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I INTRODUCTION
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We use a generalized spin wave approach and large scale quantum Monte Carlo (QMC) simulations to study
the quantum phase diagram and quasiparticle excitations of the S = 1 Heisenberg model with an easy-plane
single-ion anisotropy in dimensions d = 2 and 3. We consider two alternative approximations for describing the
quantum paramagnetic state: the standard Holstein-Primakoff approximation and a modified treatment in which
the local constraint (finite dimension of the local Hilbert space) is enforced by introducing a Lagrange multiplier.
While both approximations produce qualitatively similar results, the latter approach is the only one that is in
good quantitative agreement with the quantum phase diagram and the quasiparticle dispersions obtained with
QMC. This result is very important for low-temperature studies of quantum paramagnets in magnetic fields
because it shows that a simple modification of the standard analytical approach should produce much better
quantitative agreement between theory and experiment.

PACS numbers: 75.10.Jm, 75.40.Mg, 75.40.Cx

I. INTRODUCTION

Lately there has been a renewed interest in the study
of magnetic field induced quantum phase transitions in
spin-one magnets with strong single-ion and exchange
anisotropies1–8. The discovery of S = 1 compounds,
such as Y2BaNiO5 or the organo-metallic frameworks
[Ni(C2H8N2)2(NO2)]ClO4 (NENP), [Ni(C2H8N2)2Ni(CN)4]
(NENC) and [NiCl2-4SC(NH2)2] (DTN), fuelled experimen-
tal and theoretical studies of the role of dimensionality and
single-ion anisotropy1,4–13. In most of the known S = 1 mag-
nets, the ubiquitous Heisenberg exchange is complemented
by single-ion anisotropy. The interplay between these in-
teractions with external magnetic field and lattice geome-
try can result in a rich variety of quantum phases and phe-
nomena, including the Haldane phase of quasi-1D systems14,
field induced Bose Einstein condensation (BEC) of magnetic
states1–8 and field induced ferronematic ordering15. Interest in
S = 1 Heisenberg antiferromagnets with uniaxial exchange
and single-ion anisotropies has gained additional impetus re-
cently after it was shown to exhibit the spin analog of the elu-
sive supersolid phase on a lattice over a finite range of mag-
netic fields.16–18

In contrast to its classical counterpart (S → ∞), S = 1
systems become quantum paramagnets (QPM) for sufficiently
strong easy-plane single-ion anisotropy. In other words, they
do not order down to zero temperature, T = 0, because the
dominant anisotropy term, D

∑
r(Szr)2 (D > 0), forces each

spin to be predominantly in the non-magnetic |Szr = 0〉 state:
〈Szr = 0|Sνr |Szr = 0〉 = 0 for ν = {x, y, z}. The application
of a magnetic field , H , along the z-axis reduces the spin gap
linearly in H since the field couples to a conserved quantity
(total magnetization along the z-axis). The gap is closed at a
quantum critical point (QCP) where the bottom of the Sz = 1
branch of magnetic excitations touches zero. This QCP be-
longs to the BEC universality class and the gapless mode of
low-energy Sz = 1 excitations remains quadratic for small
momenta, ω ∝ k2, because the Zeeman term commutes with
the rest of the Hamiltonian. Since the dynamical exponent is

z = 2, the effective dimension is d + 2 and the upper critical
dimension is dc = 2. This, and analogous field-driven transi-
tions, have been widely studied experimentally to demonstrate
BEC related phenomena in many quantum magnets.1,5,19–23

One of these magnets is the metal-organic framework DTN
that we mentioned above1–8.

The starting point of any theoretical study of a magnetic
field induced phase transition in a QPM is to determine the
Hamiltonian parameters, i.e., the exchange constants and the
amplitude of the different anisotropies. The simplest way of
extracting these parameters is to fit the branches of magnetic
excitations that are measured with inelastic neutron scatter-
ing (INS). The reliability of this procedure is normally lim-
ited by the accuracy of the approach that is used to com-
pute the dispersion relation of magnetic excitations. Numer-
ical methods like Quantum Monte Carlo (QMC) and Den-
sity Matrix Renormalization Group (DMRG) are very accu-
rate, but they can only be applied under special circumstances.
While the DMRG method24 has evolved to the extent that dy-
namical properties such as the frequency and momentum de-
pendence of the magnetic structure factor can be computed
very accurately25, its application is restricted to quasi-one-
dimensional magnets such as HPIP-CuBr426. On the other
hand, QMC methods can only be applied to systems that have
no frustration in the exchange interaction, i.e., that are free of
the infamous sign problem. Consequently, it is necessary to
find simple analytical approaches that are accurate enough to
quantitatively reproduce the quantum phase diagram and the
dispersion of magnetic excitations.

One of the purposes of this work is to test different analyt-
ical approaches against the results of accurate QMC simula-
tions of a spin-one Heisenberg Hamiltonian with easy-plane
single-ion anisotropy. The model is defined either on a square
or on a cubic lattice to avoid frustration and make the QMC
method applicable. Besides being relevant for describing real
quantum magnets, such as DTN, this model provides one of
the simplest realizations of quantum paramagnetism and is
ideal for testing methods that can be naturally extended to
more complex systems.
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II GENERALIZED SPIN WAVE APPROACH

The generic S = 1 Heisenberg model with uniaxial single–
ion anisotropy on an isotropic hyper-cubic lattice is given by
the Hamiltonian:

HH = J
∑
〈r,r′〉

Sr · Sr′ +
∑
r

(DSzr
2 − hzSzr) (1)

where the sum in the first term runs over nearest neighbor
pairs 〈r, r′〉. D is the strength of the single ion-anisotropy,
J is the exchange constant and hz = gµBH , where g is the
g-factor and µB is the Bohr magneton . Henceforth, J is set to
unity and all the parameters are expressed in units of J . In this
work, we shall only consider models with spatially isotropic
interactions, although the formalism can be straightforwardly
generalized to anisotropic lattices.

