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We use a combination of numerical density matrix renormalization group (DMRG) calculations
and several analytical approaches to comprehensively study a simplified model for a spatially
anisotropic spin-1/2 triangular lattice Heisenberg antiferromagnet: the three-leg triangular spin
tube (TST). The model is described by three Heisenberg chains, with exchange constant J , coupled
antiferromagnetically with exchange constant J ′ along the diagonals of the ladder system, with peri-
odic boundary conditions in the shorter direction. Here we determine the full phase diagram of this
model as a function of both spatial anisotropy (between the isotropic and decoupled chain limits)
and magnetic field. We find a rich phase diagram, which is remarkably dominated by quantum states
– the phase corresponding to the classical ground state appears only in an exceedingly small region.
Among the dominant phases generated by quantum effects are commensurate and incommensurate
coplanar quasi-ordered states, which appear in the vicinity of the isotropic region for most fields, and
in the high field region for most anisotropies. The coplanar states, while not classical ground states,
can at least be understood semiclassically. Even more strikingly, the largest region of phase space
is occupied by a spin density wave phase, which has incommensurate collinear correlations along
the field. This phase has no semiclassical analog, and may be ascribed to enhanced one-dimensional
fluctuations due to frustration. Cutting across the phase diagram is a magnetization plateau, with a
gap to all excitations and “up up down” spin order, with a quantized magnetization equal to 1/3 of
the saturation value. In the TST, this plateau extends almost but not quite to the decoupled chains
limit. Most of the above features are expected to carry over to the two dimensional system, which
we also discuss. At low field, a dimerized phase appears, which is particular to the one dimensional
nature of the TST, and which can be understood from quantum Berry phase arguments.

PACS numbers:

I. INTRODUCTION

The nearest-neighbor spin-1/2 Heisenberg antiferro-
magnet on the triangular lattice is an archetypal model
of frustrated quantum magnetism. While the isotropic
model in zero field is rather well-understood and is known
to order into a coplanar “120◦” state1, away from this
limit the situation is less clear. Two deformations of the
Hamiltonian are of particular physical and experimen-
tal importance: the application of an external magnetic
field and the introduction of spatial anisotropy into the
exchange interactions.

The spatial anisotropy is introduced by decomposing
the lattice into chains with bonds of strength J , ar-
ranged into a parallel array, with inter-chain interactions
of strength J ′ (see Fig. 1). Here, we define R ≡ 1− J ′/J
as the degree of anisotropy, and h measures the applied
magnetic field. There have been many extensive stud-
ies that consider these effects separately. However, a
two-dimensional (2d) phase diagram, taking both effects
together, remains to be understood. This problem is
of considerable experimental interest. The application
of a magnetic field is one of the few general means to
tune quantum magnets in situ, and provides very impor-
tant information on the quantum dynamics, as well as
clues to the underlying spin Hamiltonian, which is often
not well-known. Two materials whose behavior in mag-
netic fields has been extensively studied are Cs2CuCl4

and Cs2CuBr4, which are known to be approximately de-
scribed by the spatially anisotropic version of the model,
with larger anisotropy in the chloride (R ≈ 0.7) than the
bromide (R ≈ 0.3 − 0.5). Both materials exhibit a rich
structure of multiple phases in applied magnetic fields,
for which a theoretical view of the phase diagram would
be quite helpful.

The solution of the ground state of a fully two dimen-
sional frustrated quantum spin model in a two-parameter
phase space is quite ambitious. Here, we consider a
somewhat simpler task, by concentrating on the prob-
lem defined by the model confined to a cylinder with a
circumference of three lattice spacings (i.e. making y
periodic with period 3), which we refer to as a Triangu-
lar Spin Tube, or TST (see Fig. 2). By a combination
of analytical approaches and extensive numerical simula-
tions using the Density Matrix Renormalization Group2

(DMRG), we reveal a rich and complex phase diagram
for the TST, shown in Fig. 3. We argue in the Discus-
sion (Sec.VIII) that much of this diagram translates to
the fully 2d model. Whenever possible, we use a nomen-
clature for the ground state phases which translates di-
rectly to two dimensions, though there are, of course,
differences due to the absence of spontaneously broken
continuous symmetry in one dimension.

Different parts of this phase diagram will be discussed
in detail in the bulk of the paper, but we will highlight
a few aspects here, where strong quantum features oc-
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FIG. 1: TST in (a) Cartesian and (b) sheared coordinates
with intrachain interactions J and interchain interactions J ′.

cur. First, the isotropic line, R = 0, as a function of
magnetic field has been considered many times in the
two-dimensional limit. There, semi-classical methods3,4

predict the stabilization of both coplanar spin configura-
tions by quantum fluctuations, and, most interestingly,
a magnetization plateau, at which the magnetization of
the system is fixed (at T = 0) at 1/3 of the saturation
magnetization over a range of magnetic fields. We will
refer to this state as the “1/3 plateau” throughout this
text. On the plateau, the spins order into a collinear con-
figuration. Stabilization of such a plateau is very much
a quantum effect and is one of the more striking quan-
tum features of the TST. The presence of the plateau
has been confirmed for both the one-dimensional5–7 and
the two-dimensional spin-1/2 Heisenberg models by ex-
act diagonalization8, coupled-cluster9 and variational10

methods. Our DMRG study of the TST is also consis-
tent with the semi-classical picture along the R = 0 line.
We directly confirm the two “coplanar” phases, and ac-
curately locate the boundaries of the 1/3 plateau.

Another regime of strong quantum fluctuations occurs
when R is close to 1, where the system is composed of
weakly coupled (strictly) one dimensional (1d) chains.
There, an approach based on scaling and bosonization
methods is possible, following Refs. 11,12. Those tech-
niques (explained in this context in Sec. V) predict a spin
density wave (SDW) state over a wide range of applied
fields. In this SDW state, the dominant spin correlations
are those of the Ising component parallel to the field,
in sharp contrast to the classical behavior. Our DMRG
simulations show that the SDW state dominates a re-
markably broad region of the phase diagram, extending

FIG. 2: TST in sheared coordinates with period of three
lattice spacings in the y-direction. It is crucial to note
that this geometry allows one to write

∑3
y=1

∑
xOyOy+1 =∑3

y=1

∑
xOyOy+2 for an operator O.

far beyond the decoupled line, R = 1.

In two dimensions, the quasi-1D approach of Refs. 11,
12 shows the existence of a (very narrow) 1/3 plateau
arising out of the SDW phase, leading to the speculation
that the plateau persists for all R in two dimensions.
In the TST, we find that the plateau is also very ro-
bust, and persists almost, but not quite, to the 1D limit.
The suppression relative to two dimensions can be un-
derstood as a result of enhanced fluctuations due to the
one-dimensionality of the TST. To check this, we have
also carried out some DMRG studies of wider cylinders
consisting of 6 and 9 sites in the periodic direction. Our
results appear consistent with the existence of a plateau
for all R in two dimensions.

The last quantum regime we discuss here is clearly spe-
cific to the periodic boundary conditions imposed around
the TST. This occurs at zero field, where for all values of
R, we observe a spontaneously dimerized ground state.
The dimerization is most clearly observed in the entan-
glement entropy, which shows a pronounced oscillatory
behavior along the chain. We argue that this can be un-
derstood as an effect of one-dimensional quantum fluc-
tuations upon an underlying short-range spiral magneti-
cally ordered state, somewhat similar to the formation of
a Haldane gap in integer spin chains with collinear clas-
sical states. The elementary excitations of the dimerized
state are solitons, and we show how the behavior at small
magnetization can be understood in terms of a dilute sys-
tem of such solitons.

The remainder of the paper is organized as follows. In
Sec. II we introduce the model and then describe key
technical aspects of our DMRG simulations, including
the procedure to determine the phase boundaries using
the second derivative of the ground state energy and en-
tanglement entropy, and careful finite size scaling. In
Sec. III, we review and compare the semi-classical pre-
dictions to the DMRG results in the isotropic limit. Next,



3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

 

 

R ≡ 1 − J �/J

M
ag

n
et

ic
fi
el

d
,
h

SDW

IC planar

IC planar

Cone

Fully polarized

C
planar

1/3-plateau
C
planar

Tuesday, October 16, 2012FIG. 3: (Color online) Phase diagram for the spatially
anisotropic spin-1/2 TST in a magnetic field. Here, we use
the following abbreviations to label the various phases of the
diagram: C = commensurate; IC = incommensurate; SDW =
spin density wave. R ≡ 1− J ′/J is the degree of anisotropy.
The dashed lines indicate constant magnetization lines, where
the upper, middle and lower ones are at M/Ms = 5/6, 1/2 and
1/6, respectively.

we discuss the high field region in Sec. IV. In the vicin-
ity of the saturation field, the problem can be modeled
as a dilute system of spin-flip bosons. We compare an
analysis of this limit, built upon an analytic solution
of the Bethe-Salpeter equation, to the DMRG, and find
a transition between coplanar and cone phases, and a
commensurate-incommensurate transition. In Sec. V, we
study the regime of weakly coupled chains, and in partic-
ular discuss the spin density wave (SDW) state and show
that the 1/3 plateau terminates in a Kosterlitz-Thouless
transition around R ∼ 0.7 ± 0.1 for the TST. We con-
sider the low field region in Sec. VII, showing the per-
sistent dimerization, the evidence for solitons at small
magnetization, and the commensurate to incommensu-
rate transition near R = 0. DMRG numerical results
will be presented throughout these sections, presenting
the important features used to identify each phase. Phys-
ical quantities, like entanglement entropy, vector chiral-
ity and the spin density profile will be shown for some
representative large system size. Finally, we conclude in
Sec. VIII with a summary and discuss some generaliza-
tions of our results to larger spin and two-dimensional
systems.

