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ABSTRACT 

Numerical simulations of previous plane shock wave measurements on highly oriented pyrolytic 

graphite (HOPG), shocked to four peak stresses ranging from 27 – 50 GPa, are presented to 

address a long-standing question:  When is the diamond phase formed in the shock-compressed 

graphite to diamond transition?  A multi-phase material description was developed to simulate 

measured wave profiles in shocked HOPG.  Our results showed good agreement with the 

measured profiles for all four peak stresses and demonstrated the following:  transformation 

completion in less than 10 nanoseconds; the density and stiffness of the high pressure phase 

match that of cubic diamond; and the mechanical response of the diamond phase is nonlinear 

elastic. 
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I. INTRODUCTION 

 

Since the recovery of cubic diamond from shock-compressed graphite powders was first 

reported by DeCarli and Jamieson in 1961,1 the shock-induced graphite to diamond phase 

transformation has been the subject of considerable scientific and technological interest.2-22  A 

good understanding of this particular transition is important for gaining insight into shock-

induced phase transformations,2 study of meteorite impacts,3,4 technological applications 

involving the synthesis of industrial diamonds,5,6 and for linking the shock work to static high 

pressure – high temperature (HP-HT) studies.7  Although gem quality diamonds can now be 

fabricated routinely using chemical vapor deposition (CVD) approaches,23,24 a detailed 

understanding of the shock-induced graphite to diamond transformation remains an important 

scientific challenge. 

Based on early experiments8-16 on shocked graphite powders, several reconstructive 

transformation mechanisms were proposed.13,14,16,17  However, the lack of time-resolved 

measurements left an important question unanswered:  What is the time-scale for the formation 

of the diamond phase when graphite is shock-compressed? 

 Erskine and Nellis’ efforts18,19 to address this question, through time-resolved wave 

profile measurements on highly-ordered pyrolytic graphite (HOPG) shocked in plate impact 

experiments to 27 – 50 GPa stresses, are noteworthy.  These measurements – the first of their 

kind for shocked graphite – revealed a clean, two-wave structure, with a transformation stress of 

20 GPa, that indicated a rapid (<10 ns) phase transformation.  Due to the fast transformation rate 

and the low temperature estimated for shocked HOPG, the transformation mechanism was 

described as martensitic.  However, based on a comparison of the measured second phase 

Hugoniot (or endstates) for shocked HOPG with a diamond Hugoniot extrapolated from high 

stress (>100 GPa) data,25 they inferred that the high pressure phase was 5% less dense than the 

expected diamond phase.19  This inference raises the question:  What is the nature of the high 

pressure phase when HOPG is shocked above the transition stress?  Although additional attempts 

to analyze the measured wave profiles were made using different theoretical approaches and 

different material modeling assumptions,20-22 none provided quantitative agreement with the 

experimental results. 

 Since the cubic diamond phase is obtained in recovery experiments on shocked graphite 

(non-planar shock wave loading), the Erskine and Nellis19 work raises additional questions:  Is 
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non-planar loading required to achieve the cubic diamond phase; and/or is it the longer time 

scale in recovery experiments that permits the transformation to proceed to the cubic diamond 

phase? 

 The previous efforts for analyzing shocked HOPG19,20-22 were hindered by a scarcity of 

information regarding the mechanical response of the high pressure phase.  In particular, the lack 

of experimental results for shock-compressed diamond at similar stresses makes it difficult to 

undertake detailed comparisons between the high pressure phase results and the diamond results.  

This need was addressed recently;26,27 high quality wave profiles were measured for diamond 

single crystals shocked to 50 – 120 GPa in plate impact experiments.  These results have 

provided the third-order elastic constants27 and the elastic limit for shocked diamond.26  Now that 

the shock response of cubic diamond is available26,27 at stresses comparable to the endstates 

measured in shocked HOPG,18,19 a comprehensive and detailed analysis of the measured wave 

profiles is in order. 

