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We propose a quantum Monte Carlo (QMC) algorithm for nondéagium dynamics in a system with a pa-
rameter varying as a function of imaginary time. The metlsdabised on successive applications of an evolving
Hamiltonian to an initial state and delivers results for eolehrange of the tuning parameter in a single run,
allowing for access to both static and dynamic propertigh@fsystem. This approach reduces to the standard
Schrodinger dynamics in imaginary time for quasi-adiabatolutions, i.e., including the leading non-adiabatic
correction to the adiabatic limit. We here demonstrate dghési-adiabatic QMC (QAQMC) method for linear
ramps of the transverse-field Ising model across its quadttitinal point in one and two dimensions. The crit-
ical behavior can be described by generalized dynamicregakor the two-dimensional square-lattice system
we use the method to obtain a high-precision estimate of tlaatgm-critical pointh/J). = 3.04458(7),
whereh is the transverse magnetic field afidhe nearest-neighbor Ising coupling. The QAQMC method can
also be used to extract the Berry curvature and the metrsoten

PACS numbers: 05.30.d, 03.67.Ac, 05.10.a, 05.70.Ln

I. INTRODUCTION equation in imaginary timé = —ir (7 being real),

Quantum Monte Carlo (QMC) methotfshave become Orlp(7)) = —HIAD(7)). @)
indispensable tools for ground-state and finite-tempegatu Here the Hamiltonian depends on the parametehrough
studies of many classes of interacting quantum systems, iHme e.g
particular thoseafor which the infamous “sign problem” can T
be circumvented.In ground-state projector methods, an op- .
erator P(3) is applied to a “trial state”|¥,), such that H=Ho+ ATV, 2)
|Wg) = P(55)|¥) approaches the ground state of the Hamil-
tonian H when 8 — oo and an expectation valugl) =
(Ug|A|Vg)/Z, with the normZ = (¥3|Ug), approaches
its true ground-state valué A) — (0|A|0). For the pro-
jector, one can us®(f3) = exp (—AH) or a high power of _
the Hamiltoniafl, P(M) = (—H)M. Here we will discuss () = Unl()), ®
a modification of the latter projector for studies of dynaahic \,nere the imaginary-time evolution operator is given by
properties of systems out of equilibrium.

Real-time dynamics for interacting quantum systems is dif-
ficult to deal with computationally. Solving the Schrodéang U(r) = Trexp {_/
equation directly, computations are restricted to verylsma i

system sizes by the limits of exact diagonalization. Despit where 7., indicates time ordering. A time-evolved state
progress with the Density-Matrix Renormalization Group{/(r)|¥(r,)) and associated expectation values can be sam-
(DMRG)?® and related methods based on matrix-producpled using a generalized projector QMC algorithm. In
states, this approach is in practice limited to one-dinerai  Ref. [7] it was demonstrated that this non-equilibrium QMC
systems and relatively short times. Efficiently studyingde (NEQMC) approach can be applied to study dynamic scal-
time dynamics of generic interacting quantum systems inng at quantum phase transitions, and there are many other
higher dimensions is still an elusive goal. However, relgent potential applications as well, e.g., when going beyond-stu
in Ref. [7] it was demonstrated that real-time and imaginary-ies of finite-size gaps in “glassy” quantum dynamics and the
time dynamics bear considerable similarities, and in the la quantum-adiabatic paradigm for quantum computing.
ter case powerful and high-precision QMC calculations can  Here we introduce a different approach to QMC studies of
be carried out on large system sizes for the class of systemgantum quenches which gives results for a whole range of
where sign problems can be avoided. parameters\ € [\(7), A(7)] in a single run (instead of just
Our work reported here is a further development of thethe final time), at a computational effort comparable to the
method introduced in Ref7], where it was realized that a previous approach. Instead of using the conventional time-
modification of the ground-state projector Monte Carlo ap-evolution operator Eq4j, we consider a generalization of the
proach withP(8) = exp (—AH) can be used to study non- equilibrium QMC scheme based on projection with ),
equilibrium set-ups in quantum quenches (or ramps), where acting on the initial ground state 8f[\(7)] with a product
parameter of the Hamiltonian depends on time according to aaf evolving hamiltonians;
arbitrary protocol. By performing a standard Wick rotatafn
the time axis, a wave function is governed by the Shrodinger Pra = [=HOM)] [=HO2)][-H(A)], (5)

whereV andH,, typically do not commute. The method is not
limited to this form, however, and any evolution&fcan be
considered. The Schrodinger equation has the formalisalut

' dr'%wf’ﬂ L@

0



where state that can be simulated with standard equilibrium QMC
methods can be used as the initial state for the dynamical evo
At = Ao + Ay, (6)  Iution. The final evolved state/,,) can be very complex,
e.g., for a system in the vicinity of a quantum-critical pain
and Ay = [Ay — Ao|/M is the single-step change in the jn a “quantum glass” (loosely speaking, a system with slow

tuning parametet.Here we will consider a case where the intrinsic dynamics due to spatial disorder and frustragén
ground statgW (o)) of H(Ao) is known and easy to generate fects). Here, as a demonstration of the correctness and util
(stochastically or otherwise) and the ground states fagroth ity of the QAQMC approach, we study generalized dynamic
values of interest are non-trivial. The stochastic sangplised  scaling in the neighborhood of the quantum phase transition
to compute the evolution then takes place in a space refireseiy, the standard one-dimensional (1D) and 2D transverse-fiel
ing path-integral-like terms contributing to the matrieelent  |sing models (TFIMs).
(the norm)W (Ao)| Pr,a Par,1[¥(Xo)). We will also later con- aAs noted first in Ref. T] the NEQMC method can be used
sider a modification of the method in \_/vhich. the ground statqg extract the components of the quantum metric teMstre
at the final point\,, is known as well, in which case contri- giagonal elements of which are the more familiar fidelity-sus
butions to(W (Arr)| P, |¥(Ao)) are sampled. ceptibilities. Thanks to its ability to capture the leadimn-
Staying with the doubly-evolved situation for now, we eval- adiabatic corrections to physical observables, the QAQMC
uate generalized expectation values afteut of the)M oper-  approach can also be used for this purpose, and, as we will
ators in the product) have acted,; discuss briefly here and in more detail in Ref2]} one can
also extract the Berry curvature through the imaginary-anti
(U (A0) | Proat Prt 1 AP 1 |9 (Ao)) ) (7)  symmetric components of the geometric tensor
(W (Xo)[Pr,ne Para [ ¥ (o)) The rest of the paper is organized in the following way: In
Sec.ll we use adiabatic perturbation theory (APT) to demon-
strate the ability of the QAQMC scheme to correctly cap-
ture the standard Schrddinger evolution in imaginary tino
only in the adiabatic limit but also including the leading-co
rections in the quench velocity. We show how these leading
Para® (o)) 8 cprrections correspond to the geometric tensor. In Bewe
\/@(/\ TP Pra [ On )>, (8)  discuss tests of the _QAQMC_ s_cheme on 1D and_ _2D T_FIMs,
0/14 L, MAEM, 1 FRA0 and also present a high-precision result for the critic#d fie
the 2D model. In SedV we summarize our main conclusions
and discuss future potential applications of the algorithm

(A)r =

We will refer to this matrix element as @asymmetric expec-
tation value, with the special case= M corresponding to a
true quantum mechanical expectation value taken with cspe
to an evolved wave function

[Yar) =

which approaches the ground staté\(7,,)]) of the Hamil-
tonian H[\(7a)] for M — oo.