II. MODEL AND DMRG METHOD

A. Hamiltonian and notation

The explicit Hamiltonian studied in this paper is writ-
ten as

H =
∑

x,y

[J Sx,y · Sx+1,y + J ′ Sx,y · (Sx,y+1 + Sx−1,y+1)]

−h
∑

x,y

Szx,y, (1)

where x is the direction along the chains, and y is perpen-
dicular to it, and h is the magnetic field. Importantly,
we choose coordinates, as shown in Fig. 1b, where the
triangular lattice is “sheared” to embed it in a square
one. This is convenient for the application of periodic
boundary conditions in the TST.

Many previous works on the anisotropic triangular
lattice in two dimensions, including those by some of
the authors11,13, use instead “cartesian” coordinates, as
shown in in Fig. 1a. Both for convenience in certain cal-
culations (especially in the quasi-one-dimensional limit),
and to clarify the connection to this prior work, we give
the relation between the sheared and cartesian coordi-
nates here. In cartesian coordinates, we take the dis-
tance between sites along the chains and the (normal)
distance between chains to unity. Defining the cartesian
coordinates as x, y, and r = (x, y), then

x = x+ y/2, y = y. (2)

From this, we may also obtain the relationship between
wavevectors in the two coordinate frames. We require
q · r = q · r, which implies

qx = qx, qy = 1
2qx + qy. (3)

B. DMRG

Throughout this paper, we rely extensively on DMRG
simulations. For the present study, we kept up to m =
3072 states in the DMRG block, performing more than
24 sweeps to obtain fully converged results. In doing so,
we find that our truncation error is of the order 10−7. We
also take advantage of the cylindrical boundary condition
to study large systems and to reduce finite-size effects
for a more reliable extrapolation to the thermodynamic
limit. In particular, in the regions above the 1/3 plateau,
we find that observables have much better convergence,
with a truncation error of the order 10−9. Even in the
regions below the 1/3 plateau not close to the dimerized
phase, we find reasonable convergence, with a slightly
larger truncation error on the order of 10−7. However,
when we approach the dimerized phase near zero magne-
tization, finite-size effects dominate: system sizes up to
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FIG. 4: (Color online) Second derivative of the ground state
energy with respect toR, for different values of magnetization.
These plots are used to locate the phase boundaries in Fig. 3.

N = 180 × 3 do not provide a reliable extrapolation to
the thermodynamic limit.

The phase boundaries in Fig. 3 were determined from
the simulations. We describe the methodology for doing
so here, leaving the characterization of the phases which
occur for subsequent Sections. For the case of contin-
uous transitions, it is common to calculate the second

derivative of the ground state energy, ∂2E0

∂R2 . The cal-
culation follows standard procedure of using three data
points at R+dR, R, and R−dR, according to the formula
∂2E0/∂R

2 = [E0(R+ dR) +E0(R− dR)− 2E0(R)]/dR2.
The derivative diverges when the infinite-size system un-
dergoes a transition. For finite systems, however, one
will observe a finite peak that increases with system size.
We then determine the phase boundaries numerically by
looking at the peak position as a function of tuning pa-
rameter R. For example, as shown in Fig.4 (a), sharp
peaks are located at R=0.6. We observe that the peak
value increases significantly with sample size, for all sys-
tem sizes studied. We have not attempted to carry out
detailed finite size scaling analyses of the peaks, as our fo-
cus here is on the phases, not the critical behavior at the
transitions between them. This transition corresponds to
the upper dashed line in Fig. 3, where there is a transition
between an incommensurate planar and a cone phase.
We use similar procedures to determine phase bound-

aries at other magnetizations, e.g. M/Ms = 1/2, 1/6 in
Figs. 4(b,c) correspond to the middle and lower dashed
lines in Fig. 3, respectively.

In addition to these divergent peaks, there are some
other features (which are not phase transitions) due to
finite size effects. For example, in Fig. 4(a) for M/Ms =
5/6, a broad peak near R = 0.8 actually decreases (and
eventually goes to zero) in the thermodynamic limit.
Therefore, we can confidently say that the cone phase
dominates in the region R > 0.6, and that there is no
transition at R = 0.8. Similarly, for Figs. 4(b,c), the
fluctuations in the plots near R ≈ 0.7, 0.45, respectively,
are finite size effects and vanish in the thermodynamic
limit.

Finally, we use the structure factor

Sµµ(q) =
1

N

∑

r,r′

e−iq·(r−r
′)〈Sµr Sµr′〉. (4)

to determine the boundaries between the commensurate
and incommensurate phases. For example, for small
R, the transverse and longitudinal components of the
structure factor peak at commensurate momenta Q =
(4π/3, 2π/3) and (2π/3, 4π/3), respectively. This defines
the “C planar” regions in Fig. 3.

III. SEMI-CLASSICAL BEHAVIOR IN THE
ISOTROPIC CASE

A. Two-dimensional model

The isotropic model, J ′ = J , has been extensively
studied in two dimensions, and it is believed that a semi-
classical description, with weak quantum fluctuations in-
cluded via spin wave theory, is qualitatively correct in
this case3. We find that the semi-classical analysis largely
carries over to the TST, with small modifications to allow
for one-dimensional fluctuations. Therefore we review
the established semi-classical results first.

In the classical limit, where spins are described as O(3)
vectors, the isotropic problem is known to display an
“accidental” degeneracy in a non-zero applied magnetic
field14. This can be seen from the fact that this model
can be rewritten as

H =
J

2

∑

4

(
S4 −

h

3J
ẑ

)2

, (5)

where S4 = S1 + S2 + S3 is the sum of the spins on a
triangle, and the sum is over all triangles on the lattice.
The ground state configuration is given by the constraint

S4 −
h

3J
ẑ = 0. (6)

At zero magnetization, this constraint is solved by plac-
ing all spins in a plane, with the three spins in each tri-
angle at 120◦ angles to one another in a three sublattice
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FIG. 5: Degenerate classical spin configurations in the
isotropic limit. With the magnetic field taken in the z-
direction, (a) shows the “V” configuration above the 1/3
plateau, (b) depicts the “Y” phase below the 1/3 plateau
while (c) shows the cone (or umbrella) state.

structure. A specific ground state is specified by three an-
gles, e.g. two determining the plane of the spins and one
determining the angle within the plane. All such states
are related by O(3) spin symmetry; so this is a symmetry-
demanded degeneracy. a previous DMRG study15 on the
2d model also confirms the three sublattice structure.

In a non-zero field, the ground states retain a three-
sublattice structure, with three arbitrary angles remain-
ing to determine the specific ground state. However, the
presence of the field reduces the O(3) symmetry to O(2)
(or U(1)), and only one of these angular degrees of free-
dom is symmetry demanded. The remaining two angular
degrees of freedom constitute an accidental degeneracy.
Two simple states within the degenerate manifold are the
coplanar and umbrella ones, shown in Fig. 5.

As first shown by Chubukov and Golosov3, this ac-
cidental degeneracy is lifted by quantum fluctuations.
They showed by a 1/S spin wave expansion that the de-
generacy is lifted in favor of the coplanar states. Ad-
ditionally, they demonstrated the existence of the 1/3
plateau, in which the spins adopt a 3 sublattice “up up
down” structure. Away from the plateau, the copla-
nar state retains a 3 sublattice structure with ordering
wavevector Q = (4π/3, 0), or Q = (4π/3, 2π/3)3,4,16. Be-
low the plateau, the 3 spins form a “Y” with one spin
antiparallel to the field and two spins with equal positive
projection to the field but at opposite angles from each
other. This can be viewed as a deformation of the 120◦

state with spins in a plane containing the magnetic field.
Here the spin configurations can be parametrized by

〈S+
r 〉 = a eiθ sin (Q · r)

〈Szr 〉 = b− c cos2 (Q · r) , (7)

where θ is an arbitrary angle specifying the plane of the
spins, while a, b, c are constants dependent upon the field
magnitude. Since Q · r = 2π(2x + y)/3, we see from
Eq. (7) that when 2x+y is a multiple of 3, one of the spin
is aligned with the magnetic field. Above the plateau one
finds instead a “V” configuration, with two spins identi-
cal and the third chosen to give zero moment normal to
z. In this case, we have

〈S+
r 〉 = a eiθ cos (Q · r)

〈Szr 〉 = b− c cos2 (Q · r) . (8)

Note that the cosine in the first line of Eq. (8) never
vanishes on lattice sites, so that spins are never parallel
to the field in the V state.

B. One dimension

We will see that the semi-classical results summarized
in the previous subsection for the two-dimensional case
remain qualitatively correct, at least at short distances,
in the TST. However, we must still account for the ef-
fects of quantum fluctuations on long length scales, since
the one dimensional system cannot break the U(1) spin-
rotational symmetry about the field axis. Since the U(1)
symmetry is unbroken in the plateau state, there are
no essential effects of one-dimensional fluctuations there.
However, they have qualitative effects in the Y and V
phases, since 〈S+

r 〉 = 0 there, in contrast to Eqs. (7,8).
Note that the modulation of 〈Szr 〉 is perfectly consistent
with one-dimensionality, and is expected to persist di-
rectly without qualitative modifications.

To incorporate one-dimensional fluctuations, we regard
the semiclassical results in Eqs. (7,8) as defining the local
spin ordering, with a fluctuating quantum phase θ(x, τ)
(τ is imaginary time), that is, we make the replacement

S+
r (τ)→ a eiθ(x,τ) sin (Q · r) , (9)

in the Y phase, and

S+
r (τ)→ a eiθ(x,τ) cos (Q · r) , (10)

in the V phase. Note that these formulae are not in-
variant under translations, reflecting the three-sublattice
structure of the coplanar phases. This can also be seen
from the oscillations in the 〈Szr 〉 expectation values. Even
when one-dimensional fluctuations are taken into ac-
count, translational symmetry is broken. This is still
consistent with the Mermin-Wagner theorem, since the
broken translational symmetry is discrete. Translating
by one or two lattice spacings, one obtains two other
symmetry related but distinct ground states.