The (D,hz) quantum phase diagram of HH is well known
from mean field analysis27–29, series expansion studies30 and
numerical simulations31. The D term splits the local spin
states into Sz = 0 and Sz = ±1 doublet. As we explained
above, the ground state is a quantum paramagnet for large
D � 1, i.e., it has no long range magnetic order and there
is a finite energy gap to spin excitations. At finite magnetic
fields, the Zeeman term lowers the energy of the Sz = +1
state until the gap closes at a critical field hc. A canted an-
tiferromagnetic (CAFM) phase appears right above hc: the
spins acquire a uniform longitudinal component and an an-
tiferromagnetically ordered transverse component that spon-
taneously breaks the U(1) symmetry of global spin rotations
along the z-axis. The CAFM phase can also be described as
a condensation of bosonic particles. The particle density, nr,
is related to the local magnetization along the symmetry axis
nr = Szr + 1. Therefore, the magnetic field acts as a chemical
potential in the bosonic description. For hz > hc, the sys-
tem is populated by a finite density of bosons that condense
in the single particle state with momentum Q with Qν = π
(ν = {x, y, z}). The longitudinal magnetization (density of
bosons) increases with field and saturates at the fully polarized
(FP) state (Szr = 1 ∀ r) above the saturation field hs. The FP
state corresponds to a bosonic Mott insulator in the language
of Bose gases. There exists a critical value of the single-ion
anisotropy, Dc, below which the CAFM phase extends down
to zero field. The nature of the QPM-CAFM quantum phase
transition changes between hz = 0 and hz 6= 0. The transi-
tion belongs to the BEC universality class for hz 6= 0, while
it belongs to the O(2) universality class for hz = 0.

In the next section we introduce a generalized spin wave
theory that describes the ground state and quasiparticle ex-
citations of the quantum paramagnetic and the canted AFM
phases. We describe two procedures – one based on the
standard Holstein-Primakoff approach33, and a second one in
which a Lagrange multiplier is introduced to enforce the local
constraint at a mean field level34. The QMC method is intro-
duced in Sec. III. Sec. IV includes a comparison between the
analytical and numerical (QMC) results, which shows that the
quantitative agreement with numerical simulations is consid-
erably improved for the Lagrange multiplier method over the
Holstein-Primakoff approach. We note that this is true both
for the quantum phase diagram and for the dispersion of mag-
netic excitations even in d = 2. This remarkable accuracy in

describing low energy dispersion indicates that the second ap-
proach is ideally suited for extracting Hamiltonian parameters
from fits of INS data. Sec. V is devoted to finite temperature
results. Finally, in Sec. VI we discuss the implication of our
results for the organic quantum magnet DTN and for any other
quantum magnet that is close to the QCP which separates the
magnetically ordered and paramagnetic ground states.

II. GENERALIZED SPIN WAVE APPROACH

In this section, we give a brief outline of the generalized
spin wave formalism that was originally applied to the de-
scription of the quantum paramagnetic state of DTN1. Since
the local Hilbert space has dimension Dl = 3, we introduce
three Schwinger bosons (SB) with annihilation (creation) op-
erators b(†)mr,m ∈ {0, 1, 2}. The three different states occu-
pied by a single boson are mapped into the eigenstates of Szr
for each site r:

b†0r|∅〉 = |0〉r, b†1r|∅〉 = |1〉r, b†2r|∅〉 = | − 1〉r (2)

The local constraint,

2∑
m=0

b†mrbmr = 1, (3)

guarantees that the dimension of the local Hilbert space is pre-
served under this mapping. The bilinear forms of these SBs
are generators of SU(3) in the fundamental representation36.
We use the SBs to extend the usual SU(2) spin wave ap-
proach to SU(3)35 since the local order parameter for S = 1
spins has 8 components, which correspond to the 8 gener-
ators of the SU(3) group of unitary transformations in the
local Hilbert space of dimension 3. Three of them corre-
spond to the local magnetization (Sxr , S

y
r , S

z
r), while the other

five are the components of the traceless symmetric tensor,
Qηνr = (SηrS

ν
r + SνrS

η
r )/2 − δην2/3, that defines the local

spin nematic moment. In particular, the paramagnetic mean
field ground state has a net nematic component induced by
the single-ion anisotropy, but no net magnetization compo-
nent. Such a state has no classical counterpart. Nevertheless,
we can still implement a semi-classical approximation if we
generalize the traditional spin-wave analysis from SU(2) to
SU(3). In this approach, we can describe the quantum fluctu-
ations around the mean field state as small (quadratic) oscilla-
tions of an SU(3) order parameter.

At the mean field level, any ground state that is stabilized
for D > 0 is described by the product state

|ψcl〉 =
∏
r

b̃†0r|∅〉, (4)

where

b̃†0r = b†0r cos θ+ (b†1r sin θ cosφ+ b†2r sin θ sinφ)eiQ·r (5)

and the variational parameters θ and φ are determined
by minimization of the mean field energy per site
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II GENERALIZED SPIN WAVE APPROACH

e0 = 〈ψcl|HH |ψcl〉/N :

∂e0
∂θ

= 0,
∂e0
∂φ

= 0. (6)

We note that the variational parameters θ and φ are enough to
parametrize the three different phases that appear in the phase
diagram ofHH for D > 0. The bosonic operator b̃(†)0r belongs
to a new set of SB operators that are obtained from the original
set {b(†)mr} by a unitary transformation, Ur:

b̃r = Urbr, br =

 b0r
b1r
b2r.

