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We introduce and study a class of anyon models that are aahganeralization of Ising anyons and Majorana
fermion zero modes. These models combine an Ising anyoorseith a sector associated withO(m )2
Chern-Simons theory. We show how they can arise in a sim@aaso for electron fractionalization and
give a complete account of their quasiparticles types,ofusules, and braiding. We show that the image
of the braid group is finite for a collection @f fundamental quasiparticles and is a proper subgroup of the
metaplectic representation 8p(2n—2,F,,) x H(2n—2,F,,), whereSp(2n— 2, F,,) is the symplectic group
over the finite fieldF,, and H(2n — 2,F,,) is the extra special group (also called {f2& — 1)-dimensional
Heisenberg group) ovéf,,. Moreover, the braiding of fundamental quasiparticles loiovd with a restricted
set of measurements can be efficiently simulated clasgicdibwever, computing the resulting of braiding a
certain type of composite quasiparticle followed by fusioto the identity is# P-hard. It is not universal for
guantum computation because it has a finite braid group imége is a rare example of a topological phase that
is not universal for quantum computation through braiding feevertheless hag P-hard link invariants. We
argue that our models are closely related to recent analiysbisg non-Abelian anyonic properties for defects
in quantum Hall systems, generalizing Majorana zero madesiasi-1D systems.

PACS numbers:

I. INTRODUCTION then the system is in the Moore-Read statke anti-Pfaffian
staté®, or a Bonderson-Slingerlafftistate descended from
one of these. But suppose, instead, that the bosons form a
more complex topological phase of their owR, Then the

- . _ system will support quasiparticles that are combinatiohs o
superc_onducnvny and its analogs’. - They eXh'b.'t many - tnose of the Ising topological quantum field theory (TQFT)
(and, in some cases, nearly all) of the properties of ISInEiand those of ", subjectto the condition that they braid trivially

anyons_and, therefo_re, may prove useful for fault-tolgranbvith electrons. In the phases analyzed in this papes,asso-
topological quantum information processtg’. However, it ... WithSO(m)» Chern-Simons theory, where — 3,5, 7

e avaah oty i, e bolve, s generalizaion t ay o i The
: " ctore, they d SO(m)2 TQFTs have several very interesting properties. All
putation on!y if braiding is supplel”r_]ented by measurement 1hese theories have a quasiparticle that is a boson. We
at mte_rmedl_ate stages of computations and _by/& phase identify this boson withZ through a non-Abelian analog of
gate, in V.Vh'gh case they are capable of universal quantui, otachmeri-34 In addition, these theories have a ‘fun-
computatio”®. While it is likely that the.fo.rmer can be per- damental’ quasiparticle, which we call, that acts as a vor-
formed.accu.rately, t_he latter appears difficult, althouyre tex for theZ boson.X quasiparticles are non-Abelian anyons
are various interesting concrete propo$afs. Moreover, a with quantum dimensiog/m. We will call themmetaplectic
non-topologlcal |mplement§t|on Of.thﬁ./s .p.hase gate re- anyons, for reasons that we will explain. When two parti-
quires error correction, which enta|ls_ significant ovedtéa cles are fused, the result can either be the vacuum or one of
Therefor_e, physical systems supporting anyons that are Cap; set of quasiparticles which we caf}, with: = 1,2,...,r
ble of universal quantum computation with braiding afgrfé andr = (m — 1)/2. TheY, particles,have quan7tu’m di7m,en-

; 0 = . f
(best-case §cenar|0) or braiding and_ measureth€next- sion2, but this does not mean that they are trivial; they are also
best scenario) would be a very attractive platform for quant non-Abelian anyons. Finally, there is a particlé, which re-

computation. sults whenX and Z are fused. Only a subset of the tensor
In this paper, we introduce a sequence of topologicaproduct of the quasiparticles of th#O(m), TQFT and the
phases of electrons which generalize physical modelsmglsi quasiparticled, o, v of the Ising TQFT satisfy the constraint
anyons. Suppose that an electron fractionalizes into d4esgin  that they braid trivially with the electro®.; = ¢ - Z, as we
neutral fermiony> and a charged spinful bosan. Further,  will describe in detail. We call the resulting topologichlgses
suppose that the spinless neutral fermion forms-ap paired  metaplectic-Majorana TQFTs.
superfluid state. If the bosons form a trivial gapped stagn t
the system is in the Ising anyon state, as in Kitaev's honey- A collection of N quasiparticles of typ& at fixed positions
comb lattice modél (If the bosons condense, then the sys-has am y-dimensional degenerate state space insthém ),
tem is in a superconducting state which is a quasi-topotbgic TQFT with ny ~ mV/2. Braiding these quasiparticles gen-
phase with some of the properties of Ising any'gfl$ If the  erates unitary transformationsif(n v ). These unitary trans-
bosons form a spin-polarized fractional quantum Hall stateformations form a finite group, as in the case of Ising anyons,

Majorana zero modes can occur in a wide variety of phys
ical systems linked by the common thread of chpakave
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but unlike Fibonacci anyons. Therefore, it is not possible t  For later convenience, we fix notation 80 (m) represen-
make a universal quantum computer purely by braidingar-  tations. We will often writem in the formm = 2r + 1. We
ticles. We show that braiding can be efficiently simulateéby use the standard notation that, A, ..., A\, are the funda-
classical computer by showing that braiding operatiorisfyat mental weights ofSO(m). The representations with high-
a generalization of the Gottesman-Knill theof&if. Indeed,  est weightA;, A2, A3, ..., A\._1,2), correspond to the rep-
the link invariants computed by these patrticles in a brgdin resentations o5O(m) on, respectively, vectors; two-index
process is known to be classically computable in polynomiabnti-symmetric tensors; three-index anti-symmetric ¢ests
time. However, th&’; particles — which one might naively ex- ...; (r — 1)-index anti-symmetric tensors; ameindex anti-
pect to be trivial since they have integer quantum dimerssionsymmetric tensors (with all indices running franto m). The
— compute a link invariant (the Kauffman polynonifzt spe-  representation with highest weighy; is the representation of
cial points) that isit P-hard®®. Therefore, braiding; particles  SO(m) on two-index symmetric traceless tensors. The repre-
cannot be efficiently simulated classically. This does neam  sentation with highest weight, is the spinor representation
that we can solve#P-hard problems since that would entail of SO(m).
measuring the amplitude for a process with arbitrary aayura  We first consider the following representation of the elec-
Indeed, as we show, the most straightforward approach to ertron annihilation operator:
coding quantum information ilv; particles leads to a compu-
. .. . . el _ 1 2
tational model that can be efficiently simulated classjcaihd U (z) = f(z) Capxa(®)xa() 1)
the image of the braid group &f particles is finite. Neverthe- . ) i i
less, thei P-hardness of braidingj; particles hints that meta- Here, f, x,, andxj are fermions andv, § = 1,2,...,2".
plectic anyons and metaplectic-Majorana anyons may have«s iS the intertwiner between two copies of the spinor rep-
computational power beyond a classical computer, in spite géSentation o50(m) and the trivial representation. This ex-
the fact that they cannot serve as a universal quantum conf/€ssion for the electron is highly redundant, as is refteicte
pute. In this respect, they may be similar to the linear aptic Its U(1) x O(m) gauge symmetry. The'(1) gauge transfor-
model of Ref. 39. mation Is:
We will argue that our topological phase of metaplectic 2i0 1,2 01,2
anyons is closely related to a set of recently proposed two- F@) = e f(2), xa™(2) = T xa" () (2)
dimensiond® and quasi-one-dimensional systéfné’. In  while theO(m) gauge transformation is:
these systems, there are defects with interesting toprabgi
properties. In Ref. 40, they are dislocations in a fractiona L2 (z) — Oup () X};Q(x) ()
guantum Hall state in a Chern number 2 band. In Refs. 41-43,
the defects live at the edge of a fractional topologicallasu ~ We now suppose that the fermiorfiscondense in @ + ip
or the edge between two = 1/m quantum Hall states that superconducting state while the fermiops? are in gapped
are oppositely spin-polarized. There are two types of gdppeinsulating states in which they fill a band with Chern num-
edges, and a defect lives at the point-like boundary betweeber equal tal. Integrating out the fermiong.2, we generate
the two types of gapped edges, generalizingithe- 1 case, a Chern-Simons term at levelfor the SO(m) gauge field.
in which they are Majorana zero modes. A form of braiding(Note that we could, alternatively, consider a represertat
can be defined for the defects in these models. We show thaf the electron operator in which, = x? but these fermions
this braiding operation is projectively equal to thatoof X  are in a gapped insulating state in which they fill a band with
quasiparticles in the metaplectic-Majorana TQFT. HowgverChern number equal t2.) Meanwhile, the excitations of a
there are important differences between metaplectic-Ma@  p+ ip superconductor (coupled t@a- 1-D U (1) gauge field,
anyons and the defects in these models, as we will discuss. which eliminates the Goldstone boson by the Anderson-Higgs
We also note that related topological phases have been comechanism) are those of the Ising TQFT. Naively, the excita-
structed in Refs. 45-47. These topological phases have sintions of this phase are simply those $0(m). (which we
ilar anyons with similar quantum dimensions and topologicaWwill discuss in detail in the next section) tensored withso
spins, but it is not clear what the precise relation is to ourof the Ising TQFT. However, a vortex in thet- ip supercon-
phases. ductor of f-pairs will be accompanied with one half of a flux
quantum in the Chern insulating states\@f?. This flux will
produce ayl? quasiparticle, carrying the spinor representa-
Il. SLAVE PARTICLE FORMULATIONS tion of SO(m). Thus, ac quasiparticle in the Ising sector
of the theory is accompanied by a quasiparticle in the spinor
representation a§O(m).
We now consider a (related and, possibly, dual) slave
rmion description of an electron system in which we write
the electron annihilation operator as:

In this section, we give two slave particle descriptions of
electronic systems in the topological phases that we oﬁ;scuqe
in the remainder of this paper. The first is a ‘parton’ mé@lel
in which the electron operator is rewritten in terms of pasto
each of which condenses in a simpler topological phase. The U (z) = f(2) za(a) (4)
second is a non-Abelian analog of the flux attachment opera-
tion that transforms electrons into ‘composite bos&® or  where f is a neutral, spinless fermion anrg is a chargez,
‘composite fermiong?-34 spin-1/2 boson, andv =7, |.
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We now rewrite the fields,, in terms of auxiliary fields We do not have a microscopic physical model for
in a non-Abelian analog of the flux attachment operation thametaplectic-Majorana anyons. They are related to the rsodel
transforms electrons into ‘composite bosdfstor ‘compos-  of Refs. 40-44 but are not precisely the same, as we explain in
ite fermions®2-34 This is simply a rewriting of the model, Section IX. In addition, metaplectic anyons may be realized
and the original model and the rewritten model would haven the v = 8/3 fractional quantum Hall stat2if it is related
the same solution if we could solve them exactly. Howeverto SU(2)s = SO(3)a.
this re-writing suggests an approximation that we might not
otherwise consider.

We replace the fields, by auxiliary bosonsZ,, coupled to I1l. PARTICLE TYPES, TOPOLOGICAL SPINS, AND
two SO(m); Chern-Simons gauge fields!, a®. The fields FUSION RULES
Z,, aremxm matrices that transform und8O (m) x SO(m)
asZy — 097:07 andZ; — 0% 7,0, i.e. they transform in
the fundamental representation of b6t (m)s. AnSO(m),
Chern-Simons gauge field would makg, into a fermion.
Therefore, two such gauge fields lea¥g a boson. In terms
of these fields, the Lagrangian then takes the form

We introduce the following notation for these quasipar-
ticles. The particles carryingO(m) representations\,
and \; + A, will be called X and X’. The particles car-
rying representations\i, As, ..., \._1,2\,. will be called
Y1,Ys, ..., Y1, Y,.. Finally, the particle carryin@\; will

‘o L ) 1 ) L ) 9 be called”Z. The particle carrying the trivial representation of

L=2 (“90 —ap — ao) ZH'E |(“90 —a; = ai) ZT‘ SO(m) is equivalent to the vacuum from a topological point
1 ) of view. We note that the special case = 3 is equivalent

+ 7] (i00 — af + a3) Z, + GTo |(i00 — aj + af) Z,| to SU(2)4, and theX, Y7, X', Z particles correspond to spins

1,32
27 DR)
+ 1 (i0 — o) f + QL (100 + ) f|2 The topological propertie_s of the metaplectic TQFT are
my as follows®5L The topological sping, = 2™« of these

+V(Za, f, fT)+£CS(a1)+£CS(a2) (5) particles are given byi; = 0,hz = 1,hx = g, hx =

r+4 _ j(m—j) i ; .
The relation between the original fields and the new fields s+ /'v; = ~g5 - Their fusion rules are:

Z, is:

. . X-X =1 Y,;, X -X'=7 Y;,
2(z) = Pe il Zy(x) Petlx +zi: +;
z(x) = Petlxa 7, (z) Peilen (6) X-Z =X, Z-Y;=Y;,
_ / L7
whereP denotes path-ordering. We now assume haton- f,( }}:Z _ 1),(‘+|X+’Y ( z-Z )I7f0ri7éj
; R % i — i—j min(i+j,m—i—j) »
denses, thereby breakirfff)(m) x SO(m) to the diagonal Y Vi = T+ 7+ Yoo mean )

SO(m). The Meissner effect due t&, forcesa, = a,
which we now write simply as,. The two Chern-Simons
terms then add, ang, has leveb.

We are now left withZ;, coupled to anSO(m), Chern-
Simons gauge field. Decomposiag into irreducible repre-

For them = 3 case, there is a singl¢, which we will simply
call Y = Y7, and the last of these fusion rules is modified to
Y.Y =1+ Z+Y. We obtain the dimensions of multi-

: : . - particle Hilbert spaces from these fusion rules. If we denot
sentations ofSO(m), we have fields carrying the trivial rep- the Hilbert space of, particles of typeX with total charge)
resentation, and the representations with highest weights P P yp 9

and2\,. Sincer; (SO(m) x SO(m)/SO(m)) = Zs, there  bY it x. then

are also topological defects in tifg condensate. By forming

combinations of the irreps i&; and the topological defects  dim(#.-%, ) = 2(m™* +1), dim(HY ) =m""

. . . 2n,X 2 2n,X

in Z,, we have particles carrying all of the allowed repre- .

sentations ofSO(m)2, namely representations with highest dlm(H2n+1 x) =z(m"£1). (8)
weights0, A1, Az, - - -, Ary 220, A1 + A, 221 We will call the

SO(m)2 TQFT themetaplectic TQFT, for a reason to be ex- Combining the Ising (see, e.g. Refs. 7,11) and metaplec-

plained when we discuss quasiparticle braiding. tic TQFTs, we naively have the particle typ¢s, o,v¢} x
The fermionsf are assumed to condense ip & ip paired  {I, X, X’,Y;, Z}. However, some of these are not local
state. Therefore, there are, in addition to the particktedi ~ with respect to the electron operatd, = ¢ - Z. The

above, vortices and fermions). This breaks thé/(1) gauge  topologically-distinct ones that are local with respecthe
symmetryf — e f,z — e~z down to aZ, symmetry. €electron are:I,0X,4,Y;, Z.%8 These4 + r particle types
Consequentlyy particles, which are vortices in thg f) con-  determine, for instance, the ground state degeneracy of the
densate are accompanied®yflux which also inserts a topo- metaplectic-Majorana TQFT on the torus. However, it is
logical defect in theZ; condensate. As we will discuss in the worth noting that this is actually &,-graded TQFT, and
next section, this means that only certain combinationk@ft one should also consider as distinct the particle types that
particles in the Ising TQFT and the particles in the metajdec differ from these4 + r particle types by a single electron:
TQFT are allowed. We dub this combination tietaplectic- VZ,0X', Z,)Y;.