Away from the adiabatic limit, the evolved wave function
Eq. @) is, generally speaking, not the ground state of the

equilibrium system. Nevertheless, as we demonstrate in de- Il ADIABATIC PERTURBATION THEORY
tail in Sec.ll, a quench velocity « AN can be defined
such that the symmetric expectation valug;—; in Eq. (7) The key question we address in this section is whether the

approaches the expectation valué(r = t¢)) after a con- matrix element{A4); in Eq. (7) can give useful dynamical in-
ventional linear imaginary-time quantum quench with E. ( formation for arbitrary “time” points in the sequence &M
done with the same velocity, if v is low enough. In fact, the operators. The expression only reduces to a conventional ex
two quantities are the same to leading (linear) order,inot  pectation value at the symmetric point M, and even there
only in the strict adiabatic limiv — 0. We therefore name it is not clear from the outset hoyA),—», computed for dif-
this scheme theuasi-adiabatic QMC (QAQMC) algorithm.  ferentM relates to the velocity dependence of the expectation
Importantly, the leading corrections to the adiabatic etoh  value (U (0)|U*(7) AU(7)|¥(0)) based on the Schrddinger
of the asymmetric expectation values for argontain impor-  time-evolution operator in Eq4]. Going away from the sym-
tant information about non-equal time correlation funesip  metric point brings in further issues to be addressed. For in
very similar to the imaginary-time evolution. stance, there is no variational property of the asymmexdic e
The principal advantage of QAQMC over the NEQMC ap- pectation valug#); of the Hamiltonian fort # M. Nev-
proach is that expectation values of diagonal operatonisen t ertheless the approach to the adiabatic limit is well betiave
basis used can be obtained simultaneously for the whole evand we can associate the leading deviations from adiabatic-
lution path)\g ... Ay, by measuring A), in Eqg. (7) at arbi- ity with well defined dynamical correlation functions which
trary ¢ point$ (and one can also extend this to general off-appear as physical response in real time protocols. We show
diagonal operators, along the lines of Raf0]] but we here  here, for the linear evolution Eg6), that one can identify a
limit studies to diagonal operators). The QAQMC scheme isvelocity v o« N/M such that a linear imaginary-time quench
also easier to implement in practice than the NEQMC methodvith A, = vt in Eq. (6) gives the same results in the two ap-
because there are no time integrals to sample. proaches when = M, including the leading (linear) correc-
As mentioned above, we will here have in mind a situationtions inv. Fort # M, the relevant susceptibilities in QAQMC
where the initial statél (\o)) is in some practical sense “sim- defining non-adiabatic response are different than -at M/
ple”, but this is not necessary for the method to work—anybut still well defined, contain useful information, and obey
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generic scaling properties. to leading order in\ the system remains in its ground state;
In order to facilitate the discussion of the QAQMC «,,(7) = d.,0 (except during the initial transient, which is not

method, we here first review the previous APT approachmportant because we are interested in ldrgg. In the next

for Schrodinger imaginary time dynamidg€ and then derive  higher order the transition amplitudes to the states 0 are

analogous expressions for the product-evolution. Aftés th given by;

we discuss some properties of the symmetric and asymmetric

expectation values. 0

0
a,(0) ~ — / dr (n|d,]0) exp {—/ dr’ Ano(T')], (13)

A. Imaginary-time Schrodinger dynamics -

whereA,o(7) = &,(7) — & (7). The matrix element above

The NEQMC method uses a path-integral-like Monte for non-degenerate states can also be written as

Carlo sampling to solve the imaginary-time Shcrodingerseq
tion Eq. @) for a Hamiltonian#[A(7)] with a time depen-
dent coupling. The formal solution at timeis given by the
evolution operator Eqg.4). In the strict adiabatic limit the i i _
system will follow the instantaneous ground state, while inln What follows we will assume that we are dealing with a
the slow limit one can anticipate deviations from adiabatic NOn-degenerate ground state.

ity which will become more severe in gapless systems and To make further progress in analyzing the transition am-
in particular near phase transitions. Let us discuss th lea plitudes Eq. {3), we consider the very slow asymptotic limit
ing non-adiabatic correction to this imaginary-time evion. A — 0. To be specific, we assume that near 0 the tuning
The natural way to address this question is to use APT, gimilaParameter has the form (see also R&4]);

to that developed in Refs1g] and [14] in real time. We here
follow closely the discussion of the generalization to ifmag

(n[0-|0) = —(n|0-H(7)|0)/Ano(7)- (14)

U)\|TT|

nary time in Ref. 7]. A(r) = A0) + 7! O(=7). (15)
We first write the wave function in the instantaneous eigen-

basis{|n()\))} of the time-dependent Hamiltoniga[\(7)]: The parametev,, which controls the adiabaticity, plays the

role of the quench amplitudeif = 0, the velocity forr = 1,
[¥(1)) = Zan(7)|n()\(7))>, (9) the acceleration for = 2, etc. It is easy to check that in the

n asymptotic limitvy — 0, Eq. @L3) gives
We then substitute this expansion into E), ( s END) . (n|OvH]0) 6
dan " (gn - EO)T (gn — 50)T+1 ’

W + Z am(7)<n|8‘r|m> = _gn(/\) QAp (T)a (10)
m where all matrix elements and energies are evaluated-at
where&, ()\) are the eigenenergies of the Hamiltoni#ig\) 0. From this perturbative result we can in principle evaluate

corresponding to the statgs) for this value of\. Making the  the leading non-adiabatic response of various observahtis
transformation define the corresponding susceptibilities. For the purpose

0 comparing with the QAQMC approach, E4.§] suffices.
an (1) = ap (1) exp {/ En(T’)dT’] , (12)

we can rewrite Eqg.1) as an integral equation; B. Operator-product evolution
0
an (1) = a, (0) + Z/ dr’ (n|0r|mya, (1) The quasi-adiabatic QMC method may appear very differ-
T ent from NEQMC but has a similar underlying idea. Instead

0 of imaginary time propagation with Ed), we apply a simple
X exp [—/ dr'" (En(7") — Sm(r”))] ,(12)  operator product to evolve the initial state. We first examin
™ the state propagated with the firsbperators in the sequence

where it should be noted that, (0) = a,,(0). In principlewe ~ +.11n Ed. ©),

should supply this equation with initial conditionsat= 7,

but this is not necessary |if,| is sufficiently large, since the [e) = [=H)] - [HO)][=H ()] o), 17)

sensitivity to the initial condition will then be exponesity

suppressed. Instead we can impose the asymptotic conditi@nd after that we will consider symmetric expectation value

an (T — —o00) = 0, Which implies that in the distant past of the standard fornfias| Al ) as well as the asymmetric

the system was in its ground state. expectation values in Eq7). We assume that the spectrum of
Eq. (12 is ideally suited for an analysis with the APT. In —%H is strictly positive, which is accomplished with a suitable

particular, if the rate of change is very smal(;r) — 0, then  constant offset t6{ if needed.
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1. Linear protocols whereC,, can be determined from the initial condition. In
the limit of sufficiently largef the initial state is not important
The coupling) can depend on the indexin an arbitrary SO We should have; ™" — 0 for i > 1, so thatC,, = 0.
way. Itis convenient to define Therefore we find that the amplitude of the transition to the

excited state is approximately
)