 . (7)

This transformation corresponds to choosing a quantization
axis along the direction of the order parameter, as it is done in
the usual spin wave treatment. Since the ground state of the
antiferromagnetic phase breaks translational symmetry mak-
ing the two sublattices inequivalent, the corresponding canon-
ical transformation, Ur, is different for the two sublattices, as
it is clear from the phase factor eiQ·r that appears in Eq.(5).

In terms of the SBs, the spin operators Sµr assume bilinear
forms Sµr = b†rSµbr,

Sxr =
1√
2

(b†1rb0r + b†0rb2r),

Syr =
1√
2i

(b†1rb0r − b
†
0rb2r),

Szr = b†1rb1r − b
†
2rb2r, (8)

that transform as S̃µr = UrSµrU†r . The spatial dependence of
the unitary transformation Ur can be eliminated if we change
the original basis of the Hamiltonian HH . In particular, the
CAFM state becomes uniform if we rotate the spin reference
frame of one of the sublattices by angle π along the z-axis.
Since the uniform paramagnetic ground states of HH remain
invariant under this transformation, the unitary transforma-
tions Ur become r-independent in the new basis for all the
different phases ofHH . Since, Szr → Szr and Sx,yr → −Sx,yr ,
we have thatHH →

HH = J
∑
〈r,r′〉,ν

aνS
ν
rS

ν
r′ +

∑
r

(DSzr
2 − hzSzr) (9)

in the new basis, where az = 1 and ax = ay = −1. We note
that this change of basis shifts the AFM wave vector from Q
to 0 and removes the factor eiQ·r from Eq. (5).

The bosonic representation of the Hamiltonian in the new
basis is

HH = J
∑
〈r,r′〉,ν

aν b̃
†
rS̃ν b̃rb̃

†
r′ S̃ν b̃r′ (10)

+ D
∑
r

(
1− b̃†rÃb̃r

)
− hz

∑
r

b̃†rS̃z b̃r

where

S̃µ = USµU†, Ã = UAU† and Aij = δi0δj0

The condensation of the bosons b̃0r is implemented via a
natural extension of the Holstein-Primakoff transformation33

to the case of more than one type of boson. From the local
constraint (3) we obtain:

b̃†0r = b̃0r =

√
1− b̃†1r b̃1r − b̃

†
2r b̃2r (11)

By applying the above condition to the Hamiltonian (1) and
keeping terms up to bilinear in the bosonic creation and anni-
hilation operators, we obtain the mean field ground state en-
ergy

e0 = dJ
∑
ν

aν S̃
ν
00S̃

ν
00 − hzS̃z00 +D(1− Ã00) (12)

and the spin wave Hamiltonian

Hsw =
∑
〈r,r′〉

α,β∈{1,2}

[
tαβ b̃

†
αr b̃βr′ + ∆αβ b̃

†
αr b̃
†
βr′ + H.c.

]

+
∑
r

α,β∈{1,2}

λαβ b̃
†
αr b̃βr (13)

with the Hamiltonian parameters

tαβ = J
∑
ν

aν S̃να0S̃ν0β

∆αβ = J
∑
ν

aν(S̃να0S̃νβ0 − (S̃ν00)2δαβ)

λαβ = dJ
∑
ν

aν S̃ναβS̃ν00 +Dδαβ − hzS̃zαβ (14)

where d is the spatial dimension. In the next step, the spin-
wave Hamiltonian (13) is transformed to momentum rep-
resentation by introducing bosonic operators in momentum
space:

Hsw =
∑
k,α,β

εαβ(k)b̂†αkb̂βk +
γαβ(k)

2

(
b̂†αkb̂

†
β−k + H.c.

)
,

(15)
with

b̂†αk =
1√
N

∑
r

ek·r b̃†αr,

εαβ(k) = λαβ + tαβ
∑
ν

cos kν

γαβ(k) = ∆αβ

∑
ν

cos kν (16)

The resultant Hamiltonian can then be straightforwardly diag-
onalized by a Bogoliubov transformation to yield the single
particle dispersion:

Hsw =
∑
k,α

ωkα

(
a†αkaαk +

1

2

)
− εαα(k)

2
(17)
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A QPM phase and the Fully Polarized phase II GENERALIZED SPIN WAVE APPROACH

A. QPM phase and the Fully Polarized phase

At the mean field level, the paramagnetic state,

|ψcl(θ = 0)〉 =
∏
r

b†0r|∅〉, (18)

is the lowest energy state for large enough D, as long as
the applied magnetic field remains below a critical value hc.
Since the unitary transformation can be chosen as the iden-
tity, U = 1, the quasiparticle dispersion becomes particularly
simple in the QPM phase:

ωk± =
√
D2 + 2Dηk±hz, ηk = −2J

∑
ν

cos(kν). (19)

Both branches have the same dispersion at zero field, hz = 0,
as expected from time reversal symmetry. A finite hz splits
the branches linearly in hz without changing the dispersion.
This is a consequence of the fact that the external field cou-
ples to the total magnetization,Mz =

∑
r S

z
r , which is a con-

served quantity. Both branches have a minimum at the AFM
wave-vector k = 0 that determines the size of the gap. The
dispersion is quadratic near k = 0 except for the critical point
(Dc = 4dJ, hz = 0) that separates the QPM phase from the
CAFM phase at hz = 0. The field induced QCP then belongs
to the BEC universality class in dimension d+ 2. By expand-
ing around k = 0, we obtain:

ωk± ≈ Jk2
√
D/(D −Dc) +

√
D(D −Dc)± hz (20)

It is clear from this expression that the effective mass of
the magnetic excitations vanishes for D → Dc: m∗ ∝√
D −Dc. This is indeed the expected behavior if we keep

in mind that the dispersion must be linear at the the critical
point (Dc = 4dJ, hz = 0) (z = 1 for the O(2) QCP as we
discussed in the introduction).