In both the Y and V phases, the field θ(x, τ), represent-
ing the “would-be” Goldstone mode of the spontaneously
broken U(1) symmetry, is governed by the usual massless
free relativistic boson action,

Sθ =

∫
dxdτ

{
vK

2
(∂xθ)

2 +
K

2v
(∂τθ)

2

}
. (11)

C. Comparison to DMRG

We now turn to a comparison of the semi-classical pre-
dictions, corrected as in the previous subsection for one-
dimensional fluctuations, to the DMRG.
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FIG. 6: Entanglement entropy in the isotropic limit, R = 0
for system size Nx = 120. Note that the reduced coordinate
x′ ≡ ln

[
L
π

sin(πx
L

)
]

is plotted on the x-axis. We show the
von Neumann entanglement entropy for (a) M/Ms = 1/6,
the commensurate Y phase and (b) M/Ms = 1/2, the com-
mensurate V state. The solid line is a linear fit, where by
Eq. (12), we can extract the central charge, c.

1. Entanglement entropy

The simplest comparison arises immediately from
Eq. (11): the low energy physics is that of a single mass-
less scalar field, which is a conformal field theory with
central charge c = 1. This central charge can be directly
measured using the entanglement entropy.

According to conformal field theory17, in a one dimen-
sional critical system with open boundary conditions and
total length L, the von Neumann entanglement entropy
associated to a region with length x and its complement
of length L− x is given by

S(x, L) =
c

6
ln

[
L

π
sin
(πx
L

)]
. (12)

By plotting the entropy S(x, L) versus the reduced coor-
dinate x′ = ln[Lπ sin

(
πx
L

)
], we can directly extract c from

the numerics. As shown in Fig. 6, we can indeed ob-
tain c = 1 with high accuracy for both Y and V phases.
For example, the obtained central charge c = 0.98 at
M/Ms = 1/6 in the Y phase below the plateau, and
c = 0.97 at M/Ms = 1/2 in the V phase above the
plateau. Both are consistent with the theoretical pre-
diction.

2. Sz profile

The modulation of 〈Szr 〉 predicted by the semi-classical
theory in Eqs. (7,8) can be directly compared to the
DMRG results. This is shown in Figs. 7,8. Note that
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FIG. 7: (Color online) Sz profile in the isotropic limit, R = 0
at (a) M/Ms = 1/6, the commensurate Y phase, and (b)
M/Ms = 1/2, the commensurate V state. The square (red),
diamond (green) and circle (blue) data points show the 3-
sublattice structure of the isotropic case. The magnitude of
Sz does not decay because the discrete translational symme-
try is spontaneously broken in these states.

a particular symmetry broken state is chosen in the sim-
ulations, presumably due to pinning by the boundaries,
which explicitly break translational symmetry. The ori-
gin of the coordinate r in Eqs. (7,8) must be appropri-
ately chosen to match the chosen ground state.

3. S± correlations

Due to quantum fluctuations of the phase θ, the single
spin expectation value 〈S+

r 〉 = 0. Therefore, we must in-
stead turn to correlation functions to detect the Y and V
structure of the local ordering. Using Eq. (9), we obtain

〈S+
r S
−
r′ 〉 ∼ a2 sin (Q · r) sin (Q · r′)

〈
ei(θ(x)−θ(x′))

〉
,

(13)
in the Y phase below the 1/3 plateau. A similar formula,
with the sines replaced by cosines, describes the correla-
tion function of the V phase above the plateau. The cor-
relation function is evaluated with respect to Eq. (11),
where a finite-size form, first derived in Ref. 18, is as
follows

〈ei(θ(x)−θ(x′))〉 = Cη(x, x′), (14)

where

Cη(x, x′) = aη0
[f(2x)f(2x′)]η/2

[f(x− x′)f(x+ x′)]η
, (15)

f(x) =

[
2(L+ 1)

π
sin

(
π|x|

2(L+ 1)

)]
.

Here a0 is a cut-off dependent factor, which we can take
to unity, absorbing the dependence in a in Eq. (13). The
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FIG. 8: (Color online) Sz profile for the commensurate V
phase at M/Ms = 1/2 and R = 0.1. We find that the wave
vector remains commensurate, even for a non-zero, but small
R.

function, f(x), originates from a quantum average over
the normal modes of the bosonic field θ. One is now able
to fit the DMRG measurement of the transverse spin-
spin correlation function to Eqs. (13,14) to obtain the
ordering wave vector and the additional fit parameter,
η. A comparison is plotted in Fig. 9, where we show the
correlation function along each chain (i.e., y = 1, 2, 3)
for R = 0 and M/Ms = 1/6, 1/2. The fitting in Fig. 9a
yields a commensurate wave vector Q = (4π/3, 2π/3)
and η = 0.65 for M/Ms = 1/6, which corresponds to
the Y phase below the plateau. Above the plateau, in
the V phase shown in Fig. 9b, the ordering wave vector
still shows commensurability, Q = (4π/3, 2π/3) with η =
0.43. One can show that in the thermodynamic limit,
the correlation function in Eq. (14) reduces to a simple
power-law relation ∝ |x−x′|−η, which is reflected by our
data for distances |x− x′| � L/2.

D. Behavior for small non-zero R

If we perturb slightly away from the isotropic limit,
i.e. 0 < R � 1, we expect the semi-classical picture to
still hold. This has been analyzed in Refs. 4,16. Clas-
sically, the minimum energy spin configuration changes
immediately when R > 0 from a commensurate state
to an incommensurate one, with an ordering wavevec-
tor Q 6= (4π/3, 0) or Q 6= (4π/3, 2π/3). However, we
expect that quantum fluctuations will stabilize the com-
mensurate state for a range of anisotropies for a generic
value of the magnetic field. The reason is that copla-
nar phases break discrete translational symmetries of the
lattice. Since there are three equivalent ground states
connected by translations, the symmetry breaking can
be described by a Z3 order parameter. Specifically, the
combination

ζr = Szr e
2πi(x+2y)/3, (16)

defines a Z3 order parameter with 〈ζr〉 = |ζ|eiϑ and
ϑ = 0, 2π/3, 4π/3 in the three distinct Z3 domains. To
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FIG. 9: (Color online) Transverse spin-spin correlations in the
isotropic limit, R = 0 in the (a) commensurate Y phase and
(b) V phase for Nx = 120 and x′ = Nx/2. Data points are
shown as (black) circles while the theoretical fit from Eq. (14)
is shown as the (blue) line.

restore this discrete symmetry, a phase transition is re-
quired. More specifically, there are topological exci-
tations of the coplanar state which are domain walls,
also called solitons, connecting different symmetry bro-
ken states. There is a non-zero energy gap to create a
domain wall in any phase with long-range Z3 order. For
the Z3 order to be destroyed, solitons must proliferate in
the ground state. Small changes of parameters, such as
R, cannot instantly lower the gap for the domain walls to
zero, which implies stability of the phase for a range of
R values. This is correct, at least, away from the excep-
tional points where h = 0 (where the symmetry breaking
becomes continuous) and h = hsat (where the symmetry
breaking vanishes). We will discuss the vicinity of these
exceptional points in subsequent sections.

In general, with increasing anisotropy, R, we will en-
counter a phase transition to an incommensurate phase,
which corresponds to the proliferation of solitons and a
vanishing of their gap. Beyond that point, 〈ζr〉 becomes
zero, and Sz correlations peak at a wavevector other
than Q = (4π/3, 2π/3). This transition is discussed in
Sec. IV E.

A useful test for this phase is the measurement of the
central charge via entanglement entropy. In the commen-
surate regions, even for R > 0, we expect c = 1, while
incommensurate phases may have c > 1. We observe this
effect in Fig. 6, which shows c = 1 in the commensurate
state, whereas Fig. 11 shows c = 2 in the incommensu-
rate state. In addition, we can check for commensurabil-
ity using structure factor measurements, as discussed in
Sec. II B.



8

E. Phenomenological analysis at low field

We now address the region slightly away from R = 0
and at low applied magnetic field. We begin the discus-
sion from a 2d point of view, though it largely applies to
the TST as well. Commensurate coplanar spin order is
described by the order parameter d = n1−in2, where n1,
n2 are mutually orthogonal vectors with identical norm
spanning the plane of the spin order. Then, a spin at
coordinate r can be written as

Sr = M + Re(deiQ·r) = M + n1 cos[Q · r] + n2 sin[Q · r].
(17)

Lattice translations transform d → de−i2π/3, while lat-
tice inversion, r → −r, results in complex conjugation,
d→ d∗. The effective Ginzburg-Landau Hamiltonian de-
scribing the coplanar state should remain invariant under
these operations (see Ref. 19 for a closely related discus-
sion). Then,

Hcomm = −rd∗ · d + a0|∂xd|2 + a1(d∗ · d)2 + a2|d · d|2
+χ1h

2d∗ · d + χ2|h · d|2

+
1

2
χ3[(h · d)3 + (h · d∗)3]. (18)

Here, at mean-field level, r > 0 is required to obtain
non-zero n1,2, and a0,1 > 0, for stability in the ordered
phase. Furthermore, a2 > 0 energetically imposes the
orthogonality condition n1 · n2 = 0 in zero field. To
favor coplanar (rather than umbrella) spin structures in
a finite magnetic field, requires χ2 < 0. We may expect
that χ2 is a function of the anisotropy, being negative for
the isotropic limit R = 0 and changing sign to positive
values for sufficiently large R, where the order by disorder
physics favoring coplanar states gives way to the classical
energetic preference for umbrella states. Here we restrict
ourselves to the small anisotropy regime, for which we
expect χ2 to remain negative. With the preference for
coplanar states set by χ2 < 0, for field oriented along ẑ,
the preferred configurations of d may be parametrized as

d = |d|eiθ̃ [ẑ + i(cos θx̂ + sin θŷ)] , (19)

where θ describes the orientation of the plane of the spins,
and θ̃ the angle of the spins within that plane. With this
form for d, we obtain the spin operators as

Szx,y ∼ M + |d| cos(Q · r + θ̃),

S+
x,y ∼ −|d|e−iθ sin(Q · r + θ̃). (20)

The last term in Eq. (18) describes the commensu-
rate locking of the spin to the lattice by the finite mag-
netic field. Using Eq. (19), it may be rewritten as a
sine-Gordon term

Hsg = χ3|d|3h3 cos[3θ̃]. (21)

The sign, χ3 > 0, is fixed by the condition that one of
the three spins in a sublattice must be oriented opposite

to the external field in the commensurate state. Thus, in
the commensurate state, θ̃ = π in (19).