T = — (18) _ .
T’ t—1 t gi

| | | | a3 | [T 2| eh1B0. @8
whereT is the overall time scale, which can be set to unity. =0 | j=ki1 57

The leading non-adiabatic corrections will be determingd b
the system properties and by the behavion\¢f;) near the  Changing the summation indéxto p = ¢t — k we have
point of measuremerit The most generic is the linear de-

pendence\(r;) ~ A(t) + 0,(t — 7;), whered, is related to . togi R

the quench velocity (see below). In the end of this section an =y | TI 2| e rapetr). @)
we will briefly consider also more general nonlinear quench p=1 +

protocols. . .

Our strategy to analyze EdL7) in the adiabatic limit will It is clear that for large o_nlyp_<<_t Ferms contribute to the
be the same as in the preceding subsection. We first go to tff¥™M: N the extreme adiabatic limit one can thus move the
instantaneous basis and rewrite matrix element outside of the summation and use the spectrum

of the final Hamiltonian. In this case we find
(_
7/)1 an Ti) | a TL (19) t ~ A N
() = ) = 3 en(rln(h)) = 3 ail R T

In the instantaneous basis the discrete Schrodinger-like — &M <"|gk|0> — &, A, (n]010) (28)

equation’*1) = —H(7;41)[v?) reads En — & En—E0’
gt — Zai £ i+ |y (20) whereA, = A(t)—A(t—1). By comparing Egs.1(6) and £8)

we see that near the adiabatic limit QAQMC and NEQMC are
very similar if £, /&y = const. This can in principle always
and it is instructive to compare this with EQ.Q). It is conve-  be ensured by having a sufficiently large energy offset, but

nient to first make a transformation even with a small offset we expect the ratio to be essentially
, constant for the range af contributing significantly when the
i 1 i spectrum becomes gapless close to a quantum-critical pbint
Un = 111 (_5%)0‘71' (21) " the condition indeed is properly satisfied, then from Eq6) (
J=

and @8) we identify the quench velocity as
This transformation does not affect the transition amgétu

at the time of measuremetita’, = of,. Then the equation v = ol (29)
above becomes This is the main result of this section. We will confirm
. _ its validity explicitly in numerical studies with the QAQMC

ot =3k | 1 (23 (). (229 method in Seclll. Since&, o N, whereN is the system

size, we can also see that « NA, « N/M for a given
total change in\ over theM operators in the product.

Let us introduce a discrete derivative Let us point out that Eq2@) can be also rewritten as

n|g|0

J
m j= 1+15

(ni| A = (] — (], (23)

~ —&A — Ax(n[Dy0).  (30)

and write the Schrodinger-like equation as ) o
The first contribution here exactly matches that of Ef) (

_ _ _ togi I while the second term is an additional contribution corre-
aft=al+Y ol | [ 5—;‘ (n|Alm?).  (24)  sponding to a sudden quench.
J=i+1
In the adiabatic limit the solution of this equationd$ = 2. Nonlinear protocols
dno, 1.€., the instantaneous ground state. To leading order of
deviations from adiabaticity we find We can extend the above result EBQ)to arbitrary quench
protocols. In particular, consider
[ t ;
. 5.7 —
i+1 “n k k r—1
at =+ > ] o (n*|A0%),  (25) \ Mg P (31)

k=0 | j=k+1 e (=&)r (r = 1)V



wherer > 0 (not necessarily an integer). For= 1 we  where
recover the linear protocol analyzed above. Then we cdn stil
rely on Eq. 27) but need to take into account that Xax = Z<O|A|">

n#0

{n[0x0)
En — &

+ c.c. (40)

(P RJ0P) & Adey (n]53]07)
5 prol is the susceptibility. All energies and matrix elementsesa-
= <nt|§|0t). (32)  uated at “time™ = M.

— r —1)!
(=&o) (r = 1)} For diagonal observables, like the energy or energy fluc-
Thus, we find that tuations, we have
t Ux : t t n|0x|0) >
S s P 1)!L11—r(5n/50)<n a0, (33) (AYympr ~ (A)g + 03 ; %mwm. (41)

whereLi; _,(x) is the Polylog function. In particular, . ) ) N
In particular, the correction to the energy is always positi

Lio(z) = 1 (34) as it should be for any choice of wave function deviating
1—2a’ from the ground state. Let us emphasize that for diagonal ob-
Li_i(z) = z (35) servables the leading non-adiabatic response at the syiomet
(1—x)2’ point in imaginary time coincides with that in real time, and
. z(z +1) thus QAQMC or NEQMC can be used to analyze real time
Li_s(z) = m (36)  deviations from adiabaticity, as was pointed out in the cdse

NEQMC in Ref. [7].
Under the conditions discussed above (large offset or small
energy gap) we again have = &,,/& — 1 and then we

recover the continuum result using the fact that 2. Asymmetric expectation value, t # M
—1)
Lii (1 —¢) =~ (r Tl)', It turns out that the asymptotic approach to the adiabatic
€ limit is quite different for non-symmetric points= nM with
Then, indeed, n # 1. Without loss of generality we can focus on< n <
| 1 (since all expectation values are symmetric with respect to
of =at ~ Ux (r—1)! <nt|g|0t> n — 2—n for the symmetric protocol we considgrThen the
o (&) (=)A= En/Eo)" expectation value of! is evaluated with respect to different
<nt|5)\|0t> eigenstates
= Ve (37)
(gn B 50) <A>t _ <wL|A|wR> (42)
which exactly matches Eq16). (Yrlvr)
where

C. Expectation values |¢R> _ H(At)---H()\z)H(x\l)|wo>,

While asymptotically Eq.7) gives the ground state of the [Wr) = Heea) - ) HAw) Paralto). (43)

observabled in the adiabatic limit for all values of, the ap-  Note that the overlagyr |vr) is independent of by con-
proach to this limit ag — oo is qualitatively different de- gt ction and is real.

pending on whether is equal to)M or not. More precisely |t js easy to see that for diagonal observables we obtain
if ¢ = nM wheren € (0,2) asM — oo we encounter tWo  |eading asymptotic as in Eq41) but with the opposite sign
different asymptotic regimes for # 1 andn = 1. in the second term
- o [(n]0x]0) 7
1. Symmetric expectation values, t = M <A>t#M ~ (A)o — i Z m<n|f4|n>- (44)
20