The QPM ground state remains stable for

D ≥ Dc = 4dJ

hz ≤ hc =
√
D(D −Dc) (21)

The ground state becomes fully polarized over the saturation
field

hs = D + 4dJ, (22)

and the mean field state,

|ψcl(θ = π/2, φ = 0)〉 =
∏
r

b†1r|∅〉, (23)

coincides with the exact ground sate. The energy of the sys-
tem is proportional to the applied field as expected. The two
branches of magnetic excitations above the saturated state are
given by:

ωk1 = hz −D − 2dJ + ηk,

ωk2 = 2hz. (24)

The flat branch, ωk2, describes the approximated spectrum of
two-magnon bound states that appear above a critical value of
the single-ion anisotropy2.

By comparing Eqs.(19) and (24), we can see that the masses
of the gapless bosons at the two field induced QCPs, h = hc
and h = hs can be very different:

1

m∗
=

∂2ωk−

∂k2
|k=0 = 2J

√
D/(D −Dc),

1

m
=

∂2ωk−

∂k2
|k=0 = 2J. (25)

While the mass renormalization factor m∗/m =√
(D −Dc)/D may not be quantitatively accu-

rate, the obtained mean field critical exponent,
m∗/m ∝

√
(D −Dc)/D, is correct for d = 3 up to

logarithmic corrections, because dc = 3 is the upper critical
dimension for the O(2) QCP in dimension d + 1. For d ≤ dc
we have

m∗/m ∝ ∆s ∝ (D −Dc)
νz (26)

and the mean field exponent ν = 1/2 is not correct for d < 3.
It is clear then that quantum paramagnets which are close to
the CAFM instability (D & Dc) should exhibit a very large
asymmetry between the mass of the bosonic excitations for
h ≤ hc and h ≥ hs. This is indeed the case of the compound
DTN whose thermodynamic properties exhibit a large asym-
metry between the the two critical points at hc and hs. The
possibility of having a relatively large m∗/m ratio that can
be tuned with pressure allows for measuring dependence of
different physical properties on the mass of the bosonic exci-
tations. This property of certain quantum paramagnets is par-
ticularly useful for unveiling the dominant scattering mech-
anism for thermal conductivity, κ, because different mecha-
nisms usually lead to different dependences of κ on the mass
of the quasiparticles6.

While the linear approach that we have described gives the
correct qualitative picture in d = 3, it is still far from being
quantitatively accurate in d = 3 or d = 2, as we will see in
the next sections. This shortcoming can be a serious prob-
lem for comparisons against experimental data. In particular,
the Hamiltonian parameters for quantum paramagnets are nor-
mally extracted from fits of the quasiparticle dispersions that
are measured with INS1. The accuracy of the obtained Hamil-
tonian parameters depends on the accuracy of the approach
that is used for computing the dispersions ωkν . Moreover,
for quantum paramagnets like DTN which have low critical
fields, hc � hs − hc, the linear approach normally predicts
AFM ordering at hz = 0. Therefore, it is necessary to mod-
ify the linear approach in order to obtain a quantitatively ac-
curate description of the low field paramagnetic ground state
and the low-energy excitations. As we shall see in the next
sections, the modified approach that was originally applied to
the description of DTN1 and that we describe in the rest of this
subsection, is quantitatively accurate for d = 3 and d = 2.

In the modified approach we replace Eq.(11) by

〈b̃†0r〉 = 〈b̃0r〉 = s, (27)
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B Canted Antiferromagnetic (CAFM) phase II GENERALIZED SPIN WAVE APPROACH

and impose the constraint (3) at a mean field level by intro-
ducing the Lagrange multiplier µ:

HH → H̄H = HH − µ
∑
r

(
1−

2∑
m=0

b̃†mr b̃mr

)
(28)

The rest of the procedure is similar to spin-wave theory, i.e.,
we only keep terms up to quadratic order in the bosonic oper-
ators b̃(†)mr (m = 1, 2) and diagonalize the resulting quadratic
Hamiltonian via a Bogolyubov transformation. This proce-
dure leads to the diagonal form (17), but with a modified
quasiparticle dispersion,

ωk± =
√
µ2 + 2µs2ηk ± hz, (29)

relative to the expression (19) that was obtained from the lin-
ear approximation. We note that the new dispersion (29) can
be obtained from the previous one if we replace D by µ and J
by Js2. Therefore, in the quantum paramagnetic state, the net
effect of including a Lagrange multiplier to enforce the con-
straint (3) at the mean field level is a renormalization of the
single-ion anisotropy and exchange parameters.

The parameters s and µ are determined self-consistently by
the saddle point equations34:〈

∂H̄H
∂µ

〉
= 0,

〈
∂H̄H
∂s

〉
= 0. (30)

By explicitly computing the left hand side of these two equa-
tions we obtain the following expressions:

D = µ

(
1 +

1

N

∑
k

ηk√
µ2 + 2s2µηk

)
,

s2 = 2− 1

N

∑
k

(µ+ s2ηk)√
µ2 + 2s2µηk

. (31)

The stability conditions (21) for the QPM ground state are
replaced by

µ ≥ µc = 4ds2J, (32)

hz ≤ hc =
√
µ(µ− µc). (33)

As we will see in the next sections, the quantum phase di-
agram that is obtained from these modified conditions is in
much better agreement with QMC simulations. The same is
true for the modified quasiparticle dispersion (29).