Majorana TQFT. Turning now to the particles allowed in the full metaple€tic



Majorana TQFT, we have: or, equivalently,
dim(rg ) = 27 (255 ) | dim(Ay), ) = (2m)" [T (i72ex (o) -7 o) =0 (14)
dim(H3575) = 27 2(m" £1) (9) =

wherew = e27i/™,

Consequently, we can represent the braid group in the fol-
lowing way. We define thextra special group H(n,F,,)
(sometimes called the Heisenberg group) generated by

IV. F-AND R-MATRICES

We can determine the braiding properties of these particles 4, v, ..., u,, satisfying the relations
using theirF and R matrices. There are many non-triviat
matrices forSO(m)s, which can be obtained by solving the u* =1, 2" =1
pentagon identity. Some, which we will use below,are Ullip1 = 2Uig1Us
UiUj; = UjU; , |Z—]| > 1
FXNY_ pXn % G 11) 7 wiz = zu (15)
5 _
XYL pX'TYi _ i (1 —1) This is a group of ordem™*! which is discussed further in
X’ X 2\ 1) Appendix A. We introduce this group because, given a rep-
1 V2 1 resentation ofH (n,F,,) by operatorsi; acting on a vector
F}SjlYlYl _ 1 V20 =2 (10)  Space, we can define a representagignof the braid group
! 2 1 -2 1 B,,, as we we will see below and will discuss in further detail

in Appendix A. We construct a representation/tn, IF,,,)
The FEXX-matrix is an(r+1) x (r+1) matrix. Form = 3, 5, of the requisite dimension as follows. Suppose, for the sake

it is given by, respectivel§? ofIconcreteness, thazt_is ?ven and that we are interes_ted in
H:,. Then, we can definl;, = spanﬂkl, ko, .. .,kn/2>) with
FXXX _ 1/V3 V6 k; € F,,, and define the action df (n,F,,) onHZ by
X 3\v6 —V3
1 Vb V10 V10 ﬁ2i71|kla---akn/2>:w2ki ki, ko)
F))((XX = _g \/@ _1%(5—’—\/\{5) %1(5_{/52 (11) ﬁQi‘kla---kn/2>:’kla"'aki_17ki+1+1"'1kn/2>
10 =(5—+5) —3(6 5 . _
2 ( ) —3(6+ VD) bty iy k) = w2 |k k) (16)

Similarly, the R-matrices can be obtained by solving the . o )
hexagon identity. Some of the non-trivial ones, which we wil e could have representédy anym-root of unity, but we

use below, are: have chosen 2 for later convenience.
With this representation of (n, F,,) in hand, we define a
RXX — J(r=i)(r=j+1)=j e-m‘(%%) representatiopx of the braid groups,, according to:
R}GJY] _ eﬂi(m+l)/m’ Rglyl _ eﬂ'i/m7 ) . m_1 .
ngl = erim-D/m pXZ _; R?Z — i (12) px (o) = NG j—(r+r/2) Z W ] (17)
j=0

With theseF'- and R-matrices, we can compute how the
states in the multi-quasiparticle Hilbert spaces of dinems  Direct computation shows thak (o;) obeys the Yang-Baxter
(8) transform under braiding. equation. Moreover, the statds w*|u¥) are eigenvectors of
the braid generator (17) with the same eigenvalues as E}j. (14
by virtue of the quadratic Gauss supk- 3" w?” wi* = W=+’
The eigenvalues and dimensions determine the characters of
the representation which, in turn, determine the represent
We now consider a situation in which we havearticles of  tion. Therefore, we conclude that (17) is the represematio
type X in the SO(m), TQFT. Braiding these particles leads (14) forn X -particles. This representation of the braid group
to a representatiopx of the n-particle braid group3,. We s called theGaussian representation®®.
now describe this representation and its image phefo; ) be We note in passing that there is another possible braid
the representative of the braid group generatofa counter-  group representation on this Hilbert space, tRetts
clockwise exchange of particlesandi + 1) acting on the  representation®3, in which p(o;) = (t + 1)L Sl — 1,

. ; . j=0 Wi
n_—parncle Hilbert space. From_ thiée-matrices, we see that the and2 +t+t~! = m. The Potts and Gaussian representations
eigenvalue equation fgry (o;) is

coincide form = 3, but differ form > 5, where the Potts

r Y representation is not relevant ) (m)- since the eigenval-
H (px(m) — jr=i(r=j+1)—=j e—ﬂi(ﬁdu)) =0 (13) ues of the braid group generators are different. Note theat th
=0 m = 3 Potts representation it related to the critical point

V. N-PARTICLE BRAID GROUP REPRESENTATIONS



of the ferromagneti@-state Potts model, which is the theory is possible. However, ifi; = Y7, ...

5

Y., Yy, ..., ¢Y,, then

of Zs parafermions; it is, instead, related to the critical pointas = 0 X’ is also possible. Therefore, there &(e + 1) +

of theanti-ferromagnetic 3-state Potts mod#l.

2r = 2m such states. We will take a bagig n,) with

The image of the braid group in the Gaussian representatioh < j < m andn, = 0, 1 for this 2m-statequdit. |5, 0) cor-

can be understood as follows (see Appendix A and Refs. 50gsponds, fof < j < r, to the state withu,

:}/},GQZUX

53 for further details). From Egs. (15) and (17), we see that (with the notationty = I) and, forr < j < m—1, to the state

lox (o)) wi px (0i1) = w tuipru
[pX(Ui—l)]TuipX(Uz 1) = wuytug

[PX( )] ule( 1) = U;

lox (o)) wipx (o)) = i, [i—jl>1  (18)

Therefore, braiding transforms anmy into a product ofu;s,
up to factors ofu. If we mod out by the factors a@f, then we
haveH (n — 1,m)/Z(H(n — 1,m)), the extra special group
modulo its center. Braiding transformations are, theesfau-
tomorphisms off (n—1,m)/Z(H(n—1,m)). Hence, the im-

with a1 = Y,,—;, as = 0 X'. Meanwhile,|j, 1) corresponds,
for 0 < j < r, to the state withu; = Y}, ax = ¢X (with
the notationty = I) and, forr < j < m — 1, to the state with
a; = ’lf)Ym,j, ag = O'X/.

For such a qudit, there are two generators of the unitary
transformations that can be performed by braiding. The first
is a counter-clockwise exchange of the twd -particles on
the left. This implements the following gate which is diagbn
in this basis:

p(on) |j,ny) = e~ BT THDeF G |5 ny)

(20)

age of the braid group is a subgroup of the group of automorthe second is a counter-clockwise exchange of the middle

phisms ofH (n — 1,F,,)/Z(H(n — 1, m)). As we discuss in
Appendix A, this is equal to thmetaplecnc representation®®
of Sp(n—1,F,,) forn odd andSp(n—2,F,,) x H(n—2,m)
for n even. For this reason, we call particlesmetaplectic
anyonsand we callSO(m), themetaplectic TQFT.