In this limit the expectation value of the observallié the  |n particular, the leading correction to the ground statergy
leading order of the adiabatic perturbation theory redtwes s negative when deviates sufficiently from the symmetric
N point, i.e.,|\; — A\1|/vx < M. There is no contradiction
(A)e=nr = (W(0x)| Al (vr)), (38)  here since the left and right states are different (i.e., vee a
wherev, ~ &A, is the imaginary time velocity identi- NOt evaluating a true expectation value and there is no vari-

~

fied earlier. For generic observables not commuting with thétional principle). Both Eq.41) and Eq. 44) recover exact
Hamiltonian we find result in the adiabatic limit. Since the correction up to the

sign exactly matches the real time result we can still use the
(AVienr = (A)o + vaXax, (39) non-symmetric expectation value for diagonal observatoles



extract the real time non-adiabatic response. tFex M the  defined by the Hamiltonian
sign of the correction should change, to connect smoothly to
the variationak = M expectation value. The crossover be- H=—g Z ofol —(1—s) Zaiw7 (48)
tween positive and negative corrections to the energy takes {
place around a point that asymptotically converges+to M
in the adiabatic limit (where the deviation from the ground-\yhere (i,§) are nearest-neighbor sites, and and o, are
state energy at :.M vanishes_). We will illustrate this with  p5,1i matrices. Here plays the role of the tuning param-
numerical results in Setl A (Fig. 1). . ~eter, which in the simulations reported below will vary be-
As in the symmetric case, using the APT discussed in thgyeen( (where the ground state is trivial) to a value exceed-
previous section the results derived here easily extenth&ro ing the quantum-critical points, = 1/2 in a 1D chain and
values of the exponent 5. ~ 0.247 in the 2D square lattic¥
We work in the standard basis of eigenstates ofall The
simulation algorithm samples stringsf/ diagonal and off-
diagonal terms in Eq4@), in a way very similar to th& > 0
L stochastic series expansion (SSE) method, which has been di
If A= —08,H, then the susceptibility Eq4() reduces to ¢y ssed in detail in the case of the TFIM in R&f6], The mod-
theuA component of the metric tensbi? which, thus, canbe  ifications for the QAQMC primarily concern the sampling of
readily extracted using the QAQMC algorithm. In particular the initial state, heré®(0)) = [[,| 1+ + i), which es-
the diagonal components of the metric tensor define the morgentially amounts to a particular boundary condition repla
familiar fidelity susceptibility. _ ing the periodic boundaries in finite-temperature simati
Next, we observe that for sufficiently different fromM,  Ap SSE-jike scheme with such modified boundaries were also
the approach to the ground state in the left f_unchn in implemented for the NEQMC method in RefZ]] and re-
Eq. @3) effectively corresponds to a change in sign of thecently also in a study of combinatorial optimization probte

i.7) v

3. Themetric tensor and Berry curvature

velocity, and, thus, we find in Ref. [17]. We here follow the same scheme, using cluster
(W(—=v)|AlY(v)) updates in which clusters can be terminated at the boursdarie
(A) ~ Wv (45)  The implementation for the product with varying coupling

_ is even simpler than SSE or NEQMC, with the fixed-length
where the wave fU”Ct'OTWJ(U» andy(—v)) are evaluated at  product replacing the series expansion of B). The changes
the same value of the coupling determined by the valug of relative to Refs.T] and [16] are straightforward and we there-

We can use the results of the previous section to find that fofore do not discuss the sampling scheme further here.
off-diagonal observables

(A)e = (A)o — ivaxhy, (46)
A. Cross-over of the energy correction
Xy = ¢Z<0|A|n)M —c.c. (47) As we discussed in Secll), the asymmetric expectation
n£0 En =& value (7) of the Hamiltonian has a negative correction to the

Based on this result we conclude that the leading nonground state energy wheris sufficiently away from the sym-

: : SO ) L metric pointt = M. In Fig. 1 we illustrate this property and
adiabatic correction Is imaginary and _comudes, up to.the(he convergence to the ground state energy fot alith in-
factor of imaginaryi, with the real-time non-adiabatic

T . e - creasingl/ with simulation data for a small 1D TFIM system.
C(I)/rrectlo;l. . In part|cglar, forA = —0,H the susceptibility We here plot the results versus the rescaled propagatioarpow
XAx = Xy IS proportional to the Berry curvature.

Phe At that we are getting the opposite sign (comparefg = t/M. The region of negative deviations move toward the
to the real time protocol) in the suscepiibility for diagbob: ymmetric point with increasing/. Note that the deviations

servables and the Berry curvature for off-diagonal obdsiesm here are not strongly influenced by the critical point (which

away from the symmefric points in Eqs4) and @6) is a con- is within the parametes simulated but away from the sym-
y y point . metric point), although the rate of convergence should la¢so
sequence of a general analytic properties of the asymmetr

. . . ow due to criticality. The rate of convergence to the gbun
expectation Va'“?S- As we d.|scuss. n R.Gﬂ][the expecta- state can be expected to be (and is here seen to be) most rapid
tion value Eq.45) is the analytic continuation of the real time

; X . : , . for and .
expectation value to the imaginary velocity- iv. This con- < Ter ANGAT = Tea
tinuation is valid in all orders of expansion of the expeictat

value ofA in v.
B. Quantum-critical dynamic scaling

. RESULTS The idea of dynamic scaling at a critical point dates back to

Kibble and Zurek for quenches (also called ramps, since the

As a demonstration of the utility of QAQMC and the behav- parameter does not have to change suddenly, but lineatty wit
iors derived in the previous section we here study the TFIMarbitrary velocity as a function of time) of systems through



reduces to the standard equilibrium finite-size scalingpltlyp
esis. This scaling was recently suggested and tested ar-diff
ent systems, both quantdfd*?® and classica?.

The above expression EdgQd) combined with the product-
evolution Eq. b) allows us to study a phase transition based
on different combinations of scaling in the system size and
the velocity in non-equilibrium setups. For example, if one
wants to find the critical point for the phase transition amal t
exponentr is known, one can carry out the evolution under
the critical-velocity condition:

n- HExact

<H>

vLFTY =, (51)

wherec is a constant. In this paper we focus on linear quench
protocols and set = 1 henceforth. As we discussed in
Sec.lIB, the QAQMC method applied to a system of size
(volume) N based on evolution witld/ operators in the se-
guence and changk, between each successive operator cor-
responds to a velocity «« NAy o« N/M, with the prefactor
depending on the ground state energy (at the critical point)
The exact prefactor will not be important for the calculato
reported below, and for convenience in this section we define

<H>

FIG. 1: (Color online) Symmetric and asymmetric expectatialues
of the Hamiltonian in QAQMC calculations for 1D TFIM E4&) o= E
with N = 24. Here the evolution was from = 0 to 0.6 and, thus, B f]\/[’

s = 0.6 is the symmetric point here labeled hy= t/2M = 1. For . . .
n<1,s=06nandfory > 1,s = 1.2—0.6n, and “/18 critical point wheres; is the final value of the parametein Eq. @8) over

s = 1/2 hence corresponds ip; ~ 0.833 andn.; ~ 1.167. The the evolution (which is also the total changesinsince we
bottom panel shows the expectation value and the top paoeksts  Start with the eigenstate at= 0). The critical product-length
deviation from the true ground state energy (obtained usamgzos M is, thus, given by
exact diagonalization). 1
M =