B. Canted Antiferromagnetic (CAFM) phase

To describe the CAFM phase, one needs to use the general
expression for the condensed boson with U 6= 1. In particular,
we use the expression given by Eq. (5)

b̃†0r = b†0r cos θ + b†1r sin θ cosφ+ b†2r sin θ sinφ. (34)

We recall that the factor eiQ·r is removed from Eq. (5) after
the change of basis that led to Eq. (9). The other bosonic oper-
ators are obtained by orthogonalization. The parameters θ and

φ are determined by the minimization of the mean field energy
[see Eq.(6)]. In the absence of any applied field, the AFM or-
dered phase is invariant under the product of a translation by
one lattice parameter and a time reversal transformation. This
symmetry implies that φ = π

4 , i.e., the local moments have
equal weights in the Sz = ±1 states. By minimizing the
mean field energy as a function of the remaining variational
parameter, θ, we obtain

sin2 θ =
1

2
− D

16dJ
. (35)

The dispersion relation consists of two non-degenerate
branches that, in the low energy limit (k → 0), are given by

ωk1 ≈
√
D2
c −D2 +

D2

4d
√
D2
c −D2

k2,

ωk2 ≈
√
J(Dc +D)k. (36)

Unfortunately, the modified approach based on the inclu-
sion of a Lagrange multiplier that we introduced in the previ-
ous subsection does not work well inside the ordered phase.
Both branches become gapped inside the ordered phase, i.e.,
the approach misses the Goldstone mode associated with the
spontaneous breaking of the U(1) symmetry of global spin ro-
tations along the z-axis.

As we explained above, the magnetic field induced quan-
tum phase transition from the QPM to the CAFM phase is
qualitatively different from the transition between the same
two phases that is induced by a change of D at hz = 0.
Eq.(19) shows that the effect of increasing hz from zero at
a fixed D > Dc is to reduce the gap, ∆s = ωk=0− =√
D2 − 4dJD − hz , linearly in hz . The dispersion does not

change because hz couples to mz =
∑

r S
z
r/N that is a con-

served quantity (mz = 1 for the spin excitations that have dis-
persion ωk−). Therefore, the quasiparticle dispersion remains
quadratic at the field induced QCP h = hc =

√
D2 − 4dJD,

i.e., the dynamical exponent is z=2. The field induced QCP
then belongs to the BEC universality class in dimension d+2.
On the other hand, if the single-ion anisotropy is continuously
decreased at zero applied field, the two branches remain de-
generate and the gap vanishes at D = Dc (hz = 0). The low-
energy dispersion becomes linear at the QPM-CAFM phase
boundary, ωk± ≈

√
2DJk for small k. As it is clear from

Eq. (36), the degeneracy between the two branches at hz = 0
is lifted inside the CAFM phase – one of the branches, ωk2,
remains gapless with a linear dispersion at low energy (corre-
sponding to the Goldstone mode of the ordered CAFM state )
whereas the other mode develops a gap to the lowest excita-
tion.

In the following sections, we shall use large scale quantum
Monte Carlo simulations of the Hamiltonian (1) to demon-
strate that the introduction of a Lagrange multiplier signif-
icantly improves the quantitative description of the QPM
phase, and that the linear approximation gives a qualitatively
correct description of the quantum phase transitions in d = 3.
As expected, in d = 2, the only deviation from mean field be-
havior occurs at the O(2) QCP, D = Dc and hz = 0, because
the effective dimension, D = d+ 1, is lower than four.
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IV ZERO-TEMPERATURE RESULTS

III. QUANTUM MONTE CARLO METHOD

We have used two different QMC methods, the standard
stochastic series expansion (SSE) with loop updates37–39 and a
modified directed loop world-line QMC developed in Ref. 41,
to study the ground state and finite temperature properties of
the Hamiltonian (1). Since both methods are unbiased and
exact within the statistical error, we refer to them as QMC
collectively in this paper. On the dense parameter grids (tem-
perature for thermal transitions and magnetic field or single-
ion anisotropy for ground state transitions) needed to study
the critical region in detail, the statistics of the QMC results
can be significantly improved by the use of a parallel temper-
ing scheme44,45. The implementation of tempering schemes
in the context of the SSE method has been discussed in de-
tail previously46,47. Ordinarily, the SSE would suffer from the
negative sign problem for the AFM Heisenberg interaction.
However, the sublattice rotation discussed in section II maps
the XY part of the Heisenberg interaction into a ferromagnetic
exchange term, thus alleviating the sign problem. This trans-
formation maps the AFM ordering vector to Q = 0 in the new
basis.

We compute the spin stiffness ρs — defined as the response
to a twist in the boundary conditions48,49. The transition to
CAFM is efficiently investigated by studying the scaling prop-
erties of the spin stiffness ρs. For simulations that sample mul-
tiple winding number sectors, the stiffness can be related to
the fluctuations of the winding number in the updates32,38,50,51

and can be estimated readily with great accuracy. For the
isotropic systems that are primarily considered in the present
study, the estimates of the stiffness along all the axes are equal
within statistical fluctuations.