 Here, we present numerical simulations of the wave profiles measured in HOPG shocked 

to 27 – 50 GPa19 to provide new insight into the transformation time-scales and into the nature of 

the high pressure phase.  Numerical simulations enable a detailed analysis of the measured wave 

profiles to incorporate the high pressure phase response and to include wave reflections due to 

impedance mismatches at the shocked HOPG boundaries. 

 

II. COMPUTATIONAL METHODS 

 

Our simulations used a multi-phase material modeling approach in which the high 

pressure phase of shocked HOPG was described using the recently reported nonlinear elastic 

response27 of cubic diamond.  Our modeling approach incorporated the usual separation28 of the 

thermo-mechanical response into the mean stress response and the deviatoric stress response.   

 

A. Single phase material description 

The mean stress response for each phase was determined by constructing the Helmholtz 

potential29 ( ),F T V  from the isothermal compression curve at room temperature, the specific 

heat at constant volume ( ),vc T V , and the Grüneisen parameter 0 0Γ = Γ V V .  The isothermal 

compression curve was of the Murnaghan form30 
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where 0V  is the initial specific volume, 0B  is the isothermal bulk modulus at ambient pressure 

and ′B  is its pressure derivative.  To provide a good match to published data for graphite and 
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where A and B are constants and ( )x V Tθ= .  To provide thermodynamic consistency, we 
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.        (3) 

The deviatoric elastic response and the mechanical strength for each phase were 

described by the isentropic shear modulus G and the yield stress Y, respectively.  The shear 

modulus was determined using 

( ) 2
0 1 2= + +G P G G P G P  .        (4) 

Due to a lack of information about the response of HOPG and the high pressure phase to shock 

wave compression, the mechanical strength was described using the simplest physically 

reasonable model:  we used a von Mises yield criterion31 in which the yield stress Y, defined as 

the elastic limit under uniaxial stress loading conditions, was assumed to be constant. 

 Model parameters for each phase were determined by fitting available experimental data 

for graphite and cubic diamond and are listed in Table I.  For the graphite phase, parameters for 

Eq. (1) were determined using available isothermal compression data,32-35 together with the 

measured shock wave profiles.19  For the specific heat, the constants A, B and 0θ  were 

determined by fitting the available heat capacity data36 using Eqs. (2) and (3).  The Grüneisen 

parameter at ambient pressure 0Γ  was taken from Ref. 37.  Because the shock wave 

compression considered here was oriented approximately normal to the basal planes of the 

graphite lattice,19 the shocked HOPG was assumed to possess significant strength (i.e. 0≠Y ).  

Also, the shear modulus was expected to be significant at high pressures due to increased 
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interatomic interactions across the basal planes.  Therefore, values for Y and 0=G G  were 

chosen to provide a good match to the measured wave profiles.19  

For the high pressure phase, the mean stress and the deviatoric elastic responses were 

determined using the second- and third-order elastic constants of cubic diamond,27 as described 

in the Appendix.  The yield stress for the high pressure phase was modeled using two bounding 

cases:  For Model A, a hydrodynamic response (Y = 0) was assumed.  For Model B, the yield 

stress was chosen to be sufficiently large to ensure that the deviatoric response (for the stress 

range of interest) was purely nonlinear elastic.  To complete the thermo-mechanical description, 

the parameters A, B and 0θ  for the specific heat model were determined by fitting available 

experimental data38 using Eqs. (2) and (3).  The Grüneisen parameter 0Γ  for diamond was taken 

from Ref. 37. 