(52)

_NLZ+1/V _ lLoH-z-ﬁ-l/u7 (53)

C C

classical phase transitiof:® Here the focus was on the den- \yhere we have also for simplicity absorbednto c.

sity of defects. The ideas were later generalized also taigua Using an arbitrary: of orderl in Eq. 1), the critical point

ties more easily accessible in experiments, such as order pg_ can be obtained based on a scaling function with the single
rameters, and the scaling arguments were also extended f@gumentL'/” in Eq. 50). We will test this approach here, in
quantum systen®:?* The basic notion is that the system has Secs|IID andlll E. and later, in Sed!l F, we will show that

a relaxation time..|, and if some parameter (here a parame-gxact knowledge of the exponents in Egl)are actually not

ter of the Hamiltonian) is changed such that a critical p@nt needed. First we discuss the quantities we consider in these
approached, the system can stay adiabatic (or in equifihriu sty dies.

only if the remaining time to reach the critical point is much

larger than the relaxation time;> t..;. In general one ex-

pectst,.; ~ £* ~ e *¥ whereg is the correlation length; the C. Quantities studied

exponent governing its divergence with the distande the

critical point, andz the dynamic exponent. For a system of  \ve will focus our studies here on the squatecbmponent
finite size (length), ¢ is maximally of orderl. and, thus, for magnetization (order parameter),

a linear quench the critical velocity.,;; separating slow and

fast power-law quenches according to Eip)(should heuris- ) 1 N 2

tically be given byv,.;; ~ L~(*1/¥) and for a power-law m; = <W<Z Uf) >7 (54)

guench with exponentaccording to Eq.15) this generalizes i

to'* We can also define a susceptibility-like quantity (which we
Verit ~ [—Grd) (49) will henceforth refer to as the susceptibility) measurihg t

magnetization fluctuations:
One then also expects a generalized finite-size scaling form ) )
for singular quantitiest; x = N((mZ) — (Im.])"). (55)

A(L,¢) = Lﬁf(eLl/v,szrH/V)’ (50) Here both terms have the same critical size-scaling as the

_ _ ) ‘equal-time correlation function;
wherex characterizes the leading size-dependence at the crit-

ical point of the quantity considered. For— 0 Eq. (60) (m2)? ~ (Ims|)? ~ L (=24, (56)



whered is the spatial dimensionality. The prefactors for the
two quantities are different, however, a divergent peak re-
mains in Eq. §5) at the transition. Away from the critical
pointy — 0 with increasing system size.

To clarify our use ofy, we point out that we could also <
just study the scaling ofm?), but the peak produced when 2.0
subtracting off the second term in EGY is helpful in the

4.0

3.0

scaling analysis. According to Ec@) and usingz = 1 in 10 .
Eq. (66), the full scaling behavior of the fluctuation around T
the critical point should follow the form 0.0 -
Y ~ LY f((S_SC)Ll/V’vLH»l/V)’ (57) 1.0L \ \ \ \ \ ]

for any dimensionalityl. 0.8 -
We should point out here that the true thermodynamic sus- 1
ceptibility based on the Kubo formufia(imaginary-time in- - 06 B
tegral) yields a stronger divergend&—". This quantity 04 |
is, however, more difficult to study with the QAQMC algo- ' ]
rithm, because, unlike in standard finiteQMC methods, 0.2 ,
the time integration cannot simply be carried out within the g

space of time-evolving Hamiltonians in Ed)(and Eq. 7). 0.0— e
The standard Feynman-Suzuki correspondence between the 03 035 04 045 05 055 06
d-dimensional quantum ar{d+ 1)-dimensional classical sys- S

tems is not realized in our scheme. The configuration space (l):fIG 2: (Color online) Results of typical QAQMC runs for th 1
time-evolving Hamiltonians builds in the relaxation tinag;, < g

in a different way, not just in terms of equilibrium fluctuatis TFIM, Eq. (48). The binder cumulant Eq5g) (bottom panel) and the

. . . . . . . susceptibilityx Eq. 65) (top panel) are graphed versufor several
in the time direction, but in terms of evolution as a functudn system sized.. In these simulations, which spanned the range

a time-dependent parameter. . - [0,0.6], the length of the index sequence was of the form B8),(
A useful quantity to consider for extracting the criticalfto e, with the exponents applicable in this cdge= L?/c with the
is the Binder cumular, arbitrary constant chosen to be= 4% /240.
3 1 {m?
U——<1——< Z>2) (58)
2 3 (m2) D. 1D transverse-field Ising model.

For a continuous phase transitiénconverges to a step func- ) ) )
tion asL — oco. The standard way to analyze this quantity ~The 1D TFIM provides a rigorous testing ground for the
for finite L is to graph it versus the argumenfor differentz, ~ Néw algorithm and scaling procedures since it can be solved
and extract crossing points, which approach the criticaipo €xactly?® The critical point corresponds to the ratio between
with increasingL. Normally this is done in the equilibrium, the transverse field and the spin-spin coupling equaling.,
either by taking the limit of the temperatufe— 0 for each 5 = 1/2 in the Hamiltonian Eq.48). The critical exponents,
L first, or by fixing3 = 1/T o L* if = is known. Here the ~known through the mapping to the 2D Ising mo&fearer =
latter condition is replaced by E 1), but, as we will discuss 1 andn = 1/4.
further below, the condition can be relaxed and the expanent The results presented here were obtained in simulations
do not have to be known accurately a priori. Our approach cawith the parametes spanning the rang@, s¢| with s = 0.6,
also be used to determine the exponents, either in a combiné€., going from the trivial ground state of the field term to
procedure of simultaneously determining the critical paird ~ well above the critical point. Fig2 shows examples of results
the exponents, or with a simpler analysis after first determi for the susceptibility and the Binder cumulant. The operato
ing the critical point. sequence length/, Eq. 6), was scaled with the system size
We have up until now only considered calculations ofin order to stay at the critical velocity according to E§3)
equal-time observables, but in principle it is also possibl We emphasize again that a single run produces a full curve
and interesting to study correlations in the evolutionation, ~ within the s-range used. In order to focus on the behavior
which also can be used to define susceptibilities. close to criticality we have left out the results for smaih
In the following we will illustrate various scaling proce- Fig. 2. SinceM is very large (up tox 10° for the largest
dures using results for the 1D and 2D TFIMs. The dynamicL in the cases shown in the figure), we also do not compute
exponent: = 1 is known for for both cases, and in the 1D expectation values for eac¢tin Eq. (7), but typically spacing
case all the exponents are rigorously known since they coinmeasurements by N operators.
cide with those of the classical 2D Ising model. For the 2D Extracting Binder curve-crossings using system-sizespair
TFIM the exponents are know rather accurately based on nu- andL + 4, with L = 4,8,12,...60, and extrapolating the
merics for the 3D classical model. results tol. — oo, we finds. = 0.49984(16), as illustrated
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FIG. 3: (Color online) Results of a Binder-crossing scatmglysis 3
of the 1D TFIM data in Fig2 (including also other system sizes not
shown there). Crossing points were extracted based omsystes 0.05
LandL + 4, with L = 4,8,...,60. The curve is a fit to the forff
Se(L) = se + a/L°, sc = 0.49984(16) andb = 1.6(1). ) T — T I
2 / (16) ) 0 0(-)25 -20 -15 -10 -5