Now we move away from the isotropic line to R > 0.
Here 3-fold rotational symmetry is broken, which allows
the introduction of an additional term, linear in deriva-
tives, into the effective Hamiltonian:

Hincomm =
i

2
b1(d∗ · ∂xd− d · ∂xd∗)

= −b1|d|2∂xθ̃. (22)

Since this term must vanish at R = 0 and be analytic,
b1 ∼ R. This term competes with the sine-Gordon term
in Eq. (21), with the commensurate state with constant

θ̃ favored at small R and destabilized at larger R. Thus
the commensurate-incommensurate transition in two di-
mensions can be described by a Hamiltonian of the phase

HC−IC =

∫
d2r{ã0(∂xθ̃)

2 − b̃1∂xθ̃+ χ̃3h
3 cos[3θ̃]}. (23)

Here, the coefficients with tildes, ã0, b̃1, χ̃3, are rescaled
by unimportant factors, such as the amplitude |d|.

The sine-Gordon model of the form in Eq. (23) appears
in several guises in this paper, and is analyzed in Ap-
pendix A. It encodes a commensurate-incommensurate
transition (CIT) with increasing b̃1. This transition is
mean-field like for d = 2, and we may apply the results
of Appendix A 1. This gives a critical value for the CIT

of b̃1,cr ∼
√
ã0χ̃3h3 for the incommensurate state, which

translates to

hC−IC ∼ R2/3, (24)

since b̃1 ∼ R. This is roughly consistent with shape of
the boundary in the lower left corner of Fig. 3.

For the TST, the situation is complicated by one-
dimensional fluctuations. At zero field, h = 0, we
know that, in fact, the ground state is not a spiral but
rather a dimerized phase. Hence, we cannot directly ap-
ply the above analysis at the lowest fields. The dimer-
ized phase is broken fairly rapidly by the field, and so,
above some small critical field, we may expect to be able
to use results of this type. Even so, we should really
use results for the d = 1 case, where a non-mean-field
analysis applies, as described in Appendix A 2. Using
Eq. (A16), the critical value b̃1,cr is suppressed by a

factor of (χ̃3h
3/ã0)∆3/(4−2∆3), so that the net result is

b̃1,cr ∼ h
3−∆3
2−∆3 , and hence

hC−IC ∼ R
2−∆3
3−∆3 . (25)

Here, ∆3 is the scaling dimension of the cos 3θ̃ term. As-
suming the commensurate phase is at all stable for small
R implies ∆3 < 2, so that the cosine term is relevant
in the isotropic case, R = 0. It is also bounded below
by zero, so that the exponent in Eq. (25) varies between
0 and 2/3. Once again, we caution that the expression
must be taken with care, since it does not in fact apply
at the lowest fields.
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IV. HIGH FIELD REGION

A. Spin flip bosons

In this section, we study the phase diagram near sat-
uration, i.e. for applied fields sufficiently large that the
magnetization is close to its maximum of 1/2 per site. At
saturation, the ground state of the model is the trivial
product state with all spins aligned in the direction se-
lected by the field. For fields above the saturation field,
this is the exact ground state, and the lowest excited
states consist of single magnons, in which just one spin
has been flipped relative to the saturated state. These
magnons are bosons with Sz = 1, and upon reducing
the field to the saturation value, the minimum energy
required to create a magnon vanishes. Below the satura-
tion field, therefore, we can expect Bose-Einstein conden-
sation (BEC) of these magnons. In the one-dimensional
TST, strict BEC is not possible due to phase fluctuations,
but these fluctuations are readily taken into account and
a quasi-condensate description remains appropriate.

To formalize the magnon BEC picture, one may trans-
form the spin model to a bosonic one20–25, using the
equivalence of the spin s = 1/2 Hilbert space to that
of hard-core bosons:

S+
r = Pr br Pr (26)

Szr =
1

2
− nr, (27)

where nr = b†rbr is the boson occupation number, and
one must project onto the space of no double boson occu-
pancy, Pr = |nr = 0〉〈nr = 0|+|nr = 1〉〈nr = 1|. Eq. (26)
is equivalent to the Holstein-Primakoff bosonization for-
mula, truncated to quadratic order in boson operators
and taking s = 1/2, provided the no double occupancy
constraint is imposed. The generalization to s > 1/2 will
be briefly discussed later in Sec. VIII B 1.

It is convenient to implement the no double occupancy
constraint by first relaxing the constraint, adding an on-
site interaction U to the Hamiltonian, and then realiz-
ing the projection by taking the U → ∞ limit. In this
way we can proceed simply by rewriting the Heisenberg
model using Eq. (26), forgetting the projection operators,
i.e. taking Pr → 1. We thereby obtain a boson Hamil-
tonian with hopping terms (J), on-site energies (J, h),
an on-site (U) and nearest-neighbor (J, J ′) interactions.
Fourier transforming to diagonalize the quadratic terms,
we find

H =
∑

k

[ε(k)− µ] b†kbk +

1

2N

∑

k,k′,q

V (q)b†k+qb
†
k′−qbk′bk, (28)

where

ε(k) = J(k)− Jmin, (29)

µ = hsat − h, where hsat = J(0)− Jmin, (30)

V (k) = 2 (ε(k) + U) . (31)

Here, J(k) is the Fourier transform of the exchange in-
teraction, µ is the bosonic chemical potential, and hsat

is the saturation field. We will use this formalism to de-
rive an effective action for the dilute bosons, and also to
locate (if any) a transition between the planar and cone
phases near saturation.

B. Effective field theory for dilute bosons

For h > hsat, the vacuum is an exact ground state of
this Hamiltonian, i.e. bk|0〉 = 0. Below the saturation
field, a finite density of magnons is introduced into the
system, and a BEC or quasi-BEC is expected. The phase
of the system, and correspondingly the magnetic order
(correlations), is determined by the structure of this con-
densate (or quasi-condensate). To determine this struc-
ture, we construct an effective model. The lowest energy
magnon excitations in the triangular lattice occur at non-
zero momenta ±Q, which minimize the dispersion23,24.
In our (sheared) coordinates, the dispersion relation is

JTST(k) = J cos kx + J ′[cos ky + cos(ky − kx)]. (32)

In two dimensions, we can choose arbitrary kx and ky,
and the minima occur at k = ±Q2d, with Q2d =
(Q2d, Q2d/2), and

Q2d = 2 arccos

[
− J

′

2J

]
. (33)

Note that in the conventional cartesian coordinates this
wavevector is Q = (Q2d, 0). For the TST, we must quan-
tize ky = 0, 2π/3, 4π/3. With this restricted choice of
ky, the 2d wavevector Q2d cannot generally be achieved.
Instead, we find that the minimum energy wavevector is
kTST = ±QTST = ±(Q1d, 2π/3), with

Q1d = π + arctan

( √
3J ′

2J − J ′

)
. (34)

The two wavevectors coincide when J = J ′.
In a low-energy description, the modes away from these

two minima may be integrated out, leaving an effective
theory in terms of two “flavors” of bosons, ψ1 and ψ2,
defined via

bk = ψ1,Q+k + ψ2,−Q+k + b̄k. (35)

Here, ψ1,q (ψ2,q) is defined as a boson “centered” on the
minimum energy momentum Q (−Q), with weight only
for small |q| < Λ, where Λ � 2π is a cut-off introduced
by integrating out the modes away from the minima.
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The third operator b̄k represents the high energy modes
which remain uncondensed, and are integrated out. In
two dimensions, Fourier transforming in qx, qy back to
real space leads to slowly varying continuum fields ψa(r),
where r is a two dimensional spatial coordinate. For the
TST, we need to keep only the mode with minimum en-

ergy qy, and so, we Fourier transform only in qx, which
leads to a continuum field dependent only on the position
along the chain, x.

In this continuum limit, the boson fields are governed
by an effective action of the form

S =

∫
ddrdτ

{
ψ†1(∂τ −

1

2m
∇2)ψ1 + ψ†2(∂τ −

1

2m
∇2)ψ2 − µ (ρ1 + ρ2) +

1

2
Γ1

(
ρ2

1 + ρ2
2

)
+ Γ2ρ1ρ2

}
, (36)

where ρα = |ψα|2. We have written the action, Eq. (36),
in a form which includes both the TST (d = 1) and two
dimensional (d = 2) cases. We expand to fourth order
in |ψa| and to lowest order in derivatives, which is justi-
fied near saturation due to the diluteness of the magnons.
The quadratic terms in Eq. (36) can be readily extracted
from the exact single-magnon dispersion, which is given
in Eq. (29) (in general in two dimensions the quadratic
term may have an anisotropic effective mass tensor24,
which is not explicitly shown in Eq. (36)). The quartic
interaction terms are more subtle, because though the
magnons may be assumed dilute, the lattice-scale inter-
actions in Eq. (28) are not weak. Therefore the parame-
ters Γ1,Γ2 must be obtained from a more careful analysis,
which we return to below.