 

B. Multi-phase modeling framework  

The material models for the individual phases were incorporated into the multi-phase 

modeling framework using appropriate mixture rules.  For extensive variables, such as volume, 

the lever rule29 gives 

 ( ) 1 21 λ λ= − +m mV V V  ,        (5) 

where 1V  and 2V  are the volumes of phases 1 and 2, respectively, and λm  is the mass fraction of 

phase 2.  The shear modulus and yield stress of the mixture were determined using 

( )
1 2

11 V V
G G G

λ λ−
= +          (6) 

and 

( ) 1 21 λ λ= − +V VY Y Y  ,        (7) 

respectively, where 2λ λ=V mV V  is the volume fraction of phase 2.  Equation (6) is consistent 

with the assumption of stress equilibrium between the two phases.39 

 Because the shock-induced graphite-diamond transition occurs at stresses far from the 

equilibrium phase boundary40 (defined by equality of the Gibbs free energies for the two phases), 

the transformation rate was determined using a stress criterion, 

( )1 max       λ λ λ= − >m m x trC P P  

0                            λ = <m x trP P  ,       (8) 



 

6 
 

where xP  is the longitudinal stress (positive in compression), trP  is the transition threshold stress 

and 1C  is a constant.  To avoid numerical instabilities, the transformation rate was constrained to 

increase smoothly from zero by assuming 

 [ ]max 2 xλ = − trC P P  ,         (9) 

where max 1λ ≤ .  The constant 2C  was chosen to ensure that the transformation proceeded to 

completion for all of the calculated wave profiles.  trP  was adjusted slightly to match each 

measured wave profile separately.  Model parameters for the multi-phase framework are listed in 

Table II.   

 

C. Calculation of wave profiles 

The above multi-phase modeling framework was incorporated into a one-dimensional 

wave propagation code41 that solves the appropriate governing equations using the finite-

difference, artificial viscosity approach.28  Energy dissipation arising from the artificial viscosity 

was included in the calculations as entropy production, in keeping with the inherent 

irreversibility of shock wave compression.  Also, work due to inelastic deformation is dissipated 

primarily as heat and was included as an additional source of entropy. 

 

III. RESULTS 

 

 Using the above material descriptions, the wave profiles reported in Ref. 19 were 

numerically simulated using the experimental configuration shown in Fig. 1, in which a copper 

plate impacted an HOPG sample backed by a LiF optical window.  Also, shown is the time – 

distance plot to indicate the propagating waves, including the reflection/transmission at the 

HOPG/LiF interface.  For comparisons with published measurements,19 simulations were 

performed for peak stresses of 27, 35, 41 and 50 GPa; and particle velocity profiles were 

calculated at the HOPG/LiF interface.  In these calculations, copper and LiF were modeled using 

their known shock responses.42  

Because wave propagation features in shocked HOPG were discussed previously,19 only 

a brief summary is provided here.  Upon impact, shock waves propagate from the impact surface 

into the HOPG sample and into the copper impactor (Fig. 1).  For impact stresses larger than the 
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transformation stress ( )trP , the shock wave in the HOPG splits into two waves due to the volume 

change associated with the transformation.  The first wave brings the ambient HOPG to trP  

(State 1 in Fig. 1) and the second wave brings the transformed HOPG to the high stress endstate 

(State 2).  The dashed arrow in Fig. 1 denotes a small, slow-moving reflected wave that results 

from the slight impedance mismatch at the HOPG/LiF interface.  In contrast, the large volume 

change associated with the transformation wave results in a large compressive wave reflection at 

the HOPG/LiF interface that takes the transformed HOPG from State 2 to State 3.  The 

experimentally measured profiles at the HOPG/LiF interface correspond to States 1′ and/or 3, 

depending on the peak stress. 

As shown in Fig. 2(a-c), a clean two-wave structure, with a transition stress of ~20 GPa, 

was experimentally observed19 for HOPG shocked to 27, 35, and 41 GPa,.  For sufficiently large 

impact stresses, the transformation is overdriven (the second wave speed exceeds the first wave 

speed) and State 1 is not observed.  Instead, a single wave takes the HOPG from the ambient 

state to the high pressure phase or State 2 (State 3 in the measured profile) directly.  The 

measured wave profile19 for HOPG shocked to 50 GPa provides a case in point, as shown in Fig. 

2(d).  As noted above, States 1′ and 3 represent the states that are experimentally measured. 