(ss) L%
in Fig.(3). Thus, the procedure produces results in full agree-
ment with the known critical point. FIG. 4: (Color online) Scaled susceptibility of the 1D TFIVhe
The dynamical scaling of the susceptibility is illustratad ~ axes have been scaled according to the form &4.yith the second
Fig. 4. Here there are no adjustable parameters at all, sinc'gument constant and using the exact critical peint= 1/2. The
all exponents and the critical coupling are known (and we usé&esults are shown on two different scales to make visibléatiens
the exact critical coupling. = 1/2, although the numerical (dué to subleading size and velocity corrections) from i@mon
result extracted below is very close to this value and preduc scaling function far away from criticality as well as the dodata
. . . . ~ .~ collapse close to the critical point.
an almost identical scaling collapse). While some dewuetio
from a common scaling function are seen for the smaller sys-
tems and far away from the scaled critical pdint- s.)L, the
results for larger sizes and close to the peak rapidly agbraa the results. It is still useful to try to reach similar or hagh
common scaling function. This behavior confirms in practiceprecision with other approaches, as we will do here with the
our discussion of the definition of the velocity and the apili QAQMC method combined with dynamic scaling.
of the QAQMC method to correctly take into account at least In this case we simulate the linear quench in the window
the first corrections to the adiabatic evolution. of s € [0,0.3], which contains the previous estimates for the
critical values,. = 0.247 as discussed above. Although we
could also carry out an independent scaling analysis taeixtr
E. 2D transverse-field Ising model the critical exponents, we here choose to just use their val-
ues based on previous work on the classical 3D Ising model;

The 2D transverse-field Ising model provides a more seril/v ~ 1.59, andz ~ 0.036.%° Our goal here is to extract
ous test for our algorithm since it cannot be solved exactly@ high-precision estimate of the critical coupling, andhe t
Among many previous numerical Studpéé,l’32 Ref. [1ﬂ ar- same t|me -tO furthe-r test the ab|||ty of QAQMC to Capture the
guably has the highest precision so far for the value of th&orrect critical scaling behavior. We again scalewith L
critical coupling ratio. Exact diagonalization was theeg-c ~ according to Eq.§3), with the constant = 4*°/32.
ried out for up ta6 x 6 lattice size. In terms of the critical field As in the 1D case, we extract Binder-cumulant crossing
h. = 1 — s in units of the coupling/ = s, the critical point  points based on linear system sizesand L. + 4 with L =
was determined té./J = 1/0.32841(2) = 3.04497(18),  4,8,...,56. Fig.5 shows the results versug L along with
where the error bar reflects estimated uncertainties irefinit a fit to a power-law correctidfi for s.(L). Extrapolating to
size extrapolations. Results based on QMC simulatfdfs infinite size givess, = 0.247244(4), which corresponds to a
are in agreement with this value, but the statistical erames critical field (in unit of.J) h./J = 3.04458(7). Thisis in rea-
larger than the above extrapolation uncertainty. One mighsonable good agreement with the value obtained in R&J. [
worry that the system sizes < 6 are very small and the and quoted above, with our (statistical) error bar beingesom
extrapolations may not reflect the true asymptdtic> oo what smaller. To our knowledge, this is the most preciseevalu
size behavior. However, the data points do follow functlonafor the critical coupling of this model obtained to date. We
forms expected based on the corresponding low-energy fieldmphasize that we here relied on the non-equilibrium sgalin
theory, and there is therefore no a-priory reason to questioansatz to extract the equilibrium critical point. Allowirfigr
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FIG. 5: (Color online) Binder crossings for the 2D TFIM exired
using L and L + 4 systems withL. = 4,8,...,56. The crossing FIG. 6: (Color online) Scaled susceptibility of the 2D TFIbgsed
points have been fitted to the standard f8tm.(L) = s. + a/L°, on Eqg. 67) with a constant second argument. Here we have used
for which the optimal values are. = 0.247244(4) andb = 4.0(1). 1/v = 1.59 andn = 0.036 for the classical 3D Ising mod&l
The results are shown on two different scales to illustratgd devi-
ations from the fitted form for the smaller systems, folloviegdapid
convergence for larger sizes. cal exponents should not depend on the choices of such shape
factors or limiting procedures.
To extract the critical coupling, in the preceding subsec-

deviations from adiabaticity in a cor_1tro||ed way and Utz ions we fixed the exponentsand> at their (approximately)
the advantage of the QAQMC algorithm allowed us to extraciown values, and one may at first sight assume that it is nec-

observables in the whole range of couplings in a single 'UNessary to use their correct values. It is certainly somegime
This requires considerably less computational resouf@@s t - conyenient to do so, in order to set the second argument of the
standard equilibrium simulations, which must be repeated f scaling function Eq.50) to a constant and, thus, obtain a sim-
several different couplings in order to carry out the cnegsi ey scaling function depending on a single argument. How-
point analysis. - , ever, one can study critical properties based on the scaling

Fig. 6 shows the susceptibility scaled according to the bey5r0ach discussed above as long as the velocity approaches
havior expected with Eq.50) when the second argument is ;e a5 the system size increases. This observation can be im
held constant. As in the 1D case, the data converge r,ap'dlkﬂortant in cases where the critical exponents are not known
with increasing size toward a common scaling function in thé; g one would like to obtain an accurate estimate of the crit-
neighborhooq ofth_etransition point, again confirmingtbe c 5 coupling before carrying out a scaling analysis to gtud
rect quasi-adiabatic nature of the QAQMC method. exponents. We will test this in practice here. As we will dis-
cuss further below, one should use a different powar the
scaling ansatz Eq50) if the velocity is brought to zero slower
than the critical form.

In cases where we use the “wrong” values of the exponents,

The results discussed in the preceding subsections were oe formally replace: + 1/v by a free parameter,
tained with the KZ velocity condition Eq5(), applied in the

form of Eqg. 63) tailored to the QAQMC approach, with spe- v~ L7, (59)
cific values for the constant In principle the constant is

arbitrary, but the non-universal details of the scalingésétr  and the corresponding substitution in E§3) To understand
depend on it. This is in analogy with a dependence on théhe scaling of the observables for arbitrarywe return to
shape, e.g., an aspect ratio, of a system in equilibrium-simuhe general scaling form given by EcQ). In the case of
lations at finite temperature, or to the way the inverse tempe the Binder cumulant and for linear quench protocol, thisrfor
atures = 1/T is scaled aaL* with arbitrarya in studies of  reads

guantum phase transitions (as an alternative to takingrttie |

8 — oo for each lattice size). The critical point and the criti- U= f((s—se)LM" oLz /Y). (60)