Along with the spin stiffness, we calculate the square of the
order parameters characterizing the different ground states as
well as standard thermodynamic observables such as energy
and magnetization, and the zz-component of the nematic ten-
sor component, Qzzr = 〈(Szr)2 − 2

3 〉, that is induced by the
single-ion anisotropy term. The transverse component of the
imaginary-time dependent spin structure function,

S+−(q, τ) =
1

N

∑
r,r′

e−iq·(r−r
′)〈S+

r (τ)S−r′(0)〉, (37)

provides valuable information about the nature of ground
state. The static spin structure factor (τ = 0) measures the
off-diagonal long-range ordering in the XY plane. Its value
at the AFM ordering wave vector, S+−(Q), is equal to the
square of the XY AFM order parameter divided by N . In the
bosonic language it is the condensate fraction of the BEC. On
the other hand, the imaginary-time dependence of S+−(q, τ)
can be used to estimate of the spin gap. In the world-line
Monte Carlo method with discontinuities, like the worm and
the directed-loop algorithms, the correlation function (37 is
obtained by counting the number of events in which two dis-
continuities created by S+ and S− exist in the configuration-
imaginary time phase space, with the S+ and S− disconti-
nuities located at (r, τ) and (r′, 0) respectively.42 In the SSE
method, we evaluate the correlation function during the con-
struction of the operator loops.43

IV. ZERO-TEMPERATURE RESULTS

A. Finite-size scaling for quantum criticality

The continuous phase transition from the QPM phase to the
CAFM phase is marked by the closing of the spin gap. To
determine the transition point, we use the finite-size scaling
properties of the spin stiffness ρs. The finite-size scaling anal-
ysis at the critical point predicts that

ρs(L, β,D) ∼ L2−d−zYρs(β/Lz, (D −Dc)L
1/ν),

below the upper critical dimension, i.e., d + z ≤ 4, where L
is the linear dimension of the system, z is the dynamic critical
exponent, and Yρs is the scaling function. z = 1 for QPTs
belonging to the O(2) universality class and z = 2 for BEC
QCPs. Since the effective dimension of the BEC-QCP in d =
3, D = 3 + 2, is above the upper critical dimension Dc = 4,
we need to apply a modified finite-size scaling40

ρs(L, β, hz) ∼ L−(d+z)/2Yρs(β/Lz, (hz − hc)L(d+z)/2).

The scale invariance at the critical point provides a powerful
and widely used tool to simultaneously determine the position
of the critical point and verify the value of z. On a plot of
ρsL

d+z−2 or ρsL(d+z)/2 as a function of the driving parame-
ters, D or hz , the curves for different system sizes will cross
at the critical point provided the correct value of z is used.

Figs. 1 shows the scaling of the stiffness close to the crit-
ical point for the QPM-CAFM transition at hz = 0 driven
by varying the single-ion anisotropy D. From field theoretic
arguments, the transition is expected to belong to the O(2)
universality class for which z = 1. Indeed, the curves were
found to exhibit a unique crossing point only for z = 1. For
a square lattice (top panel), we obtain a critical Dc = 5.63, in
agreement with previous results31 , whereas the transition oc-
curs at Dc = 10.02 on a cubic lattice (bottom panel). Further
confirmation of the O(2) universality class of the transition is
shown in the inset panels where on a plot of ρsLd+z−2 vs.
(D − Dc)L

1/ν , the data for different system sizes collapse
onto a single curve with our estimated Dc and known critical
exponents for the O(2) universality class in d+ 1 dimensions.

Fig. 2 shows the modified finite-size scaling plots of the
QPM to CAFM transition for D > Dc as the field hz is var-
ied. The transition is expected to belong to the BEC univer-
sality class and scale invariance for the stiffness at the critical
point is found for z = 2 in accordance with field theoretic pre-
dictions. Thus the analysis of the stiffness data at the quantum
critical points show that the QPM – CAFM transition belongs
to the O(2) universality class for hz = 0, but changes to BEC
universality class for hz 6= 0.

B. Quasiparticle dispersion in the QPM phase

The phase boundary between QPM and CAFM phases is
also determined by the value of the single magnon excitation
gap ∆s. Since the Zeeman term commutes with the rest of the
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FIG. 1: (Color online) Finite-size scaling plots of spin stiffness ρS .
The four system sizes of the square lattices (upper panel) L× L are
8 × 8 (red), 10 × 10 (blue), 12 × 12 (black) and 18 × 18 (purple).
The five system sizes of the cubic lattices (lower panel) L × L × L
are 4× 4× 4 (red), 6× 6× 6 (blue), 8× 8× 8 (black), 10× 10× 10
(purple) and 12 × 12 × 12 (green). The temperatures are taken to
be T = L/4 in the square lattice and L/2 in the cubic lattice. The
boundary conditions are periodic.

Hamiltonian, the spin gap of the QPM phase changes linearly
in the magnetic field and vanishes at the critical field hc =
∆s(hz = 0). The quasiparticle dispersion and the gap ∆s can
be extracted from the QMC results by analysing the imaginary
time Green’s function

Gxxk (τ) =
1

Ld

∑
r

〈Sxr (τ)Sx0(0)〉 eik·r. (38)

The quasiparticle dispersion is computed by fitting the QMC
data of Gxxk (τ) with the function

f(τ) = A
[
e−ωτ + e−ω(β−τ)

]
, (39)

where A and ω are fitting parameters. In particular, the pa-
rameter ω corresponds to the magnetic excitation energy for
each momentum k. Figure 3 shows that the fit is nearly perfect
for the Gxxk (τ) curve that is obtained in the QPM phase. The
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FIG. 2: (Color online) Determination of the critical field through
finite size scaling with z = 2 that confirms the BEC universality
class of the field induced quantum critical points.
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FIG. 3: (Color online) Imaginary time Green’s function computed
with QMC for D = 12, and hz = 0. The linear size of the finite
cubic lattice is L = 12 and the boundary conditions are periodic.
The solid fitting lines correspond to the function defined in Eq. (39).