The groupSp(n — 2,F,,) x H(n — 2, m) is a natural gen-
eralization of the Clifford group. Recall that tfRauli group
is composed of products @f Pauli matrices forn /2 spins; in
our notation, it is equal td (n,2). The group of automor-

phisms of the Pauli group that are trivial on its center is the M =

Clifford group, and it is equal t&Sp(n, F2) x P, /5. In other

words, braiding metaplectic anyons generates a subgroup of

the analogue of the Clifford group for qudits, with — F,,,

two o X-particles. This can be obtained by using the
matrix to transform into a basis in which these two particles
have a fixed fusion channel, applying tRematrix, and trans-
forming back, i.e. fromF~!RF. For the sake of concrete-
ness, let us consider the case= 3. Thenp(o2) |j, ny) =

M;kann > where
%f(1+2w) (1 -w) 0 CE 1
2(1-w) i+2+w) 0 ,Lz—( )
3( 3 -1 1
0 0 w V2

(21)
In a similar manner, we obtain the gate associated with a

Turning now to the full metaplectic-Majorana TQFT We a counter-clockwise exchange of the last to -particles

combine Eq. (17) with the braid group representation forgsi
anyon$

m—1 .
) S
7=0
(19)
—Vi4+1Vi, ViV = V504 for |Z—j| > 1.

i 1 7\- 2
—mi 24r/2 k k
pox(0i) =e = (rar/2) — g ;
wherev? = 1, v;v;41 =

VI. QUANTUM INFORMATION PROCESSING WITH THE
METAPLECTIC-MAJORANA TQFT

We will consider three different encodings of quantum in- ; ‘ ‘ ‘ ‘ o ‘ ‘
formation into the many-particle states of the Metaplectic

for m = 3 which takes the formp(os)|j,ny) =

Mze™ 5 €™ |k, ny) with

0 0
1+w)/2 (1-w)/2
(1-w)/2 1+w)/2
For multiple qudits, we can employ either a dense or sparse

encoding. A dense encoding usifg o X -particles can be
represented by:

w
M=10 (22)
0

cX oX oX X cX oX

Y,

Majorana TQFT. For reasons that will become clear, we call

them the ‘qudit’, ‘qubit’, and ‘qutrit’ encodings.
Consider the state spaceb& X -particles with total topo-
logical chargéy; . It can be depicted graphically as follows.

cX oX oX oX

P B N
ar G2

Y,

The first two particles fuse toa;, which can be
L,Yy,...Y. Y, 0Yy, ..., ¢0Y,.. Inall of these casegy, = o X

Such an encoding uses o X -particles fork — 1 qudits. How-
ever, an exchange of neighboring particles will necessaril
volve neighboring qudits. Consequently, simple singléigu
gates are complicated in terms of braids and errors in one qu-
dit tend to infect others. We can, alternatively, use a gpars
encoding, such as:

X oX X oX X oX oX oX

L

Y1 I

X oX oX oX

L]y

Y,



In such an encodinglk o X-particles are used for qudits. 2, IF,,,) for n even. As we discuss in greater detail in Appendix
There arek sets of4 o X-particles. Each set of has total A,
topological chargé’. These sets of are paired so that each "
pair of sets (i.e. a group of eightX -particles) has total topo- 1Sp(2n, Fon)| = m™ H (m? —1) (26)
logical chargd .

An alternative encoding scheme, which we call the qubit ) o
encoding, usesaX particle andn + 1) Y;-particles (or any ~ While [H (n,m)| = m"**, so the braid group has a finite im-

i=1

otherY;) to encode: qubits. It is depicted as follows: age under the Gaussian representation. Therefore, it is not
possible to approximate an arbitrary unitary transfororatd
T Y Y1 on Y1 W any desired accuracy. In fact, braidiad( particles can be
‘ ‘ ‘ ‘ ‘ ‘ efﬁc_iently s_imulated by a class_ical computer.
oX oX Since it is known that braiding in the Ising TQFT can be
a4z Az G4 an—1 an efficiently simulated classically, we focus on the braidofg

metaplectic anyons. Recall that braiding metaplectic asyo
transforms products af;s into products of.;s, as we noted
in Section V. As a result, the evolution of eigenstates ofisuc

(note thatX,, Z; are the usual Pauli matrices here becauseprOdUCts can be efficiently simulated classically by foHow

we have qubits rather than qudits). We label the qubits b)'/ng the e"o"_“iﬁ“_‘ of these_ operators. In order to see this in
i—1 n, and we defineZ, = Z, ., — +1. In addition greater detail, it is convenient to emb&dn — 2,F,,) inside
= gy Ty = n+l1 — . ,

we define NO]‘* = Tif Zi 1711 — 1 and NO'I:* = X, H(2n,F,,) as follows. LetXy,...,X,,Z,...,Z,,wbea

wherea; = oX or cX’. In order to express the gate that
results when particleisandi 4 1 are exchanged, it is useful to
defineHi = X; if m=3 andHi = i—lXiZi+1 if m>5

if Z,_1Z,41 = —1. Then, a counter-clockwise exchange of set of gener.ators off (2n, Frm), as described in AppenFiix A
particlesi andi + 1 results in a gate that can be written in the (S€€, especially, Eq. A3). Then = XiXi41 2,7}, faith-
following form: fully represents the ex_tzra special group (15). Conseqyentl
_ px (o) = \/—% Z;’;’Ol w’" U] represents the braid group. We
py, (0;) = em i NOT; + (238)  can prepare states that are eigenstatés; &y creating pairs

out of the vacuum. Such states are stabilized by products
Finally, we introduce one more encoding: the qutrit rep-of X; and Z; operators sincé/; can be expressed as such
resentation. (Quitrits are obtained for amy Note that the a product. To see how any state stabilized by products of
qudit representation introduced earlier is never a qugpte- X, and Z; operators transforms under braiding, we can fol-
sentation since the dimensiam is always even). A qutritis low the evolution of the operatorX;, Z;. It is sufficient to

encoded in fouly; particles with total chargé: consider the case of two qudits. We would like to see how
X4, X, 7y, Z5 (and, therefore, the group that they generate)
i i i ohn evolve under the action ak. First, note that we can replace
, \ \ \ \ ; the setXy, Xo, Z1,Z, by the setZ,, X, X, Z1 23, X1 Z4,
0 which generates the same group. The latter three commute

with U and, therefore, withR. Therefore, we need only
From the fusion rules (7), we see that the chargeI,Y,,Z  study howZ; evolves. UsingU’Z; = w=7/Z,U7, we see
(except in the caser = 3, wherea = I,Y7, Z). Braiding the by direct computation thatX(al)leE((al) — wF Z,U*,
first two particles enacts the transformation: wherek = (m + 1)/2. Therefore, the evolution o, can be

efficiently simulated classically and, as a consequenceaso

} 10 0 the evolution of any state stabilized by productsigfandZ;
pyi (1) = =™/ 0w 0 (24)  operators. Thus, we conclude that we can efficiently siraulat
00 -1 classically any operation that consists of creating pair& o
particles out of the vacuum, braiding them, and then measur-
while braiding the second two enacts: ing them a basis of products &f; andZ; operators (e.g. the
Usi_1 basis).
W 2V2 -2 Of course, as noted aboved (2n,F,,) is much too
pvi(o2) = (2v2 0 22 (25)  large. It associates am-state qudit to eachX-particle
-2 22 2w while, in the dense encoding, there should be a qudit as-
sociated to eaclpair of X-particles. Therefore, braiding
should commute trivially with roughly half of the gener-
VII. CLASSICAL SIMULATION OF BRAIDING IN THE ators of H(2n,F,,). This is, indeed, the case, as may
METAPLECTIC-MAJORANA TQFT be seen by considering the following set of generators

of H(2n,F,,): Ur,...Un_1,U1,... Un1, X121, X0 Z} w0

Regardless of the encoding, universal quantum compwvheref]i = XiXHlZiTZHl. The generatoré’is,Xlzl, and
tation is not possible purely through braiding because theX,,Z; all commute with thé/;s and, therefore, with braiding.