F. Further tests
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As we pointed out above, when the velocity scales ex 0.260 %]
as L~ (#t1/) the dependence on the second argument i C _ /;/——"’*:
scaling function drops out and we can find the crossing | B e T ]
in a standard way as we did in Figsand5. Suppose that w 0.250 ;__;f,-—,a—/‘““*”” 7]
do not know the exponentsandz a priory and instead sce -  F e i
v as in Eq. §9). Then there are three possible situations :;“’ 0.240F o =259,c, " .
o =z+1/v, (i)« > z+1/vand (ii)a < z+ 1/v, where . a,=259.c, e .
we already have analyzed scenario (i). In scenario (ii),re 0230 %=30.¢ s B
velocity scales to zero faster than the critical KZ velay Ty a,=22¢, -]
the second argument of the scaling functioit'/” /L ap- Cs 0,=20,¢ Ny
proaches zero as the system size increases and, thus, It : . : ‘ : ‘
ing function effectively approaches the equilibrium vetpc - ‘ ! ‘ ! ‘ "]
independent form. We can then extract the crossing poimi 0.250 - B
the first scenario, and this gives the correct critical cimgpih WSS = - e
the limit of large system sizes. Finally, in case (iii) théogity = CTttam g
scales zero slower than the critical KZ value and the se O 02451 . @=289c T T= 7
argument in Eq.§0) diverges, which implies that the syst »° F =20 o R .
enters a strongly non-equilibrium regime. This scenark L g = 3.0' C2 -
fectively corresponds to taking the thermodynamic limit 02401  '_,. 72 - 7
and the adiabatic limit second. Then, if the system is it . a=20c il
on the disordered side of the transition, the Binder cumt [ 8 P l L]
vanishes in the thermodynamic limit. At finite but large ¢ 0.00 0.02 0.04 0.06

tem sizes its approach to zero should be given by the sta 1L
Gaussian theory:
FIG. 7: (Color online) Critical-point estimates based onvelcross-
U ~ Q (61) ings of appropriately scaled quantities for scenariosiifi)and (iii)
Ld discussed in the text. The Binder cumulant (lower panel) thed
o o . . squared magnetization (upper panel) give estimatgs) ands..(L),
Combining this with the scaling ansatz EGO| we find that  respectively, based on system sizeand L + 4. The red and blue
for a < z+1/v the expected asymptotic of the Binder cumu- curves correspond to runs in which the velocity was keptetit-
lantis ical value, scenario (i), but with different constants obportional-
R ity ¢in Eq. G3); c1 = 4"°?/32 andca = 4%°9/48. The yellow
U L™= YER) F((s - s.) LMY, (62)  curves were obtained with the velocity decreasing fasterh with
L, scenario (i), with the proportionality constamt = 4°/32. The

wheref is some other velocity independent scaling function.9"€€n and pink curves correspond to cases where the veisitp-

e  curves ¢ ases > Vet
Thus we can find the correct transition point by finding cross-citical. scenario (iii), with constants, = 4°7/32, ¢; = 4'/32.

ing points oft/ L@ =+1/¥)_ Similar considerations apply to In all cases, power-law corrections were fit in order to exdtate to

. " . infinite size (with small sizes excluded until statistigadound fits
the ordered side of the transition, where the Binder cumular\'Ne'reI othiné\év)l. 'z xel unt Istigasiound 1

approaches one as the inverse volume.
The three cases are illustrated in the lower panel of Fig.
which shows Binder-cumulant crossings extracted from apsquared magnetization [see E§4)] can be written as
ropriately scaled data in cases (i), (i), and (iii) aboyel-
(Fj)itici))nally,yto illustrate the insens?t?vi'fy)to the(c%oicé the m2 = L2V f((s = s) LYY, 0L*FHY). (63)
constantc in the scaled sequence length in E§3)( results  ag in the previous discussion we scale- L~ and depend-
based on two different constants are shown for case (i). lihg on the exponent there are two different asymptotics of
all cases, the extrapolated critical couplings agree waithe he scaling function. Fot > = + 1/v the second argument

other to within statistical errors. Note that, one the onecha \anishes or approaches constant so we effectively get thie eq
if the exponent: gets very large, then the time of simulations, |iprjum scaling

which scales a8/, rapidly increases with the system size and

the algorithm becomes inefficient. On the other handy if m? = L7/ f((s - s.)L") (64)
is very small our results indicate that the size-dependence
larger and it is more difficult to carry out the extrapolation
infinite size. The optimal value @f should be as close as pos-
sible to the critical KZ power, but to be on the safe side whe

If, converselyn < z + 1/v then on the disordered side of the
transitionm? scales ag,~“. This immediately determines the
nasymptotic of the scaling function in E3):

i i it i (28/v)—d ~
scaling according to the standard KZ critical form, case (i) m? = L=y F((s - Sc)Ll/U). (65)
one may choose a somewhat larger value, since the sublcritica
velocity case (ii) has the same scaling form. Equation 65 can be used in the same way as the Binder

Next we illustrate how the same idea works in the case otumulant to extrapolate the critical point, using the stan-
the order parameter. Around the critical poist,(verit), the  dard forn?® s/.(L) = s’ + a/L" for the rescaledn?. As
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3.0 — IV. SUMMARY AND DISCUSSION
We have presented a nonequilibrium QAQMC approach to
20 N study quantum dynamics, with a simple product of operators
=< 7 with evolving coupling replacing the standard Schrodinge
time evolution. We showed that this approach captures the
10 B leading non-adiabatic corrections to the adiabatic lilmitth
N . by analytical calculations based on the APT and by explicit
00 ‘ | ‘\_4__4 | simulations of quantum-critical systems with the QAQMC al-
' : ‘ : ‘ : ‘ : ‘ gorithm. The simulation results obey expected generalized
10~ 7 dynamic scaling with known static and dynamic critical expo
i f ] nents. We also extended the scaling formalism beyond eesult
08 ) — §708 B obtained previously in Ref7]. We analyzed the leading non-
~ _ 06- — §7055 ] adiabatic corrections within this method and showed that th
e L — §=0425 i can be used to extract various non-equal time correlatioc-fu
0.4+ s=03625 tions, in particular the Berry curvature and the componehts
. 2033125 | the metric tensor. A clear advantage of the QAQMC approach
0.2~ - is that one can access the whole range of couplings in a sin-
- | — §703 ] gle run. Being a simple modification of projector QMC, the
0-%_0 ‘ 0.2 04 016 0.8 QAQMC method is applicable to the same class of models as
S this conventional class of QMC schemes—essentially models
for which “sign problems” can be avoided.
FIG. 8: (Color online) Squared magnetization (lower panatsd As an illustration of the utility of QAQMC, we applied the