estimated phase boundary is hc = 4.2726(3) for D = 12,
d = 3 and L = 12. This estimation is fully consistent
with the modified finite-size scaling analysis. (See Fig. 2.)
Since finite size effects are very small deep inside the QPM
state (far from critical point), the field induced phase bound-
ary can be estimated very precisely with L = 12. Fig. 4
shows the comparison between the quasiparticle dispersions
obtained from the QMC results and the analytical expressions
(19) and (29) that we derived in the previous section using the
Holstein-Primakoff (HP) and the Lagrange multiplier (LM)
approaches. The quantitative agreement with the numerical
result is much better for the LM approach that reproduces not
only the value of the spin gap and the overall dispersion in-
side the QPM phase, but also the spin velocity at the O(2)
QCP D = Dc(hz = 0).
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FIG. 4: (Color online) Dispersions of the single magnon excitation
(a) D = 8 in 2D, (b) D = Dc in 2D and (c) D = 12 in 3D. In 2D,
Dc = 8, 5.71 and 5.625 for the linear HP, LM and QMC approaches,
respectively.

C. Quantum phase diagram

The quantum phase diagrams obtained with different meth-
ods: linear HP approximation, the LM approach and QMC
simulations, are shown in Figs. 5. As it is expected from the
comparisons between the quasiparticle dispersions obtained
with the different methods in the QPM phase (see Fig. 4), the
LM method produces a much better quantitative agreement
with the QMC results than the linear HP approximation.

Fig. 6 shows the evolution of some observables that charac-
terize the ground state phases as the applied field is varied
for three representative values of the single-ion anisotropy.
For D > Dc, the ground state evolves from a QPM phase
at low fields (hz < hc) to a CAFM phase at intermediate
fields (hc < hz < hs) to a fully polarized phase at large
fields. The uniform magnetization, mz , increase monoton-
ically with the applied field. The zz-nematic order param-
eter, Qzzr , also increases monotonically but from a negative
to a positive value. Right above h = hc, the magnetization
mz increases with finite slope, but this slope vanishes at the
O(2) QCP where hc(Dc) = 0. This result is consistent with

(a)

FP

QPM

CAFM

D

(b)

FP

QPM

CAFM

D

FIG. 5: (Color online) Quantum phase diagram of HH in (a) d = 2
and (b) d = 3. The solid line, dashed line and points between QPM
and CAFM are the results obtained from the LM, HP and QMC ap-
proaches, respectively. For the QMC approach we use the modified
finite-size scaling that is described in the text as well as the gap that
is obtained from the quasiparticle dispersion to determine the QPM-
CAFM phase boundary.

the mean field theory described in the previous section which
predicts that mz ∝ (hz − hc(D)) for finite hc(D) and small
enough hz − hc(D), while mz ∝ h3z for hc = 0 and small
enough hz . These results are obtained by solving Eqs.(6) near
the O(2) QCP (D = Dc, hz = 0).

The stiffness and transverse structure factor decrease mono-
tonically with increasing hz for D � Dc. However, it is clear
that the field dependence must be non-monotonic forD ≥ Dc,
because a finite critical field is required to induce the transition
from the QPM to the ordered XY phase. When the system is
in the QPM phase, a critical field hc(D) is required to induce
a finite amplitude of the XY order parameter, i.e., the mean
field state of each spin becomes a linear combination of the
states |0〉r and |1〉r for h > hc. There is an optimal value
of the magnetic field, hm(D), for which the weight of these
two states is roughly the same, leading to maxima of the order
parameter (XY component of the local moment) and the spin
stiffness, as it is shown in Fig. 6. Finally, ρs and S+−(Q)
vanish again at sufficiently strong applied field, hz ≥ hs(D),
because the ground state evolves to the fully polarized phase
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FIG. 6: (Color online) The evolution of various characteristic ob-
servables with external magnetic field at three representative values
ofD as the ground state goes through the field driven quantum phase
transitions discussed in the text. The data is for a finite cubic lattice
of dimension 16× 16× 16.

with mz = 1, and Qzz = 1/3. The exact boundary between
the CAFM and the FP phases is given by Eq.(22). A simple
continuity argument shows that the non-monotonic field de-
pendence of ρs and S+−(Q) should persists for D . Dc as
it is clear from Fig. 6. The ordering temperature should also
exhibit a similar non-monotonic field dependence, as we will
see in the next section. This observation can be used to detect
quantum magnets that exhibit magnetic ordering at hz = 0 ,
but are near the QCP, i.e., close to becoming quantum param-
agnets.

V. FINITE-TEMPERATURE RESULTS

For three-dimensional systems, the CAFM phase survives
up to a finite temperature Tc(D,hz) above which the system
becomes a paramagnet via a second order classical phase tran-
sition that belongs to the O(2) universality class in dimension
d. The second order transition is replaced by a Berezinskii-
Kosterlitz-Thouless phase transition at T = TBKT when the
system is two-dimensional. In this case, only quasi long range
ordering survives at finite temperatures T ≤ TBKT . Fig. 7
shows the field dependence of the critical temperature, Tc, for
some representative values of D. Tc is determined by exploit-
ing the scale invariance of the stiffness at the critical point
with the finite-size scaling

ρs(L, T ) ∼ L2−dYρs((T − Tc)L1/ν).

The thermal transition out of the CAFM phase is driven by
phase fluctuations of the order parameter and belongs to the
d = 3 O(2) universality class (ν ' 0.67). At small values
of D, the system is dominated by the Heisenberg AFM in-
teraction and Tc(hz) decreases monotonically as a function
of increasing hz to Tc(hs) = 0 at the QMP-FP boundary.
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FIG. 7: (Color online) The critical temperatures of the thermal phase
transition into different ground states shown in Fig. 5(b).