braid group representation (17) ferX -particles is contained Braiding is not universal in the qubit representationezit

within Sp(n —1,F,,) for n odd andSp(n —2,F,,) x H(n—  We now show that the group generated by phe(o;) oper-



ators acting on the qubit representation is finite, and we givsome sequence df moves to the previous tree in terms of
an efficient classical way to store an arbitrary element isf th X -particles and it is not immediately obvious that all thése
group and to efficiently compute products of elements of thianoves can be computed efficiently.

group with braid generators (the method we describe wionl  Note that braiding with; particles is not fully subsumed
store an element up to an overall phase). Fora{including by braiding with X particles even though &, particle can

bothm = 3 andm > 3), a direct computation gives result from fusing twoX particles. The reason is that the
t state in which two pairs ok particles fuse td7, and the two
(NOT;*) HiNOT;’+ = H; (27)  resultingY; particles fuse to the identity is a state tboamhnot

; be represented in terms of available stabilizErs7;.
(NOT; ) HiaNOT, = HiHis,

(NOT;’““)THi_lNOT;’* H; 1 H,,

VIIl. COMPUTATIONAL COMPLEXITY OF LINK
INVARIANTS

SO conjugating a product of tHé; by a unitaryl\IOTj_’+ gives

some, possibly different, product of thé;. The group gen- In the previous section, we have seen that braiding is
erated by the operatoes= i is an Abelian group, which we ot universal for quantum computation in any representatio
call G. Sincee*™H: = 1, we can write an arbitrary element Moreover, braiding in the qudit and qubit representaticars c
of the group ag’ > ¥ Hi where thek; are integers ranging be efficiently _simulated classically. However, th_is thed'g _
from0, ..., 2m — 1, so the group is a subgroup@f, . How-  Plays a surprise when we turn to the computation of link in-
ever, since™ = —1, there are only2 - m” distinct group ~ variants. Thus far, the most-studied examples of TQFTs for
elements which can be written &s1) - ¢2i % i where ~ Which braiding is universal for quantum computing have been
thekZ are integers ranging from cym — 1. This group isin preCiser those for which an evaluation of the link invatsan

fact Z" x 7, and the generators of the group can be takers #P-hard. However, there seems to be no deep reason
to be—eiw Hi and—1. The group generated by the operatorsWhy this should be true generally, and indeed the present the
NOT; " is a subgroup of the Clifford group; call this group OrY is not universal for quantum computing (through bragdin
H. Then, because conjugation BYOT " defines an auto- alone), but it does have a link invariant that#sP-hard to
morphisrﬁ ofy, the group generated b%,lnﬂ NOT Tisthe COompute. Said differently, there are experiments whose re-
semi-direct product x H. This gives us an efFicient way sults _are#P-hard to predict, i.e.. cannot be predicte_d with a
to store elements of the group by storing a list of integers ~ classical computer (unless the hierarchy of complexitysea
and also storing an element of the Clifford group. We speccellapses), even though braiding alone is not sufficientfor

ify an element of the Clifford group by specifying/ XU~ versal quantum computation.

andU Z;U" for all i. These products X;U andU Z;U" are We give a more precise definition of this link invariant
products of Pauli matrices and so can be stored efficienty (welsewher#. Here we will give its physical motivation. We
are essentially using the Gottesman-Knill theorem hertey-S  imagine creating a collection of pairs ®f particles out of

ing these products fully specifigsOU* for any operator) ~ the vacuum. We braid them with each other and then fuse
and so specifie§ up to a phase. To take a product of two ele-them again in pairs. There will be some amplituder.) for
ments of the group, say the first being represented by a produgll of these fusion processes to give the vacuum, i.e. to be
AU and the second by a produdtU’ whereA, A’ are inthe  annihilation processes. (When twg particles are fused, the
Abelian group and/, U’ are in the Clifford group, we write result could be the vacuury but it could, instead, be or
AUA'U" = A(UA'UTYUU’. We then comput&/ A’Ut using Y2, except in then = 3 case, in which there is g, particle

our known values ot/ X;UT andU Z; U and the result will and it could, instead, b¥;.) Here, L is the link formed by

be some other element of the Abelian group, allit Then  the spacetime trajectories of thg particles. The amplitude
the desired product i A”UU’, and the product of the first £(L) is our ‘link invariant’. We use quotation marks because
two is in the Abelian group and the product of the second twghis amplitude is not necessarily a topological invariariess

is in the Clifford group. further conditions are satisfied. However, if the interactie-

It should not be surprising that the group image is finite.tween theY; particles decays exponentially (or faster), then,
TheY; particles can be obtained by fusing a pairdfpar-  in the limit that the particles stay far apart while braiditiys
ticles. Thus, the fusion tree in Section VI that defined theamplitude will depend only on the topological class of ihe
qubit representation can be written as a tree @jth+ 1) +2  trajectories. When the particles are being pair-createidan
X-particles, with2(n + 1) of the X -particles fusing in pairs hihilated, the amplitude will acquire a non-topologicadnn
to make(n + 1) Y;-particles. Braiding twd’; -particles can ~ universal phase. However, this can be made to cancel between
be done by braiding two pairs of -particles. Since the im- creation and annihilation. Alternatively, if two differeloraid-
age for braidingX -particles is finite, it is no surprise that the ing processes are interfered, then this non-topologicaseh
image for braidingy; -particles is also finite. However, it is Will cancel. See, for instance, Refs. 11,57 for a discussfon
still important to check, as we have done, that we can effiinterference measurements for link invariants.
ciently store elements of this group; after all, the tree wa The starting point for thet P-hardness of/(L) is a result
have written here wit(n + 1) + 2 X -particles is related by of Lickorish and Millet®, They show that the link invariant
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E(L) can be written as E(L) for an arbitrary link, then we can solve any problem in
#P.)
E(L) = Z a~HSL=S5), (28) To obtain an Ising model with real or even real and pos-
ScL itive Boltzmann weights, we use the following trick. We

consider linksL constructed as follows. We begin with a

link L" with ¢(L") = N unlinked components, i.e. for any
(29) 1,7 € {1,2,...,N}, (i,j) = 0. We then add components

N+ 1,N+2,...,¢(L) to form the link L. They are cho-
Here, the sum is over link§ which are a sublink of link.. ~ sen so that ifi, j € {1,2,..., N}, then(i,k) = (j, k) (if
A link may be made of more than one disconnected compok € {1,2,..., N}, then both sides of the equality are zero,
nent, where each component of the link is some knot; we useutif k € {N+1, N+2,....¢(L)}, then they might be non-
¢(L) to write the number of components 6f A sublink S zero). We now evaluate the link invariai{L) in two steps.
contains some subset of the components, so there is a total bffst, we sum over the choicesof fork = N +1,...,¢(L)
2¢(L) terms in the sum, with each factor dEoming from the  to define an “effective Boltzmann weight” for the firStIsing
choice of whether a given component is in a sublink or notspin variables. Summing over componéngenerates an ef-