susceptibility (upper panels) verss®f the 2D TFIM with L = 12. algorithm and the scaling procedures to the 1D and 2D TFIMs.
In these runs, different curves correspond to differentgwidts s ¢ The expected scaling behaviors are observed very clearly. |
of the evolution, with the velocity oc s¢/N/M kept constant. The the 1D case we extracted a critical coupling in full agreeimen
sy = 0.3 curve is from the simulation shown in Sét.E with the known value, and in 2D we obtained an estimate
with unprecedented (to our knowledge) precision (small er-
ror bars);(h/J). = 3.04458(7). Based on repeating the fit-
ting procedures with different subsets of the data, we belie
that any systematical errors due to subleading correctiens
shown in the top panel of Fig.7), after rescaling the or- glected in the extrapolations should be much smaller than th
der parameter and extrapolating the crossing points betwesstatistical errors, and, thus, we consider the above result
the appropriately rescalea? curves to the thermodynam- unbiased.
ics limit, all curves, obtained from below or above the adi- The QAQMC approach bears some similarities to pre-
abatic limit Eq. 49), converge to the same valyg ~ 0.247. vious implementations ofjuantum annealing within QMC
This approach also suggests a way to determine the tramsitialgorithms333¢ However, the previous works have mainly
point in experiment, since one can sweep through the criticonsidered standard equilibrium QMC approaches in which
cal point at different velocities, the crossing point caarth some system parameter is changed as a function e
be extracted through the measurement of the order parametédtion time. This evolution is not directly related to true quan-
It's also worth mentioning that since one can extrapolage thtum dynamics (and, thus, is not really quantum annealing),
critical point independently without knowing the actual ex but is dependent on the particular method used to update the
ponentv prior to the simulation, an optimization procedure configurations. In contrast, in our scheme, as in the NEQMC
can be carried out to determine the exponents posterioeto thmethod introduced in Ref7], the evolution takes placgithin
simulation®* the individual configurations, and there is a direct relattup
to true Schrodinger evolution in imaginary time.

For completeness we also briefly discuss the role of the fi- In Green’s function (GF) QMC simulations the gradual
nal points; of the evolution. Fig8 shows 2D results for the change of a system parameter with the simulation time is
squared magnetization E&4) and susceptibility EqQ55) ob-  rather closely related to the QAQMC scheme (since also there
tained for a range of final points above the critical valuereéHe one applies a series of terms of the Hamiltonian to a state),
the velocity was kept constant for all the cases. The valuewith the difference being QAQMC uses true importance sam-
of the computed quantities at some fixee.g., ats., showa  pling of configurations, with no need for guiding wave func-
weak dependence o for the lowests; runs. The deviations tions and no potential problems related to mixed estimators
are caused by contributions of ordé€rand higher, which are  Our asymmetric expectation values could be considered as
non-universal as discussed in SB&. For very high veloci- a kind of mixed estimator as well, but we have completely
ties the dependence spcan much more be dramatic than in characterized them within the APT. In addition, the presgiou
Fig. 8, but this is not the regime in which the QAQMC should uses of GFQMC with time-evolving Hamiltonians have, to our
be applied to study universal physics. knowledge, never addressed the exact meaning of the veloc-
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ity of the parameter evolution. The correct definition of the (U (\)|U*(7)U(7)|¥(\g)). In this case, the symmetric ex-
velocity is of paramount importance when applying quantum-ectation value, evaluated at the mid-point, is identical t
critical scaling methods, as we have discussed here. \Whe NEQMC method,and the asymmetric expectation values
have here computed the velocity within APT for the QAQMC will exhibit properties similar to those discussed in S&€.2.
scheme. The same relationship with Schrodinger dynamic#/e have not yet explored this approach, and it is not clear
may possibly hold for GFQMC as well, but, we have not ap-whether it would have any other advantage besides the ex-
plied the APT to this case and it is therefore not yet clearact reduction to Schrodinger dynamics of the symmetric ex-
whether GFQMC can capture correctly the same universgbectation values. In practice the simulations will be more
non-equilibrium susceptibilities as the QAQMC and NEQMC complex than the QAQMC approach because of the need to
methods. We expect QAQMC to be superior to time-evolvingsample integrals, but not much more so than the NEQMC
GFQMC, because of its better control over measured symmethod. It should be relatively easy to adapt the RQMC
metric and asymmetric expectation values and fully redlize method with an evolving Hamiltonian in this formulation of
importance sampling. the time-evolution.

Some variants of GFQMC use true importance sampling, Finally, we point out that in principle one can also carry
e.g., the Reptation QMC (RQMC) methdt,which also out aone-way evolutions with the QAQMC algorithm. In-
avoids mixed estimators. The configuration space and sanstead of starting with the& = )\, eigenstate at both);,| and
pling in the QAQMC method bears some similarities with |/r) and then projecting them to the= )\, eigenstate us-
RQMC, recent lattice versions of which also use SSE-indpire ing two sequences of the form Edp)( one can makédy |
updating scheme®.However, to our knowledge, imaginary- correspond to\, and let it evolve toy)z) corresponding to
time evolving Hamiltonians have not been considered in\y; with only a single operator sequence of lendgth In
RQMC and in other related variants of GFQMC, nor has rolethe case of the TFIM Eq4@), the obvious choice is then to
that played by the velocity when crossing the quantum alitic evolve froms = 0 to s = 1 (the classical Ising model), so
point been stressed. This has so far been our focus in applirat both edge states are trivial. All our conclusions reey
cations of the QAQMC and NEQMC methods. In principle the definition of the velocity and applicability of scalingrin
one could also implement the ideas of time-evolution simila remain valid in this one-way QAQMC. Results demonstrat-
to QAQMC within the RQMC approach. ing this in the case of the 1D TFIM are sown in F&. We

We also stress that we have here not focused on optimizanticipate that this approach may be better than the two-way
tion. Previous works on quantum annealing within QMC evolution in some cases, but we have not yet compared the
schemes have typically focused on their abilities to optémi  two approaches extensively.
difficult classical problems. While the QAQMC may poten-
tially also offer some opportunities in this direction, qari-

mary interest in the method is to use it to extract challeggin Acknowledgments
dynamical information under various circumstances. Améce
theoretical analysis of optimization within sign-problérae We acknowledge collaboration with Claudia De Grandi in

QMC approaché8 is not directly applicable to the QAQMC  a related work and would like to thank Mike Kolodrubetz for
and NEQMC approaches but generalizations should be possjaluable comments. This work was supported by the NSF
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The QAQMC and NEQMC methods provide correct real-
izations of quantum annealing in imaginary time. Besides
their ability to study dynamic scaling, with exponents iden
tical to those in real-time Schrodinger dynamids,will be
interesting to explore what other aspects of real-time dyna
ics can be extracted with these methods. In particularr thei
applicability to quantum glasses, of interest in the congdx
quantum adiabatic computihgas well as in condensed mat-
ter physics, deserves further studies.
The ability of the QAQMC to produce results for a whole
evolution path in a single run can in principle also be calrie
over to the conventional Schrodinger imaginary-time evol
tion with U (7) in Eq. @). By “slicing” the time evolution into
K successive evolutions over a time-segm&nt

U(r) = 7f[lTTexp [—/

Tn
dTH[NT)]| , (66)
Tn—1

wherer,, = n/A,, one can evaluate matrix elements anal-
ogous to Eqg. ) by inserting the operator of interest at
any point within the product of time-slice operators in
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FIG. 9: (Color online) One-way evolution € [0, 1] with QAQMC
for the 1D TFIM. Lower panel: The susceptibility EGS). Upper
panel: the rescaled susceptibility E§7). Each full curve corre-

sponding to a given chain length was obtained in a single run.

The constant for the critical-velocity condition E&1J was held at
43/80.
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