C. Order parameter structure

Taking for the moment the Γa as phenomenological
parameters, we discuss the structure of the condensed or
quasi-condensed phase. If µ < 0, there are no bosons in
the system, and the vacuum is the ground state. When
µ > 0, a finite density of bosons is present. Depending
upon their interactions, different phases may result23. To
discuss the nature of these phases, a mean field analysis of
Eq. (36) is sufficient. We comment on the modifications
to the mean field results at the end of this subsection.

In mean field theory, we simply minimize S in Eq. (36)
for constant values of ψα. When µ > 0 and Γ1 < Γ2,
then ρ1 6= 0, ρ2 = 0 or vice versa, which means that the
magnons condense at one of the two minima: a single-Q
condensate. Here, in minimizing the energy, one finds
that ρ1 = 〈ρ1〉 = µ/Γ1 and E/N = −µ2/(2Γ1). By
taking ψ1,2 =

√
ρ1,2e

iθ1,2 , one can write the spin operator
as follows

S+
r = ψ ei(Q·r+θ1) (37)

Szr =
1

2
− 〈ρ1〉, (38)

where ψ =
√
〈ρ1〉 in mean field theory. We see that

the z-component of the spins is non-zero but constant in

space, while the xy components rotate as one moves in
space. Such a configuration is called a cone or umbrella
phase, because the spins trace out a cone as one proceeds
through the lattice, see Figure 5(c).

When Γ2 < Γ1, then ρ1 = ρ2, which means that the
bosons condense at both +Q and −Q. This is a double-Q
condensate with density 〈ρ〉 = 〈ρ1〉+〈ρ2〉 = µ/(Γ1+Γ2) in
mean field theory. Here, the energy E/N = µ2/(Γ1+Γ2).

Again, by letting ψ1,2 =
√
ρ1,2e

iθ1,2 and θ1,2 = θ ± θ̃,

S+
r = 2ψ eiθ cos

(
Q · r + θ̃

)
(39)

Szr =
1

2
− 4〈ρ〉 cos2

(
Q · r + θ̃

)
, (40)

where ψ =
√
〈ρ〉 in mean field theory. In this phase, the

z-component of the spins is not constant, but the phase
of S+

r is constant. This implies that the spins remain
in a plane, i.e. this is a coplanar phase. Instead of a
cone, the spins in this phase sweep out a “fan” – so this
is sometimes called a fan state.

How much of this survives beyond mean field theory?
In general, the dependence of the density on chemical
potential is affected by fluctuations. Note that in the
original spin problem, this dependence gives the behav-
ior of the magnetization versus field in the vicinity of
saturation, as is seen from Eq. (26). As is well-known26,
the BEC transition at µ = 0 is a very simple example of a
quantum critical point, whose upper critical dimension is
d = 2. Thus in two dimensions, the deviations from mean
field theory are minimal and consist just of logarithmic
corrections. However, in d = 1 the corrections are much
more significant, and the dependence of the density on
chemical potential is quite different.

In mean field theory, we see that there is a first or-
der transition between the cone and fan states upon
varying Γ1 − Γ2 through zero. In fact, the location of
this transition at Γ1 = Γ2 is correct and moreover, ex-
act, beyond mean field theory. To see this, note that
when Γ1 = Γ2 = Γ, the interaction terms may be
rewritten as Γ

2 (ρ1 + ρ2)2, which implies that the ac-
tion has an enlarged SU(2) symmetry under rotations
ψα →

∑
β Uαβψβ , where U is an arbitrary SU(2) ma-

trix. This guarantees the degeneracy of the cone and fan
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states at this point, since one can be rotated into the
other by such an SU(2) rotation, and therefore, fixes the
location of the cone to coplanar transition.

When Γ1 6= Γ2, the SU(2) symmetry of Eq. (36)
is reduced to U(1)×U(1), corresponding to independent
phase rotations of ψ1 and ψ2. As a consequence, there
will be one gapless mode in the theory described by
Eq. (36) for each bose field with non-zero amplitude, i.e.
one in the cone state and two in the fan. The fluctuations
of these gapless modes lead, in the one dimensional TST,
to power-law correlations of the spin components trans-
verse to the magnetic field, rather than the long range
order (broken symmetry states) obtained in mean field.

Physically, the overall U(1) symmetry under simulta-
neous and equal rotations of both fields reflects conser-
vation of Sz, and is microscopically mandated by the
Heisenberg model. The “orthogonal” symmetry under
the rotation of the two boson fields by opposite phases
is emergent, however. It is a consequence of the discrete
translational symmetry of the lattice, and the (generi-
cally) incommensurate nature of the wavevector Q. In
general, this symmetry is broken by terms (which should
be added to S in Eq. (36)) of the form

S ′ = −
∑

n

wn

∫
ddxdτ

(
ψ†1ψ2

)n
e−inqn·r + h.c., (41)

where näıvely qn = 2Q, but in fact we can take qn =
2Q−K/n, where K is any reciprocal lattice (RL) vector,
since r is a lattice coordinate. So henceforth we work with

qn = minK∈RL[2Q−K/n], (42)

i.e. we choose K to minimize the magnitude of qn. When
the wavevector Q is incommensurate and the magnitude
of these terms are small, their oscillations average to zero
over short distances, and they can thereby be neglected.
However, if 2nQ is close to a reciprocal lattice vector,
then qn is small and the corresponding wn term becomes
slowly varying, and it can have effects that persist into
the continuum theory. This occurs only if 2nQ is close to
a reciprocal lattice vector and the amplitude of both ψ1

and ψ2 is non-zero, i.e. within the coplanar or fan state.
This leads to commensurate-incommensurate transitions,
discussed in Sec. IV E.

In the cone state, such effects are not important. In
this case we expect one gapless “Goldstone” mode (θ1)
and power-law transverse spin correlations. But actu-
ally there is some hidden long range order. Note that
in Eq. (37) we have (arbitrarily) chosen the minimum
with ρ1 6= 0 and ρ2 = 0, instead of the one with ρ1 = 0,
ρ2 6= 0. In doing so, the system spontaneously breaks dis-
crete symmetries. In particular, for the TST, this choice
breaks both inversion symmetry and a “charge conjuga-
tion” symmetry, the latter being the anti-unitary sym-
metry of the Scrödinger equation under complex conju-
gation of the wavefunction. Although the fluctuations of
the phase θ1 above will reduce the mean field magnetic
order to quasi-long-range order in the TST, the discrete

Γ

k

k� k� − q

k + q

=

Γ

k

k�
k� − p

k� − q

k + p
k + q

q − pq +

FIG. 10: Ladder approximation of Eq. (44). Here, k, k′ are
incoming momenta while k+ q, k′− q are outgoing momenta.

symmetry breaking is robust to one dimensional fluctu-
ations. This symmetry breaking can be most directly
sensed by the vector chirality7,27,

Vx,y = ẑ · 〈Sx,y × Sx+1,y〉. (43)

Replacing S+
r in Eq. (43) by the ansatz in Eq.(37), we

find V = ψ
2

sinQ, i.e. a non-zero and constant value in
the cone state. The opposite sign would be obtained for
the solution with ρ1 = 0, ρ2 6= 0, so this serves as an
Ising-type order parameter for the cone state.

D. Incommensurate planar to cone state transition
at the saturation

1. Bethe-Salpeter equation

Now that we have described the phases of Eq. (36),
we will briefly outline the methods to compute Γ1,Γ2.
When the external field is sufficiently close to the satu-
ration field, then the density of magnons, or spin flips,
is dilute. In this case, we can safely use the ladder
approximation28–30 to renormalize the interaction ver-
tex in a controlled manner. In fact, we strictly speak-
ing analyze the interactions for fields above the satu-
ration field, where there are no bosons present in the
ground state, and we consider just two bosons interact-
ing pairwise above the vacuum. We require the behavior
in the limit in which the saturation field is approached,
i.e. in which the energy of the two interacting bosons ap-
proaches zero. This limit should be familiar from ultra-
cold atomic systems, in which the complicated interac-
tions between atoms can be replaced by one or a few
scattering lengths, which represent the effective interac-
tions in the dilute limit. Here we obtain the effective in-
teractions from the Bethe-Salpeter (BS) equation, which
reads

Γ(k, k′; q) = V (q)−
∫

p

V (q − p)Γ(k, k′; p)
ε(k + p) + ε(k′ − p) + Ω

. (44)

Here Γ(k, k′; q) is the irreducible four-point interaction
vertex taken with all external frequencies equal to zero,
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and Ω = 2(h − hsat) = −2µ. The k, k′ are the incom-
ing momenta and k + q, k′ − q are the outgoing mo-
menta, as shown in Fig. 10. From this, one obtains that
Γ1 = Γ(Q,Q, 0) and Γ2 = Γ(Q,−Q, 0) + Γ(Q,−Q,−2Q).
In Eq. (29), we introduced a factor of U into the defini-
tion of V (q) to enforce the spin-1/2 constraint, which is
equivalent to taking the limit U →∞. This limit in the
BS language, Eq. (44), provides us with an additional
constraint which reads21,23

∫

p

Γ(k, k′; p)
ε(k + p) + ε(k′ − p) + Ω

= 1. (45)

Both Eq. (44) and Eq. (45) can be applied either in two
or three dimensions, or for the one dimensional TST;
in the latter case, the integral over p should be re-
garded as an integral over px and a sum over the discrete
py = 0, 2π/3, 4π/3. Notice that in two or fewer dimen-
sions, since ε(k) ∼ k2, V (k) ∼ 1 near k = 0, the integral

is at least logarithmically divergent when Ω approaches
zero. This reflects the fact that weak interactions are
marginally relevant at the zero density fixed point in
d = 2, and relevant for d < 2. We use this to our advan-
tage, since we are interested precisely in this limit: the
singular parts dominate the vertex function as Ω → 0+,
and we extract these dominant singular terms analyti-
cally to obtain the asymptotic behavior. For d > 2, the
integrals become non-singular, and one can directly take
the Ω = 0 limit.