We can specify a sublin§ by a vectors with entriess; for ~ fective interaction betweenand; if (i, k) = (j, k) # 0. The
i=1,...,¢(L), such that; = +1 if the i-th component is in effective Boltzmann weight will be real anél(L) is equal to

S ands; = —1 otherwise. The invariar{t, L — S) is defined ~ the sum over the® choices of the firstV spin variables using

to be the sum ofi, j) over pairsi € S andj € L — S, where the effective Boltzmann weigh

(i,7) is thelinking number between the-th sublink and the ~ Consider a pait, j with 1 < ¢ < j < N. We now add

j-th sublink?® a component € {N + 1,N + 2,...}, such that(i, k) =
Eq. (28) looks very much like the partition function of an (j, k) = d for somed and such thatk, ) = 0 for [ different

Ising model at an imaginary temperature. The sum over sufrom ¢ or j. Then, summing oves;, = =+1 will produce an

links corresponds to a sum over the “Ising spin” degrees offfective interaction betwees ands;. Summing oves;, =

freedoms;, while the terma—%(5:-L=5) |ooks like a complex +1 gives a weight

Boltzmann weight. To see this, write ) ,
Z q2sisk(ik)+2s 50 (ik) Z a2d(sitsj)s
—4(S,L—8) = = (1+s)(1—s;){i, J) sre{—1,1} sne{—1,1}

where

a = —iexp(—im/m).

i#j = (Vy)" V7, (33)
= =23 (1= sis;){0.) B0 L here
1<J

. q—4d 4 gad

Consequently Eq. (28) is equal to Y= 5 , (34)
B(L)=a?2t0 %7 @i mn ) @31) ang
se{—1,1}e(L)

z=2(a"* 4 ). (35)

So, up to the prefactor in front, the resulting link invati&n
the partition function of an Ising spin system with Boltzman and any ambiguity in the sign of the square-root is resolved
weights by choosing,/5y/z = a= %4 + a4,
Ignoring the overall factor,/z, the effective weight is
exp(f8 Z<z‘,j>sisj), (32)  (yy)**. By adding additional componerts £’ of the link
i<j and summing oves;, s, and so on, we can replace this
weight with any power, so that the effective weight for the

wheres = —2mi/m +mi. o _first N variables can be chosen to be (again up to an overall
Note that the temperature is purely imaginary. The quantity,cior)

(i, 7) plays the role of a matrix of coupling constants; note that
these linking number§, j) can be taken to have any integer H (\/g)siSjJij’ (36)
values. In particular, the Ising model need not be planat, an
any choice of(i, j) can be realized by some link in which
the number of crossings is at most polynomiaEQj [(i, 7). for any matrix.J;; with non-negative integer entries (in fact, it
We will now show that there is a class of links for which we is also possible to obtain negative entries by a slightliedgnt
can relate this Ising model with complex Boltzmann weightstrick but we will not need that here). The size of the link
to more familiar models with real or even real and positiveneeded to produce this effective weight is at most polynbmia
Boltzmann weights. We then argue that computing the resultin > -, [Ji;|.
ing partition function is#P-hard. (While we cannot relate  The quantitiesy are real. However, depending upon
E(L) for an arbitrary link to an Ising model with real Boltz- andd, they may be positive or negative. In fact, for any odd
mann weights, it is sufficient to do so for the class of linksdi m > 1, we can choose-1 < y < 0 by an appropriate choice
cussed below. We can then conclude that if we can computef d, and for oddm > 3 we can instead choose< y < 1

1<i<j<N



by an appropriate choice @ One way to obtain positive xj. is*t*%

weights form = 3 is to pick the entries of/;; to be even L,

integers. In this way, we succeed in constructing a link in- Uk 1 = €79 /2m (37)
variant that equals, up to multiplication by a trivial oviéra
constant, the partition function of an Ising model at reakip
tive temperature with antiferromagnetic couplings. Byirtgk
these couplings large, we can ensure that ground states p
vide the dominant contribution to the partition functiorhakt

is, that the partition function is equal 16, exp(—/5Ep) plus a

small correction (small comparedéep(—5Ey)), wherefis  \yherew = ¢27i/™ The first factor is the braiding transforma-
now rea_l and positive and whefg is the grounq state energy tion for Ising anyons ifn 2 1 (mod 4) and for the opposite-
and Ny is the number of ground states. Making the COITeC-chirality version of Ising anyons if 2 3 (mod 4). The sec-

tion small compared texp(—/Ey) requires only polyomi-  onq factor can be rewritten using the Gauss quadratic sum as:
ally large coupling constants (we are choosing the coupling

constants large enough that energy outweighs entropy and so 2 1= .

the sum of the weights of all the higher energy states is smalll WM = N Z w’ (39)
compared to the weight of a single ground state). Then, an j=0

evaluation of the partition function lets one determinehbot . .

the ground state energy and also the number of ground state\é%,hg;ige same, up to a phase, as Eq. (17) (see also Eq. 25
Counting the number of ground states is equivalent to findin : )
the number of maximum cuts in a graph which ig#-hard
problenT®. Indeed the definition of:P is that it is the prob-

whereq = 0,1,...,2m — 1 are the possible charges/spins on
the interval between the two defects. If we wrjte= mq; +
v wheregr = 0, 1andjy = 0,1,...,m — 1, therf?

: 2 -2
Uk 41 = €'mMI1 lnm (38)

9 Thus, these physical models give a very natural interpreta-
tion to the elements of the extra special grdiif2n — 1, F,;,):

: ; . these are the operators that rotate the phase of the super-
lem of counting the number of solutions to a decision prObIe”Eonducting order parameter or the ferromagnetic spin by

in NP. L2 ) )
. _ o . 47. Their eigenvalues are just the allowed charges/spins on
This approach shows that evaluation of the link invariant to T " elgenvai U W g P!

; ) o . gapped intervals modulo charge or spin-1.
exponentlal accuracy #P-har_d. Infact, itis possible also to However, it is also important to note the differences be-
consider the case with negative and real Boltzmann weightg, . e metaplectic-Majorana TQFT and the models of
(the casey < 0 but J;; has odd entries). Then, even the R

luati f the si f1h ition f ion #P-hard efs. 41-44. The latter models are gapless since they
evaluation of the sign of the partition function j5P- ard,  have the Goldstone boson associated with superconductiv-
as follows from a result of Goldberg and Jer@¥mThe sign

of the partition function is equal to the phase of the linkairiv ity (which is not given & gap by the coupling to a 3D elec-

itivlied b I oh hich b tromagnetic field). Therefore, these models are, at best, in
?rwiz:\nlls tiplied by some overall phase which can be CoranJteduasi-topological phas&sand are related to the metaplectic

