Then let us write the

action for the coupled XY models:

S =
∑

I=1,2

S0I + Stop (B3)

Stop = i
Θ

8π2
KIJǫµνλκ∇µa

I
ν∇λa

J
κ (B4)

with the matrix K = σx. The first term S0I is just
the sum of the above XY actions for the each species.
The second ‘topological’ term enforces the phases asso-
ciated with the vortex world sheet configurations. In
the trivial boson insulator Θ = 0 while in the boson
SPT phase Θ = π. Thus the Boltzmann weight for the
SPT phase differs from that of the trivial insulator only
through phase factors that depend on the vortex world
sheet configurations.
The action in Eqn. B3 can be regarded as a lattice

version of the continuum non-linear sigma model used in
the main paper. Indeed the term Stop correctly captures
the physics of the theta term of the sigma model. We now
show the relation to the ‘BF + FF’ effective theory. As
usual a dual description of the boson system is obtained
by writing the conserved boson 4-currents in terms of
dual 2-form fields BI

µν :

jIµ =
1

2π
ǫµνκλ∇νB

I
κλ (B5)

The term jµaµ in the lattice action above then leads
to the familiar BF term. The integer constraint on
mν =

aµ

2π can be implemented softly by including a term

−λ cos
(

aIµ −∇µθ
I
)

. The θI is just the original boson
phase. As explained in Ref. 14 in the Mott insulator at
energies below the boson gap the bosons may be inte-
grated out to leave behind just a Maxwell term for the
aµ fields. The term Stop in the lattice action Eqn. B3
simply becomes the FF term of the ‘BF + FF’ action.
The properties of external sources of vortex lines can be

readily discussed in terms of these bulk effective field the-
ories. Since the difference with the trivial insulator comes
entirely from the Stop term, it is appropriate to focus first
on the vortex world sheet configurations, take care of the

FIG. 4: (a), a vortex source is the end point of a bulk vortex
ribbon. (b) → (e), sequence of vortex ribbon deformation,
starting with interchanging two vortex sources in (b). (b) is
homotopically equivalent to self-twisting one of the two rib-
bons by 2π in (e), which according to the bulk wave func-
tion should acquire factor −1. (f), interchanging two vortex
sources is also homotopically equivalent to creating one extra
vortex ribbon with 2π self-twist in the bulk.

consequences of Stop and then put back the interaction
with the smooth part of the boson phase fields repre-
sented by the coupling to BI

µν . External bulk sources of
vortex lines are simply monopole sources of 2π magnetic
flux of the internal gauge fields aIµ. We may now spe-

cialize to the SPT phase for U(1) × ZT
2 or U(1) ⋊ ZT

2

discussed in the main text where the boundary vortex is
a fermion. Now consider letting the two boson species
tunnel into each other so that the corresponding vortex
lines are bound together to form the vortex ribbon. For-
mally in a coarse grained description this is obtained by
setting a1µ ∼ a2µ. Bulk external sources of the vortex
ribbon are simply monopoles of this common internal
gauge field. The wave function based discussion of this
paper shows that these vortex sources are fermions. Al-
ternately this follows from the observation of Ref. 14
that the vortex field of the boundary dual vortex theory
is a fermion.

Appendix C: Statistics of vortex sources

According to the main text, a vortex at the 2d bound-
ary of the U(1) ⋊ ZT

2 SPT phase is a fermion. Here we
consider bulk vortex sources. Consider the vortex loop
left behind by creating a vortex source and anti vortex
source together, moving the vortex source around and
then annihilating with the anti vortex source. Now con-
sider creating another such loop. We can envisage two
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situations depending on whether or not the two vortex
sources were exchanged with each other during the pro-
cess of forming the two closed loops. Pictures correspond-
ing to these two situations may be found in Fig. 2 of the
well known paper by Wilczek and Zee28. As argued in
that paper the difference between the two pictures corre-
sponds to a self-linking of one of the ribbons by 2π. This
means that the process of exchange of the vortex sources
has introduced a phase −1, and thus the vortex sources
are fermions.
Here we provide further pictures to illustrate this

in Fig. 4. Let us consider two vortex sources in the
bulk (Fig. 4a). After interchanging two vortex sources
(Fig. 4b), the vortex ribbon configurations can be contin-

uously deformed into Fig. 4e (b → c → d → e), which is
simply self-twisting one of the ribbons by 2π. In Fig. 4b,
the ribbon (red and green vortex lines) connecting to the
right vortex source is on the top. Step 1: (b) → (c),
connect the two red (green) lines in (b), and reopen in
the horizontal direction; Step 2: (c) → (d), deform the
red line on the right into a circle and a straight line;
(d) → (e), reconnect the red circle to the red line on the
left, now the ribbon on the left has a 2π self-twist.
Fig. 4b can also be continuously deformed into Fig. 4f ,

which compared with Fig. 4a has created another ribbon
with a 2π self-twist, or equivalently two different vortex
loops with linking number 1. Both configurations (e) and
(f) introduce factor (−1) compared with (a).
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