Comparisons of the calculated results with the measured wave profiles, shown in Fig. 2, 

reveal that the diamond model with no mechanical strength (Model A) provides a poor match to 

the data.  Significant differences are observed for both the second wave speed and the peak 

particle velocity.  Thus, the high pressure phase of shocked HOPG cannot be reconciled with a 

hydrodynamic material description of diamond. 

In contrast, calculations performed using the nonlinear elastic model for diamond (Model 

B) provide a good match to all the measured wave profiles, including the peak particle velocity, 

as shown in Fig. 2.  The small feature appearing in the calculated wave profiles at later times is a 

wave reverberation in the high pressure phase (see Fig. 1).  The calculations show that the 

shocked HOPG is fully transformed within the risetime of the transformation wave (<10 ns).  

Therefore, because shock compression from State 2 to State 3 (Fig. 1) takes place in HOPG that 

is fully transformed, the measured peak particle velocity contains key information regarding the 

response of the high pressure phase.  Hence, the good match between our calculations using 

Model B and the measured peak particle velocity provides important insight regarding the high 

pressure phase, as discussed next by considering the shock endstates. 
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IV. ANALYSIS AND DISCUSSION 

 

Stress – volume – temperature states for all four wave profiles were determined from the 

calculations and are shown in Table III.  In Fig. 3, the calculated stresses and volumes for States 

1 and 3 are compared with those determined experimentally.19  For visual clarity, results for 

State 2 are not shown in the figure.  The clean two-wave structure observed in the experiments 

enabled Erskine and Nellis to accurately determine the stress-volume states using well-

established wave analysis methods.19 

Below the transformation stress, stress-volume states calculated using Models A and B 

agree well with each other and with the experimental results for State 1.  This is expected 

because the same model for the graphite phase was used in both sets of calculations.  Since no 

Hugoniot data have been published for HOPG shocked to stresses below the phase transition, the 

measured Hugoniot curve for partially-oriented pyrolytic graphite15 is shown for comparison.  

The good overall agreement observed for the low pressure phase suggests that, below 20 GPa, 

the shock response of various graphites is comparable. However, low stress data on shocked 

HOPG are needed to confirm this inference. 

Above the transition, stress – volume states calculated using Model A (hydrodynamic 

diamond model) do not match the experimental results19 for shocked HOPG.  However, they 

agree with the diamond Hugoniot25 extrapolated from data at significantly higher stresses (>100 

GPa).  

In contrast, stresses and volumes calculated using Model B (nonlinear elastic diamond 

response) demonstrate an excellent match to the experimental results19 for States 2 (not shown) 

and 3, consistent with the wave profile results shown in Fig. 2.  Furthermore, Fig. 3 shows that 

the calculated and the experimental stress – volume states, for the high pressure phase, are in 

good agreement with the nonlinear elastic stress – volume curve for shock-compressed diamond.  

The elastic diamond curve was determined from the elastic constants provided in Ref. 27, using 

the procedure described in the Appendix.   

The results in Fig. 3 provide an explanation for the differences reported previously19 

between the experimental stress – volume states for the high pressure phase and the extrapolated 

diamond Hugoniot:25  The extrapolated diamond Hugoniot constitutes the hydrodynamic 

diamond response, whereas the experimental stress – volume states (and the measured wave 
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profiles in Fig. 2) are consistent with the nonlinear elastic diamond response.  Hence, the 

previous suggestion19 that shocked HOPG transforms to a diamond-like phase having a density 

5% less than diamond is neither needed nor supported by our calculations.  Instead, our 

calculations demonstrate that the stiffness and density of the high pressure phase of shocked 

HOPG are entirely consistent with the experimentally determined26,27 elastic response of shock-

compressed cubic diamond. 