= . i .. TQFT in the same way that chiratlwave superconductors
Similar behavior is seen in the theory of Ref. 60, which 4re related to Ising anyons: they have some but not all of the
also has a finite braid group image Bg>-complete link in- 5 5herfies of a true topological phase. Furthermore, we not
variants. It would be interesting to see if our theory follow ihat the models of Refs. 41-44 do not appear to have a
:22 Ir;:lit?r:c;ratrr\]te;r;h%og’ c\;\rlhaerreeSdIISﬁPerﬁ;:dazer;;(émr@gm particle. They hav@n-particle Hilbert spaces of dimension
: - ; - , n—1 is i i Z
depending upon the accuracy of the approximation. It woul 2;?0)h su. This Is the same as the direct S-mﬁ” “ Ton,
_ ) _ ' ' : ! ggests that these models do not distinguish between
b_e interesting to see if their theory, like ours, is cladgica (e 7 particle and the vacuum. Moreover, the particles
simulable for certain measurements. are non-Abelian in the metaplectic-Majorana TQFT, but the
charges/spins are Abelian anyons in the models of Refs. 41—
44 . In the metaplectic-Majorana TQFT, wherYaparticle
IX. RELATION TO FRACTIONAL QUANTUM HALL is taken around a/k partide' a phaseiiﬂ'jk/m resu":si de-
DEVICES pending on whether they fuse 10;_5| Or Yiin(itjm—i—j)-
Each of these possibilities occurs twice (for each pair)ef w
In Refs. 41-43 (see also Ref. 44), a model was presenteallow the total charge to bé or Z. In the models of Refs.
in which the interface between fractional quantum Hallestat 41-44, however, the phas&7*/™ results when a chargeis
was divided int®N intervals, with thei*" interval lying be-  taken around chargeor m — j is taken around» — k while
tween pointsz;_; andz; andzy = zon. The evenintervals e~"7%/™ results when a chargds taken around charge—k
(x2j-1,x2;) are brought into contact witk-wave supercon- orm — j is taken around. In our model, we can only deter-
ductors, while the odd intervals:;, z2;+1) are broughtinto  mine the phase resulting from a braid by performing a mea-
contact with ferromagnets. The pointsare viewed as parti- surement of the total topological charge of the two parsicle
cles. They ‘fuse’ to th@m possible allowed total spins (mod- In the models of Refs. 41-44, however, we can determine the
ulo 1) on the even intervals @m possible allowed charges phase resulting from a braid by simultaneously measurieg th
(modulo 2e) on the odd intervals. They can be ‘braidet?  charges of the two intervals.
by a measurement-only procEs®. The resulting unitary A possible path to understanding the relation between the
transformation for braiding two neighboring defectsaat metaplectic-Majorana TQFT and the models of Refs. 41-44
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Y; particle splits int@ particles which, together with, form

a Zs multiplet. A version of this scenario should occur for

generalSO(m),, and may be related to the models of Refs. Appendix A: Sp(2n,F,,) and the braid group of metaplectic

41-44: the charges/spins on intervals are the Abelian guasi anyons
particles of the theory, which are the only ‘true’ quasifudes
in the theory since they are not confined, whilgoarticles are In this appendix, we will discuss in greater detail the im-

confined but, if the energy required to pull them apart is Supuge of the representation of the braid group associated with
plied, then a projective remnant of their non-Abelian bidd " yarticles. We begin with @n-dimensional vector space

properties survives. The dislocations of Ref. 40,64 ma)ehavVQn overT,, (with m assumed to be prime) equipped with

a similar relation to theX particles of the metaplectic TQFT. 4 non-degenerate symplectic fofn). We can take as a ba-

sis of this vector space; = (0,...,0,1,0...,0), which

has zero for every entry except for ti@, which is1. We

will take the symplectic form to b&;, v;] = +0;41,;. The

group of linear transformations that preserve the symijalect
It was recently realized that the transformations associform [, ] is the symplectic groug'p(2n, F,,,). This is a finite

ated with Ising anyons could also be realized in three spagroup whose order can be determined as follows. We want

tial dimension&. Although there is no braiding in three all ways of choosing, . . ., v, SO that[v;,v;] = +8;+1 ;.

dimensions, extended objects, which could be viewed as pafFhere aren?" vectors inVs,, since itis composed of all linear

ticles connected to ribbons, would have the topology ofrthei combinations ofy1, . .., vs,, with coefficients inF,,. There-

configuration space governed by an enhancement of the pefore, there aren®” — 1 ways to choose; # 0. There is

mutation groupE (Z3" ' x Sa,,) (here, thel(...) denotes the  a (2n — 1)-dimensional space of vectorswith [v1,v] = 0.

restriction to elements whose combined parity is even). Th&herefore, there are?® — m?"~! choices of vectop, with

Z factors keep track of the twisting of the ribbons, modulo av;, v3] # 0. Since the possible non-zero valuesaf, v;] are

4 twist, which can be undone. Solitons supporting Majoranal, 2, ..., m — 1, there ardm?” —m?"~1) /(m —1) = m?"~!

zero modes realize a projective representation of thisgrou choices ofvy with [vy,v2] = 1. Continuing in this way, we

which has imagé? (n — 2,Fs) x Sa,,. Thus, the non-Abelian find that there are

statistics of Ising anyons can be understood as simply permu . .

tations together witl2z ribbon twists of pairs of particles. 2 21 n? 2

Two such twists anti-commute if they share a particle (buit no [T = 1)m* = =m™ I] (m* —1)

both). The non-Abelian statistics &f particles inSO(m), is

a generalization of this to fractional twist&:(n — 2, Fs) is re-

placed byt (n — 2, ;) so that the (purely fictitious) ribbons 6y considerVs,, as an additive group. Consider a cen-
connecting particles can be twisted upito— 1 times. tral extensionG: 1 — F,. — G — Vi, — 1. Since
Although the resulting unitary transformations are richerv2 is Abelian :[he commTJtator ma@ x G"_> G éiven by
than those of Ising anyons, this TQFT is still incapable of(gln g2) — glgz’gflgfl takes values in the centg, and is
performing universal quantum computation through brajdin yatected by multiplication by the center, so it defines @ma
alone. The braid group has an image which is finite. How-y, ", -~ "m Inthe case of the specific central extension
ever, a certain link invariant associated with the ampétéat 4+ is usually called the ‘extra special group’ or ‘Heisers

creating pairs of; particles, braiding them, and annihilating group’, which we denote by (2n, F,,,), this map is just the

them in pairs is# P-hard to compute. This suggests that theresymplectic forn, ]. The elements ofl (21, F,,,) can be writ-

may be greater computational power lurking just beneath thes iy the form(uv, k), wherev € Vs, andk € F,,. The
surface of this Fheory and, perhaps, that it becomes ?‘pparef?]ultiplication rule’is(vl, k) - (v1, k1) = (01 +va, 1+ ko +
when braiding is supplemented by measurement at mterm%l’ v3]). For the basis taken above wity, v;] = +8;11 ;, if

di?te steps of a computatio_n. Specific prot_ocols b_y whichy rite u; = (v;,0) andz = (0, 1), then we have the defining
universal quantum computation could be achieved with metazq|ations introduced in Sec. V

plectic anyons (with or without Majorana zero modes) are an

X. DISCUSSION

(A1)

i=1 =1

elements of the groufp(2n, F,,).