As D increases, the spins acquire a significant Sz = 0 (ne-
matic) component and the resultant decrease in the local mag-
netization leads to a suppression of the critical temperature.
As we explained in the previous section, the applied field in-
creases the magnitude of the local moments for D . Dc and
this effect leads to an accompanying increase in Tc(h). At
higher values of the applied field, the spins acquire an increas-
ing (ferromagnetic) component along the field direction while
the AFM-ordered component decreases beyond the optimal
field hm(D). Consequently, the critical temperature starts de-
creasing monotonically to Tc(hs) = 0 for h > hm(D). For
D > Dc, the system is in a QPM ground state at low fields –
with the local spins being predominantly in the Sz = 0 state
– and Tc = 0. A sufficiently strong external field induces a
transition to the CAFM phase with Tc ∝ (hz − hc)

2/3 for
small enough hz − hc. The transition temperature increases
initially as the magnitude of the local moments increase and
eventually decreases as the moments acquire a dominant fer-
romagnetic component parallel to the applied field – going to
Tc = 0 at hz = hs.

VI. SUMMARY

In summary, we have investigated the quantum phase di-
agram and the nature of the quantum phase transitions in
the S = 1 Heisenberg model with easy-plane single-ion
anisotropy and an external magnetic field. By using a gen-
eralized spin wave approach, we showed that the low energy
quasiparticle dispersion is qualitatively different at the phase
boundary depending on the presence or absence of an exter-
nal field. This difference is reflected in the universality class
of the underlying QCP and has direct consequences on the low
temperature behavior. The nature of the QPM-CAFM transi-
tion in the presence and absence of an external field is directly
confirmed by using large scale QMC simulations and finite
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size scaling.
We have used two different analytical approaches to de-

scribe the QPM. By comparing the results of both approaches
against our QMC results, we have found important quanti-
tative differences in the region near the O(2) QCP that sig-
nals the transition to the CAFM phase. By “quantitative dif-
ferences” we are not referring to the already known criti-
cal behaviors predicted by both approaches, but to the phase
boundary Dc(hz) and the dispersion of the low-energy quasi-
particle excitations. To make a clear distinction between these
two different aspects of the problem, we will discuss the crit-
ical behavior in the first place. It is clear that both analytical
treatments reproduce the correct critical behavior for d = 3
up to logarithmic corrections, because dc ≥ 3 for the QCPs
[O(2) and BEC] that appear in the quantum phase diagram of
HH . The situation is different for d = 2 because the upper
critical dimension of the O(2) QCP is dc = 3. We note that
the approach based on the inclusion of the Lagrange multi-
plier and the saddle point approximation (30), becomes exact
in the largeN →∞ limit (N is the number of components of
the order parameter of the broken symmetry state, i.e.,N = 2
for the case under consideration)52. Since ν = 1/(d − 1) for
N → ∞, the LM approach leads to a spin gap that closes
linearly in (D − Dc) for d = 2 (see Fig. 5a). In contrast,
the HP approach produces the expected mean field exponent
ν = 1/2. Naturally, neither of these approaches can repro-
duce the correct value of the exponent ν [ν ' 0.67 for the
O(2) QCP in dimensionD = 2+1] because 2 < dc. However,
the LM approach can be systematically improved by including
higher order corrections in 1/N . The qualitative agreement
for d = 3 is not surprising because the effective dimension of
the QCPs that appear in the quantum phase diagram ofHH is
equal or higher than the upper critical dimension.

Since the limitations of the LM and HP approaches for de-
scribing the critical behavior of the O(2) QCP are already
known, we have focused on the overall quantitative agree-
ment for the phase boundary Dc(hz) and the dispersion of
the low-energy quasi-particle excitations in comparison with
the numerical results. The very good agreement between the
LM and QMC results is rather surprising if we consider that
it holds true even for d = 2 (see Fig. 4 and 5a). Indeed, a
similar treatment has been successfully applied to the quasi-
one-dimensional organic quantum magnet known as DTN1.
In this compound, the S = 1 moments are provided by Ni2+

ions which are arranged in a tetragonal lattice. The magnetic
properties are well described by the Hamiltonian (1) with pa-
rameters D = 8.9K, Jc = 2.2K and Ja = Jb = 0.18K,
where Jα denotes the strength of the Heisenberg exchange
interaction along the different crystal axes. Once again, the
introduction of a Lagrange multiplier to enforce the constraint
(3) leads to a critical field value of ' 2T, that is in very good
agreement with the result of QMC simulations and with the
experiments1,2. In contrast, the linear HP approach incorrectly
predicts that this compound should be magnetically ordered
in absence of the applied magnetic field. We note that the
phase boundary obtained with the LM approach for d = 2
(see Fig. 5a) remains quantitatively more accurate near the
O(2) QCP even when the next (second) order corrections in

1/S are included in the HP approach29. Our results then indi-
cate that introducing a Lagrange multiplier for describing the
low-energy physics of quantum paramagnets improves con-
siderably the estimation of the spin gap and the quasiparti-
cle dispersion. This improvement is particularly important for
quantum paramagnets that have a small spin gap and conse-
quently are close to the QCP that signals the onset of magnetic
ordering. Since the Hamiltonian parameters are typically ex-
tracted from fits of the quasiparticle dispersion measured with
INS, it is crucial to have a reliable approach for computing
such dispersion. The QMC method described in Sec. IV B can
only be applied to Hamiltonians that are free of the sign prob-
lem. However, the analytical approach described in Sec. II is
always applicable.

Finally, it would be interesting to extend the the pure-
quantum self-consistent harmonic approximation 54,55 from
SU(2) to SU(N) and compare the resulting quantum phase di-
agram ofHH against the results presented in Fig. 5.
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