2. Calculation of Γ1 and Γ2 in 2d

We first give a brief summary of our calculations for
the 2d case. The dispersion minima occurs at k,k′ =
±Q2d = ±(Q2d, Q2d/2), where Q2d is given in Eq. (33).
To solve the BS equation, we use the following ansatz:

Γ(k, k′; q; Ω) = A0 +A1 cos qx +A2 sin qx +A3 cos qy +A4 sin qy +A5 cos(qy − qx) +A6 sin(qy − qx), (46)

where Ai are coefficients dependent on k, k′, J, J ′ and Ω.
With Eqs. (44, 45, 46), one can solve a set of linear equa-
tions for the coefficients Ai, which gives an explicit form
of Γ(q) for a given set of k, k′, J, J ′ and Ω. Details of the
2d case are given in Appendix B 1. From the solution,
we simply obtain

Γ1 > Γ2, for 0 < R < 1, (47)

which implies that for all range of anisotropies, 0 ≤ R ≤
1, the ground state near saturation field is always an in-
commensurate planar (or fan) state.

To see how the incommensurate planar state dominates
over the cone state in the weakly coupled chains region,
we expand the expression of Γ’s in the leading order of
both 1/ ln Ω and j ≡ J ′/J

Γ1/J = [−4πj +
π

2
j3 +O(j5)]

1

ln Ω

+[−8jπ ln(4j) + α+O(j3)]
1

(ln Ω)2
+ ...,

Γ2/J = [−4πj +
π

2
j3 +O(j5)]

1

ln Ω

+[−8jπ ln(4j) +O(j3)]
1

(ln Ω)2
+ ...,

α =
8jπ(24− 16 ln 2− 3π ln 2)

16 + 3π
> 0. (48)

Since the extra factor α is always larger than zero, the
ground state always prefers the fan state in the limit of
decoupled chains.

One can analytically check this result in the same limit,
J ′ � J . We discuss this extension in Appendix B 3.

3. Calculation of Γ1 and Γ2 in the TST

We now present a brief overview of our calculations on
the TST. We consider an infinitely long system, where
qx is continuous and qy = 0, 2π/3, 4π/3 is discretized by
periodic boundary conditions. The dispersion minima oc-
cur at k,k′ = ±Q1d = ±(Q1d, 2π/3), given in Eq. (34).
We are now in a position to solve the BS equation, where
we follow similar procedures as the two-dimensional case.
We use the same ansatz, Eq. (46), to solve for the coef-
ficients Ai. From these coefficients, we can obtain the
explicit forms of Γ(q), for which we provide details in
Appendix B 2. Our results are as follows

Γ1 > Γ2, for 0 < R < 0.48,
Γ1 < Γ2, for 0.48 < R < 1.

(49)

This tells us that for R < Rc = 0.48, the incommensu-
rate (fan) state is favored, while for R > Rc, the cone
(umbrella) state is favored. This result is in agreement
with the analytical result, in Appendix B 3, where it was
shown that spins order into a cone state in the decoupled
chains limit.

E. Commensurate-Incommensurate Transitions
(CIT)

In the previous subsection, we found that near satura-
tion, the ground state of the two-dimensional model for
all R and of the TST for R > 0.48 is coplanar, with mod-
ulation of the z-component of the spin at wavevector 2Q.
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As mentioned in Section IV C, this implies spontaneous
breaking of the discrete translational symmetry, which
is sensitive to commensurability effects via the terms in
Eq. (41). In particular, we expect that the wavevector
Q will lock to commensurate values, where 2Qn is a re-
ciprocal lattice vector, over a finite range of field and
anisotropy, R. We now turn to a description of these
commensurate-incommensurate transitions (CITs), both
in the 2d case and for the TST.

To study the CITs, we must now consider the full ac-
tion, Eqs. (36,41), for h < hsat, i.e. for µ > 0, where
the bosons are at non-zero density. In two-dimensions,
we can regard them as condensed, while in the TST,
true condensation is impossible but the system can be
viewed as a quasi-condensate or a Luttinger liquid. In
either case, amplitude fluctuations of the ψα fields are
small, and we can write the effective action in terms of
the phases θα, where ψα ∼ ψ0e

−iθα in the coplanar/fan
region.

Conceptually, the effective action for the phase fields
is obtained by first following the renormalization of the
system away from the zero density fixed point, µ = 0,
where amplitude fluctuations are still important. Once
the energy scale set by µ is reached, these fluctuations
are quenched, and it is sufficient to consider only small
fluctuations in the amplitudes. To achieve this, we sim-
ply make the assumption of small amplitude fluctuations
in Eqs. (36,41), but with the bare couplings replaced
by fully renormalized ones, at the scale µ. We believe
this procedure properly captures the scaling for small µ,
though it is not quantitatively reliable.

Because the low energy dispersion of the single magnon
states is exactly known and described by the quadratic
terms in Eq. (36), the corresponding couplings are un-
renormalized. The interactions Γ1 and Γ2, however,
are renormalized by multiple scatterings, which is ex-
actly what is captured by the BS equation discussed
in Sec. IV D. From this analysis, we simply take as
our renormalized couplings Γa(Ω = 2µ). Note that this
would be exactly correct if we replaced µ by |µ| for the
case µ < 0, but on scaling grounds it should give the

correct dependence even for µ > 0.

The renormalized interactions can be approximately
represented for small µ as

Γα(µ) ∼ uα
1 +muα/ζ(mµ)

, (50)

where

ζ(mµ) =

{
(mµ)1/2 d = 1

1/| ln(mµ)| d = 2
, (51)

and uα are constants related to the “bare” values of Γα.
We can in principle use the renormalize Γα(µ) for the
original lattice spin model, which have the same leading
and first sub-leading terms for small µ (up to second
order in ζ � 1) as in Eq. (50), but with considerably
more complicated coefficients. Beyond second order in
ζ, the lattice Γα differ somewhat, and the expression is
unwieldy. The above form is sufficient for our purposes,
and is exact for a continuum model.

Once the Γα(µ) are known, the analysis is

straightforward24. We write ψα = [ρ+ σα]
1/2

e−iθα , and
assume small fluctuations in σα around the saddle point
value for

ρ =
µ

(Γ1(µ) + Γ2(µ))
. (52)

(Here we assume Γ1(µ) > Γ2(µ)). Eq. (52) properly
captures, through the dependence of Γα on µ, the non-
mean-field dependence of the boson density on chemical
potential. In particular, it yields ρ ∼ µ1/2 in 1+1 dimen-
sions, consistent with the fact that repulsively interacting
bosons behave with an effective hard core at low density,
and consequently have an equation of state similar to free
fermions.

Expanding the action to quadratic order in σα and ne-
glecting irrelevant terms involving derivatives of σα and
their couplings to higher derivatives of θα, we obtain (ne-
glecting constant terms)

S =

∫
ddrdτ

{
i(σ1∂τθ1 + σ2∂τθ2) +

ρ

2m
(|∇θ1|2 + |∇θ2|2) +

Γ1

2
(σ2

1 + σ2
2) + Γ2σ1σ2

}
. (53)

Next, we integrate out the σα fields, and express the
resulting action in terms of new linear combinations,

θ = θ1 + θ2, θ̃ = θ1 − θ2. (54)

The result is

S = Sθ + Sθ̃, (55)

where

Sθ =

∫
ddr dτ

{κc
2

(∂τθ)
2 +

ρc
2

(∇θ)2
}
, (56)

with

κc =
1

2(Γ1(µ) + Γ2(µ))
, ρc =

ρ

2m
, (57)
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and

Sθ̃ =

∫
ddr dτ

{κ
2

(∂τ θ̃)
2 +

ρ

2
(∇θ̃)2

−
∑

n

λn cos[n(θ̃ − qn · r)]
}
, (58)

with

κ =
1

2(Γ1(µ)− Γ2(µ))
, ρ =

ρ

2m
,

λn = 2wnρ
n. (59)

Here we have restored the term resulting from S ′ in
Eq. (41). Note that the “charge” field θ describes the
Goldstone mode of the broken (or quasi-broken in 1d)
U(1) symmetry, and thus remains exactly massless. It

completely decouples from the θ̃ field, and can be ne-
glected in the analysis of the CIT.

We are now in a position to analyze the CIT using
Eqs. (58,59) and the results of Appendix A. This is
strongly dimension dependent, so we treat the cases of
two dimensions and one dimension separately.

1. Two dimensions

In two dimensions, we begin by presuming that one
of the cosines in Eq. (58) is almost non-oscillating, i.e
when one of the qn is close to zero. Generically, this will
happen for one specific minimal n, when

Q2d =
πm

n
+ δQ, (60)

for some specific m,n, with |δQ| � 1. The other rapidly
oscillating cosines can be neglected, and we retain only
the weakly oscillatory one. Then, in the x, y coordinates,
the action takes the form given in Eq. (A1), with λn = λ,
and q = qn = 2δQ.