interesting open problem. Wt =1, M =1
UiUi41 = ZUi41U;
wiu; = uju;, |i—jl>1

Acknowledgments Wiz = 2. (A2)
We would like to thank J. Alicea, E. Berg, P. Bonderson,If we, instead, take a basi§ of V5, with [fo;_1, fa;] =
M. Cheng, D. Clarke, B. Conrad, N. Lindner, K. Shtengel,d;; and [f2;—1, f2j—1] = [f2, f2;] = 0, then we have a
and J. Yard for discussions. M.B.H. is partially supportg@éb different generating set foff (2n,F,,): X; = (f2i—1,0),
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Z; = (f2,0), 2 = (0,1) satisfying: Gi(vit1) = Vix1 F v
5i(v;) = vy, |i—j]>1 A5
X?,X] — Xin7 ZZZ7:Z7Z1 o (UJ) v] |7’ j| ( )
XiZj = 2" Z;X; It may be directly checked that this transformation pressrv
Xiz = 2Xi, Ziz = 2Z; (A3)  the symplectic forn{,] and thats; satisfy the defining rela-

tions of the braid group. Then, from Eqg. A4, there is a braid

These two presentations 8f(2n, F,,) are related byio; 1 = group representation

X, uo; = ZiZzT-ﬁ-l for ¢ 7§ n andUQn =Zy.
The symplectic groupSp(2n,F,,) of V,, acts on N .
H(2n,TF,,) in the natural way. These are automorphisms that X(oi) = Z LHCORE (A6)

act trivially on the cente? (H (2n,F,,)) of H(2n,F,,). In
addition, the inner automor_p_hisms—conjugation by elementg, ., Eq. (A5), we see that(o;) = {kulk € F,,}.
of H(2n,F,,) — are alsq trivial onZ(H (2n,F,,)). I.n.fact, Hence, forg — oy, we havev — kv; € Vi(o) and
the group of au_torr_lorphlsms &f (2n, F,,) that are trivial on w = kvisr such thaty = u — g(u). Consequentlyz, (6;) —
Z(H(2n,F,,)) is given by Sp(2n,F,,) x Va,. (Vay, rather M, 6:(w)]) a0 () = A([kvisa, —kvi])ao (o) = 2 (05)
thanH (2n,F,,), is the second factor in this semi-direct prod- Tthgflo?e @0t0i) = AURVi+1, —RVi])A0\0i) = W= Ao\Ti
uct becauseZ (H (2n,F,,)) acts trivially on H(2n,F,,) by ’
conjugation, so ond (2n,F,,)/Z(H(2n,F,,)) = Va, ap- m—1 m—1
pears). The groupp(2n,F,,) x H(2n,F,,) is, therefore, an X(o)) =N Z wk2Mkvi =N Z w’“sz, (A7)
extension of the group of automorphismsiéf2n,F,,) that o P ‘
are trivial onZ(H (2n,F,,)); the group has been extended by
Z(H(2n,F,,)). whereV is a normalization constant. We see that this is the
This is a useful extension to consider because, given an isame as the braid group representation in Eq. (17) which de-
reducible representatiol of H(2n,TF,,), there is a unique termines the braiding ain + 1 X-particles. Therefore, the
induced representatioi of Sp(2n, F,,,) x H(2n,F,,) whose  image of the braid group representatiorzef+ 1 X-particles
restriction toH (2n, IF,,,) is M, as shown in Ref. 55 and as we is equal to the metaplectic representatiospf2n, I, ).
discuss in the next paragraph. Moreover, given a representa The technical reason why the case2ef + 1 particles is
tion \(k) = w* of Z(H(2n,F,,)), there is a unique induced simple is that the braid groups, 1 has an even number
representation/ of H (2n, IF,,,) whose restriction to its center 0of generators, ..., o2, (Sinces; exchanges particlesand
is A\(k). Here,w is anm'® root of unity. LetM, = M(v,0) @+ 1). For an even number of generators, there is a natural
for (v,0) € H(2n,F,,). Then, the induced representation of mapping toSp(2n, F,,,) since the latter is defined on a sym-
H(2n,TF,,) must satisfyM,M, = \([u,v])M,,,. Conse- plectic vector space, which must be even-dimensional. for a
quently,M;" =1, M, M,,,, = w™2My, ., M,,, M,, M, = even numbe®n of particles, the braid groups,, has an odd
M, M,, for |i — j| > 1. number of generators. In order to construct the correspond-
This representation off (2n, IF,,,) induces a representation ing symplectic group, we begin with the symplectic vector
of Sp(2n,F,,) x H(2n,F,,) as follows. Consider the action spaceVs, over[F,, and pick a vectoe; € Va,. Then we
of g € Sp(2n,F,,) onh € H(2n,F,,) by conjugation inside consider the grou- of linear transformations that preserve
Sp(2n,F,,) x H(2n,F,,): h — ghg~'. SinceH(2n,F,,)  the symplectic structurg] on Vz, and leavee; invariant.
is a normal subgroup p(2n, F,,,) x H(2n,F,,), ghg~' €  The vector space orthogonal g is (2n — 1)-dimensional,
H(2n,F,,). Therefore, for eacy € Sp(2n,F,,) there isa soG is the odd-dimensional analogue of a symplectic group
representation off (2n,F,,) given byh — M_,,—1. But and is sometimes called aad symplectic group®’. Clearly,
since there is a unique representation, there must be awnitaSp(2n — 2,F,,) C G. The rest ofG is given by transforma-
transformationX (g) such thatM,;,,-» = X (g)M,X(g)~*.  tions of the following form. Let,, be the vector that satis-
This definesX (g) up to a scalar. In factX(g) is not quite ~ fies [e1,e2,] = 1. Then, for anyv € spares, ..., e2,-1)
a linear representation ¢fp(2n,F,,). Itis a projective rep- andk € F,,, the symplectic form,] and e, are left in-
resentation or, equivalently, it is a linear representatibthe ~ variant by the transformations,, — e2, + v + ke; and
double-cover ofSp(2n, F,,,), namely themetaplectic group. € — e;+[v, e;]e fori = 2,3,...,2n—1. These transforma-
This representation can be given explicitly in terms of Al tions, parametrized by, k) form the groupH (2n — 2,m),

veVi (o)

according to the relation: as discussed above. They can be written explicitly in matrix
form as
X(g)= Y alg)M, (A4)
veVi(9) “an 1 a7 T 2n
€an—1 Upy —bpy ¢ €an—1
where Vi (g) = im(1 — g). It may further be shown that : 10 Inov 0 by (A8)
as(9) = M[u, g(u)]) ao(g) wherev = u — g(u) € Vi(g). : 0 0 Iy an
We now consider the following map from By, .1 — €2 0 0 0 1 €2
Sp(2n,F,,). To the generatar; of By, 1, we associate the €1 €1

Sp(2n, F,,) transformatiors, that acts oriz,, according to
wherea,,_1,b,_1 are(n—1)-componentcolumn vectors over

Gi(vi) = v Fp,c € Fp, I, isthe(n—1) x (n— 1) identity matrix, and



the basis, e3, ... ea,—1 is chosen so thde;, eap 1] = 1
fori < nandle;,e;] = 0forj # 2n+1—14. Thisis
precisely the groupl (2n—2, m) in its representation as upper
triangular matrices. Then, following the steps given above
for an odd number of particles, we obtain a mappig —
Sp(2n —2,F,,) x H(2n —2,m).
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The other particles types will cost infinite energy sinceythee
effectively vortices around which the phase winds by a fomobf

27, which necessitates a branch cut that costs energy propatti
to its length. Such particles will, therefore, be confined.

There are two versions of these theories which differ by the
Froebenius-Schur indicator, which accounts for the mingis is
theseF’-matrices as well as a few other differences.

The linking number of two closed oriented curves may be com-
puted by drawing a projection of the link on a plane, with care
taken to denote over-crossings and under-crossings. Tnoss-
ings in which the overcrossing curve goes to the right of titert
section are called positive. Those in which the overcrgssinve
goes to the left of the intersection are called negative. [irthe

ing number is one-half the number of positive crossings sithe
number of negative crossings. The linking number is symmetr
so that(i, j) = (j, ).

The fact that this problem ig P-hard is a textbook exercise. See
C. Moore and S. Merten3he Nature of Computation, Ex. 13.11.