The present results show that shocked HOPG transforms to diamond in less than 10 

nanoseconds and the mechanical response of the diamond formed on this time scale is nonlinear 

elastic.  The rapid transformation in shocked HOPG is in contrast to the longer time scales 

expected for the proposed reconstructive transformation mechanisms associated with shocked 

graphite powders.16,43 

 

V. CONCLUSIONS 

 

 A rigorous analysis of the measured plane wave profiles19 for HOPG shocked to 27 – 50 

GPa has led to new insight into the shock-induced graphite to diamond transformation.  Using a 

multi-phase material model for HOPG/diamond that incorporates mechanical strength, our 

numerical simulations show that shocked HOPG transforms to a high pressure phase having 

stiffness and density that are consistent with cubic diamond, in contrast to previous 

suggestions.19  Additionally, our calculations show that the diamond phase formed responds as a 

nonlinear elastic solid, consistent with recent experimental results for shocked diamond single 

crystals.26,27  

The work described here has addressed long-standing scientific questions regarding the 

real time formation and mechanical response of the diamond phase in the shock-induced graphite 

to diamond transformation.  However, our findings have also raised new and interesting 

questions:  Are the findings reported here unique to HOPG, and what are the precise atomistic 

mechanisms that result in the HOPG-to-diamond transformation on such short time scales?  

Answers to these questions will require well characterized shock wave experiments on graphite 

samples having different microstructures and polycrystalline textures.  Regarding microscopic 

mechanisms, wave profile measurements and analyses reported here will need to be augmented 

with real-time x-ray diffraction measurements44,45 and related analyses in shock compression 

experiments. Such developments are now underway. 
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APPENDIX:  ELASTIC RESPONSE OF HIGH PRESSURE PHASE OF SHOCKED 

HOPG 

 

Model parameters describing the mean stress response and the deviatoric elastic response 

of polycrystalline cubic diamond were determined from the measured second-order46 and third-

order27 isentropic elastic constants using the following orientational averaging procedure.  The 

Cauchy stresses σ ′i  for uniaxial elastic strain along an arbitrary crystal direction were 

determined using 

20
1 11 1 111 1

1
2

ρσ η η
ρ

⎡ ⎤′ ′ ′ ′ ′= +⎢ ⎥⎣ ⎦
C C         (10) 

2
2 12 1 112 1

0

1
2

ρσ η η
ρ

⎡ ⎤′ ′ ′ ′ ′= +⎢ ⎥⎣ ⎦
C C         (11) 

2
3 13 1 113 1

0

1
2

ρσ η η
ρ

⎡ ⎤′ ′ ′ ′ ′= +⎢ ⎥⎣ ⎦
C C  ,       (12) 

where 0ρ  is the initial density, ρ  is the density in the strained state, ′ijC  and ′ijkC  are the 

second- and third-order elastic constants, and ( )2
1 0 1 2η ρ ρ⎡ ⎤′ = −⎢ ⎥⎣ ⎦

 is the uniaxial Lagrangian 

strain.  In Eqs. (10) – (12), the contracted Voigt notation47 has been used for the tensor indices 

and the primes indicate that the tensor components are expressed in a coordinate system aligned 

along the direction of uniaxial strain.  Equations (10) – (12) were evaluated for uniaxial strains 

along a set of directions that provided a sampling of all possible crystal orientations.  The stress 

components determined from these calculations were averaged over all crystal directions to 

obtain stress-density curves for the longitudinal and lateral stresses.  The mean stress curve was 
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determined using ( )1 2 3 3σ σ σ σ= + +m , where σ i  are the orientationally-averaged stress 

components. 

Strictly speaking, the above stress-density relationships are isentropic loading curves.  

However, differences between isentropic and isothermal loading conditions are negligible for 

elastic compression of diamond to stresses less than 100 GPa.  Therefore, 0B  and ′B  for 

diamond were determined by fitting the averaged mean stress curve using Eq. (1).  

The shear modulus ( )G P  was determined using the averaged longitudinal and mean 

stress curves determined above, together with the relationship31 

( )3
4

= −G L B  ,         (13) 

where L is the longitudinal elastic modulus.  Shear modulus results determined using Eq. (13) 

were fit using Eq. (4). 
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Table I.  Model parameters for graphite and cubic diamond phases. 