We can now directly apply the results of Appendix A 1.
Using δ = ρq = 2ρδQ, and Eq. (A6), we obtain that
the commensurate state is stable for |δQ| < δQc, which
defines the location δQc of the CIT as

δQc ∼
√
λn/ρ ∼

√
mwn ρ

(n−1)/2,

∼ √mwn(Υ(µ)µ)(n−1)/2, (61)

where we used Eq. (59) for d = 2, and, of course, we
assume µ > 0. Here

Υ(µ) =
1

Γ1(µ) + Γ2(µ)
∼ 2| ln(mµ)|

m
for µ� 1, (62)

is a weak logarithmic function of µ.
For the commensurate state centered around R = 0

(J ′ = J), we have n = 3, and the phase boundary for the
C-IC transition is linear in µ, up to logarithmic correc-
tions. However, as n increases, the widths of the com-
mensurate phases decrease.
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FIG. 11: Entanglement entropy at (a) M/Ms = 5/6, R = 0.3,
the incommensurate coplanar phase, and (b) M/Ms = 5/6,
R = 0.66, the cone (or umbrella) phase. We take a system
size of Nx = 120.

2. One dimension

In the TST, to derive the 1d theory we must sum over
discrete y. This restricts the λn terms in Eq. (58) to n
which are multiples of 3, so that the y component of qn
(= 2nQy) is a multiple of 2π.

Following the discussion for two dimensions, we again
consider wavevectors

Q1d =
πm

n
+ δQ, (63)

with appropriate m,n such that |δQ| � 1, and keep only
the dominant cosine term of order n, which then matches
the sine-Gordon form in Eq. (A1) with q = 2δQ. Then
we take over results from Appendix A 2.

According to that discussion, a commensurate phase is
stabilized whenever the scaling dimension of the cosine
term, ∆n, is less than two. Using the result in Eq. (A12)
and also, Eq. (59), we obtain

∆n =
n2

√
2π

( µ
m

)1/4
√
u1 − u2

u1u2
, (64)

so that ∆n � 1 for µ � 1. This shows that ∆n < 2,
and the commensurate phase is indeed realized. Note
that if we approximate ∆n = 0, then this becomes the
same classical estimate as in the previous section, except
that Γa(µ) has a different dependence in one dimension.
While this is in principle appropriate for very small µ, the
1/4 exponent in Eq. (64) indicates that ∆n can be sub-
stantial nonetheless, so we will proceed with the estimate
taking ∆n 6= 0.

Using δ = 2ρδQ and the estimate for the critical δc in
Eq. (A16), and applying Eqs. (52) and (59), we find the
location of the 1d CIT as

δQc ∼
(
wnm

n+1
2 n∆nµ

n−1
2

) 1
2−∆n

. (65)
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FIG. 12: (Color online) Transverse spin-spin correlation func-
tion for M/Ms = 5/6, Nx = 120 and x′ = Nx/2 at (a)R =
0.30 in the incommensurate coplanar state and (b)R = 0.66 in
the cone state. Our DMRG data points are plotted in (black)
circles, while the theoretical fit, Eq. (66), is shown as a solid
(blue) line.

For n = 3 and assuming ∆n → 0, this predicts δQc ∼
µ1/2, which does not agree with µ ∼ R scaling of the C-IC
boundary in the upper left corner of the phase diagram
in Fig. 3. However the range of µ there is not particu-
larly small, h changes from 4.5 to approximately 3 as R
changes from 0 to 0.1. This observation calls for a more
careful analysis of behavior predicted by Eqs. (64,65) for
µ ∼ O(1). We find that numerical coefficients in (64)
make ∆n=3 to vary in the interval 0.5− 1 for µ relevant
to the C-IC boundary in Fig. 3, resulting in an almost
linear dependence δQc ∼ µ away from the strict µ → 0
limit and in qualitative agreement between our analysis
here and the numerical data in Fig. 3.

F. DMRG results

In Sec. IV C, we show that the cone state corresponds
to a single-Q condensate bosonic field, while the incom-
mensurate planar state corresponds to double-Q conden-
sate. This is verified by the central charge measurement,
where we find c = 2 to describe the coplanar phase as
shown in Fig. 11a, as opposed to c = 1 for the cone in
Fig. 11b .

The transverse spin-spin correlation function for the
cone state can be written as

〈S+
r S
−
r′ 〉 ∼ ψ

2
cos (Q · (r− r′))

〈
ei(θ(r)−θ(r′))

〉
,

∼ ψ
2

cos (Q · (r− r′))Cη(x, x′) (66)

With Cη(x, x′) given in Eq. (15). We fit the DMRG
results to this formula in Fig. 12b. The transverse corre-
lation shows a clear sinusoidal pattern with incommen-
surate wavevector Q = (1.10π, 2π/3) and η = 0.37 at
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FIG. 13: (Color online) Spin vector chirality (VC) correlation
function, as defined in Eq. (43), at M/Ms = 5/6 with sys-
tem size Nx = 120 and x′ = Nx/2. In (a), we show R = 0.4
(purple diamond) where the system orders into an incommen-
surate coplanar phase. Furthermore, R = 0.66, 0.80, where
the system is in the cone phase, is shown on the same plot.
We can see that the VC approaches a constant in the cone
phase while decaying in the coplanar phase. In (b), we show
the finite-size scaling of the VC order parameter in the cone
phase.

M/Ms = 5/6, R = 0.66. Fig. 12b shows an excellent fit
which yields the exponent η = 0.37.

The whole procedure is repeated for the incommensu-
rate planar state,

〈S+
r S
−
r′ 〉 ∼ 4ψ

2
〈

cos
(
Q · r + θ̃(x)

)
cos
(
Q · r′ + θ̃(x′)

)〉

〈
ei(θ(x)−θ(x′))

〉
. (67)

=
ψ

2

2
cos(Q · (r− r′))Cη+η̃(x, x′)

The exponent η and η̃ come from averaging the θ
and θ̃ fields, respectively. The fitting estimates Q =
(1.26π, 2π/3) and η+ η̃ = 0.54 at M/Ms = 5/6, R = 0.3,
shown in Fig. 12a.

Next we consider the vector chirality (VC), which is
defined as Vx,y = ẑ · 〈Sx,y × Sx+1,y〉 in Eq. (43). As dis-
cussed in Sec. IV C, since the cone state favors XY order,
the VC should be a nonzero and constant value. Indeed,
as shown in Fig. 13, the VC correlation function does not
decay with distance in the cone state, i.e., R = 0.66 and
0.80, and the finite-size scaling (Fig. 13(b)) shows that
the corresponding VC order parameter remains finite in
the thermodynamic limit. Instead, for planar states, the
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spins are confined to one plane, so the VC correlation
decays exponentially (see R = 0.4 data in Fig. 13).

V. WEAKLY COUPLED CHAINS

A. Bosonization of a Heisenberg chain

In this section, we give a brief overview of apply-
ing Abelian bosonization to a single spin-1/2 Heisenberg
chain in a magnetic field. The Hamiltonian of interest is
as follows

Hch = J

L∑

x=1

S(x) · S(x+ 1)− h
L∑

x=1

Sz(x), (68)

where the magnetic field is chosen along the z-direction,
and the lattice spacing has been set to 1. Here, the mag-
netization, M ≡ ∑

x
1
LS

z(x), is conserved, and hence,
the magnetic field, h, can be treated as a chemical po-
tential to relate the properties at h 6= 0 to those at
h = 0. For any magnetizations less than saturation, i.e.
M < Msat = 1/2, the low energy theory can be described
by a canonical set of a massless scalar field, θ, and its dual
field φ

H0 =

∫
dx
v

2
((∂xφ)2 + (∂xθ)

2). (69)

These two fields satisfy the familiar commutation rela-
tions

[θ(x), φ(x′)] = −iΘ(x− x′) (70)

where Θ is the Heaviside step function. The spin veloc-
ity, v, in Eq. (69), is a function of the magnetization, M .
When M = 0, v/J = π/2, and the SU(2) symmetry is
restored. For the case when M > 0, v decreases continu-
ously and is numerically determined by the Bethe ansatz
integral equations (see Fig. 9 of Ref. 31).

At a fixed magnetization, both the longitudinal (along
the field direction) and transverse (perpendicular to the
field axis) spin fluctuations have gapless excitations. The
longitudinal modes occur at commensurate wave vector
kx = 0 and incommensurate ones kx = π±2δ, where δ =
πM , while the transverse modes are at commensurate
wave vector kx = π and incommensurate vectors kx =
±2δ. Then, one can expand the spin operator around
these low energy gapless modes, i.e.

Sz(x) = M + Sz0 (x) + ei(π−2δ)xSzπ−2δ(x)

+e−i(π−2δ)xSzπ+2δ(x),

S+(x) = e−i2δxS+
−2δ(x) + ei2δxS+

2δ(x)

+(−1)xS+
π (x), (71)

where Sz0 , Szπ±2δ(x), S+
±2δ(x) and Sπ are operators whose

scaling dimensions depend on M . One can rewrite these

operators in terms of the bosonic fields, φ and θ,

Sz0 (x) = β−1∂xφ,

Szπ−2δ(x) = − i
2
A1e

−2πiφ/β ,

S+
±2δ(x) = ± i

2
A2e

iβθe±i2πφ/β ,

S+
π (x) = A3e

iβθ. (72)

Here, the parameter β ≡ 2πR is related to the compatifi-
cation radius R and can be calculated by solving the in-
tegral equations, which can be found in Refs. 32–34. The
compactification radius takes on a simple form, 2πR2 = 1
at zero magnetization, and approaches 2πR2 = 1/2 as
M → Msat = 1/2. The constants, A1, A2 and A3,
are determined numerically18. Furthermore, at M = 0,
the scaling dimension of Sz0 and S+

±2δ(x) is 1, and these
operators can be written in its SU(2) symmetric form
M = JR+JL. The scaling dimension of Szπ±2δ(x) and Sπ,
however, is 1/2 at zero magnetization and is related to
the staggered Néel order, N, and dimerization ε. Further
details for the M = 0 case are provided in Appendix C 1.