Parameter Graphite 

Model 

Diamond  

Model A 

Diamond  

Model B 

V0 (cc/g) 0.442 0.285 0.285 

A (J/g-K) 0.561 0.193 0.193 

B (J/g-K) 1.516 1.884 1.884 

θ0 (K) 1715 1500 1500 

Γ0 0.35 1.15 1.15 

B0 (GPa) 38.0 442 442 

B′ 7.9 4.438 4.438 

G0 (GPa) 27 540 540 

G1 0 4.156 4.156 

G2 (GPa-1) 0 -0.00553 -0.00553 

Y (GPa) 1.0 0 49.0 

 

 

 

 

Table II.  Parameters for multi-phase model. 

Parameter  

C1 (s-1) 5.0x108 

C2 (GPa-1) 0.3 

Ptr (GPa) 19.0 – 21.5 
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Table III.  Calculated longitudinal stress, volume, and temperature for States 1 – 3 in shocked 

HOPG. 

Expt. No. 

(Ref. 19) 

Long. stress 

– Model A 

(GPa) 

Volume – 

Model A 

(cc/g) 

Temp. – 

Model A 

(K) 

Long. stress 

– Model B 

(GPa) 

Volume – 

Model B 

(cc/g) 

Temp. – 

Model B 

(K) 

gF (State 1) 19.0 0.3625 600 19.0 0.3625 600 

gG (State 1) 20.3 0.3600 620 20.3 0.3600 620 

gD (State 1) 21.5 0.3577 645 21.5 0.3578 645 

gE (State 1) N/A N/A N/A N/A N/A N/A 

       

gF (State 2) 25.7 0.2725 1020 26.5 0.2856 900 

gG (State 2) 33.4 0.2696 1260 34.7 0.2816 1170 

gD (State 2) 39.5 0.2673 1440 41.2 0.2787 1380 

gE (State 2) 47.8 0.2645 1700 49.8 0.2756 1760 

       

gF (State 3) 35.8 0.2676 1040 36.7 0.2833 940 

gG (State 3) 45.3 0.2642 1280 46.8 0.2790 1230 

gD (State 3) 52.3 0.2619 1480 53.6 0.2762 1430 

gE (State 3) 61.0 0.2592 1740 62.7 0.2731 1810 
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FIGURE CAPTIONS 

 

FIG. 1 (color online). (a) Experimental configuration (Ref. 19) and (b) time versus distance 

diagram for wave propagation simulations.  The numbers indicate endstates for shock wave 

compression; 1′ and 3 correspond to the measured states. 

 

FIG. 2 (color online). Particle velocity histories at the HOPG/LiF interface for peak stresses of 

(a) 27 GPa, (b) 35 GPa, (c) 41 GPa, and (d) 50 GPa.  Measured histories are from Ref. 19.  

Model A:  hydrodynamic diamond model (no mechanical strength).  Model B:  nonlinear elastic 

diamond model.  Time is relative to the moment of impact. 

 

FIG. 3 (color online). Stress – volume endstates for shocked HOPG.  The black circles are 

endstates determined from the measured wave profiles (Ref. 19).  The green triangles are 

endstates calculated using Model A (hydrodynamic diamond model).  The red squares are 

endstates calculated using Model B (nonlinear elastic diamond model).  States 1 and 3 are 

defined in Fig. 1.  The solid curve is the measured Hugoniot for pyrolytic graphite (not HOPG) 

(Ref. 15).  The dotted curve is the diamond Hugoniot extrapolated from higher stresses (>100 

GPa) (Ref. 25).  The dashed curve is the longitudinal elastic response of diamond, determined 

using the second- and third-order elastic constants (Ref. 27) (see Appendix). 
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Figure 1 – Winey, Gupta – PRB 
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Figure 2 – Winey, Gupta – PRB 
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Figure 3 – Winey, Gupta – PRB 