Now, in order to compare our DMRG results to this
analysis, we must enforce open boundary conditions (BC)
along the chain direction to mimic DMRG’s BC. This
can be achieved by introducing two additional “phantom
sites” at x = 0 and x = L + 135. At these positions,
we enforce boundary conditions on the bosonic field, φ,
where φ(x = 0) = 0 and φ(x = L + 1) = 0. The sum in
Eq. (68) now runs from site index 0 to L, and we effec-
tively obtain a periodicity of L+ 1 using these phantom
sites. We can now substitute Eq. (72) into Eq. (71), and
enforce the open boundary conditions. The spin opera-
tors can now be written as (for brevity, we suppress chain
index y)

Sz(x) = M̃ +
1

β

dφ

dx
−A1 sin(

2π

β
φ(x)− (π − 2δ̃)x),

S+(x) = eiβθ(x)[A3(−1)x

+A2 sin(
2π

β
φ(x) + 2δ̃x)], (73)

where M̃ = ML/(L+1) and δ̃ = πM̃ . The bosonic field,
φ, can also be expanded in terms of its lattice modes as

φ(x) =

∞∑

n=1

sin(qnx)√
πn

(an + a+
n ), (74)

where qn = πn/(L+1). Here, an and a+
n are the annihila-

tion and creation operators and satisfy the commutation
relation [an, a

+
n′ ] = δn,n′ .

B. Triangular spin tube

We now extend our previous discussion to study the
behavior of the TST, described by Eq. (1), in the limit of
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weak coupling, J ′ � J . Using the low energy expansions
of the spin operators in Eq. (71), we can express the
low energy Hamiltonian as H = H0 + H1, where H0

is described by a sum over the free bosonic modes in
Eq. (69) on each chain. Here, H1 describes interchain
interactions and is as follows

H1 = J ′
3∑

y=1

L∫

x=0

dx{2M̃2 + 2Szy;0Szy+1;0 (75)

+
∑

σ=±
(1− e2iσδ̃)Sz

y;π+2σδ̃
Sz
y+1;π−2σδ̃

+
1

2
[S+
y;π∂xS−y+1;π + h.c.]

+
∑

σ=±

[(
1 + e2iσδ̃

2

)
S+

y;2σδ̃
S−
y+1;2σδ̃

+ h.c.

]
},

where again, M̃ = ML/(L+ 1).

The first term, 2M̃2, with scaling dimension 0, is the
most relevant, but is trivially a constant. The second
term is marginal with scaling dimension 2, and renor-
malizes the Luttinger parameters and the velocities of
the bosonic fields, φ, θ, in Eq. (69). The third term is

relevant at M̃ = 0 with scaling dimension 1, and be-
comes marginal as magnetization increases, approaching
a scaling dimension 2 as M̃ → Msat. This term is re-
sponsible for the SDW phase that arises when relevant.
The fourth term, which involves a derivative, is marginal
at M̃ = 0 with scaling dimension 2 and becomes increas-
ingly relevant with increasing magnetization, saturating
to a scaling dimension of 3/2 as M̃ → Msat. This is a
“twist” term that favors the cone or XY phase that or-
ders perpendicular to the magnetic field. The last term
is always irrelevant, with scaling dimension ≥ 2 and can
be neglected in the analysis of this theory.

Apart from the trivial constant term, the SDW and the
“twist” terms are the most relevant ones and have com-
peting scaling dimensions as magnetization varies from 0
to saturation. With the exception of some subtleties that
arise from the TST boundaries (we discuss this in later
subsections), standard scaling arguments can be made
about these two operators. For small M , the SDW term
dominates, and the system orders into a collinear SDW in
which the ordering momentum, π−2δ̃ scales linearly with
magnetization. The twist interaction dominates over the
SDW at a larger magnetization, and the system orders
into a cone-like state. Since there is no spontaneous
breaking of continuous symmetry in one dimension, the
SDW and cone order are not really ordered states, but
are Luttlnger liquids with one gapless mode. This com-
petition between cone and SDW phase was discussed for
2d triangular lattice in Ref. 11, where critical magnetiza-
tion, Mcrit, at which the quantum phase transition from
the SDW to the cone phase takes place, was evaluated.
The TST has the same critical Mcrit = 0.64Msat as the 2d
case, except that the cone state obtained in this quasi-1d
regime is smoothly connected to the cone phase obtained

in the high field region in Sec. IV.
Eq. (75) is not complete as it does not account for sev-

eral less-obvious relevant terms which are allowed by the
lattice symmetry of the problem. This will be consid-
ered in more detail later. Within the SDW phase, it is
possible to lock the SDW momentum to a commensurate
value by accounting for high-order umklapp processes.
The first of these leads to a commensurate SDW, which
is in fact identical to the 1/3 plateau with the “up up
down” structure. This is discussed extensively later in
Sec. VI.

Other more relevant intra-chain interaction terms may
appear due to fluctuations that are not accounted for in
the näıve bosonization in Eq. (73). We will discuss these
effects in Appendix C 2.

C. SDW

In the region of low to intermediate magnetization
and small J ′, we can neglect all terms in H1 except the
marginal one and the SDW interaction. Using bosoniza-
tion, Eq. (73), the Hamiltonian can be re-written as fol-
lows

Hsdw =

3∑

y=1

∫
dx
v

2

[
(∂xφy)2 + (∂xθy)2

]
+

2J ′

β2
∂xφy∂xφy+1

+ γsdw cos[
2π

β
(φy − φy+1)− π − 2δ̃

2
]. (76)

where the bare SDW coupling is given by γsdw =
J ′A2

1 sin(δ̃) > 0.

1. Scaling considerations

Renormalization group arguments give considerable in-
sight into the physics of Eq. (76). All but the last term
in Hsdw are scale invariant, and can be considered a fixed
point Hamiltonian. The remaining SDW term, propor-
tional to γsdw, is not, and renormalizes under the scale
transformation x→ bx, according to the usual linearized
relation

γsdw(b) = b2−∆sdwγsdw, (77)

where b > 1 is an arbitrary scale factor. As discussed
in the previous subsection, ∆sdw < 2, so that the SDW
interact is relevant, and grows in strength under rescal-
ing. Eq. (77) is valid for small dimensionless γsdw(b), and
therefore the weak coupling regime is limited by the con-
dition γsdw(b) < v. This defines an “SDW correlation
length” ξsdw such that γsdw(b) = v:

ξsdw ∼ (v/γsdw)1/(2−∆sdw). (78)

In the weakly coupled chain regime, γsdw is small and so
ξsdw is large. On scales large compared to this correla-
tion length, we expect that the bosonic modes appearing
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inside the SDW term become “pinned” to values which
minimize this interaction. This pinning corresponds to
the creation of well-established SDW order.

Due to the divergence of ξsdw, however, the establish-
ment of SDW order can be prevented by finite size effects,
even for reasonably large systems accessible by DMRG.
For a finite system of length L, we must compare the
SDW correlation length to L, and it is expected that
physical quantities will be functions of the dimensionless
ratio Ξsdw ≡ ξsdw/L. For Ξsdw � 1, SDW-like behavior
is expected, but when Ξsdw & 1, there may be a non-
trivial crossover. This occurs particularly in the case of
the TST, for which an analysis, detailed below, shows
that the crossover is discontinuous.

2. L = ∞

For an infinitely long system, Ξ = 0, we can under-
stand the nature of the SDW state by simply minimizing
the γsdw term in Eq. (76). When the width is also infinite,
i.e. in two dimensions, one can simultaneously minimize
each cosine term (for each y) independently. This occurs
by taking

2π

β
φy

∣∣∣∣
d=2

= ϕ+
π − 2δ̃

2
y, (79)

where ϕ is an arbitrary constant (x- and y-independent)
phase. Allowing for small gradients of ϕ, which might
be present due to fluctuations or perturbations and by
substituting Eq.(79) into Eq.(73), we see that the spin
operator can then be represented as

Szy(x)
∣∣
d=2
∼ M̃ +

∂xϕ

2π
−A2 sin

[
ϕ(x)− π−2δ̃

2 (2x− y)
]
,

(80)
which indeed is the classic form for a spin density wave

with wavevector π−2δ̃
2 (−2, 1). This corresponds to an

ideal two dimensional SDW state, and ϕ gives the “slid-
ing” or “phason”36 mode of the SDW. For generic irra-
tional δ̃/π, ϕ remains a gapless pseudo-Goldstone mode
associated with translational symmetry breaking. In two
dimensions, the zero point fluctuations of this mode do
not, however, destroy long-range SDW order.

Now consider the case of the TST ladder, where y =
1, 2, 3 and periodic boundary conditions are applied. In
this case it is generically impossible to simultaneously
minimize each cosine term separately. Instead, the min-
imum occurs when

2π

β
φy

∣∣∣∣
L=∞,TST

= ϕ+
2π

3
y, (81)

where again ϕ is an arbitrary constant, reflecting the
invariance of Eq. (76) under uniform translations of all
the φy. Again, one can express the spin operator here

using this form

Szy(x)
∣∣
L=∞,TST

∼ M̃ +
∂xϕ

2π
(82)

−A2 sin
[
ϕ(x)− (π − 2δ̃)x+ 2π

3 y
]
.

In contrast with Eq. (79), the minimum configuration in

the TST, Eq. (81) is independent of δ̃, manifesting in
Eq. (82) as a difference dependence on y from Eq. (80).
The difference is due to the frustration of the intrinsic 2d
SDW order by periodic boundary conditions, which tend
to lock the SDW order to a commensurate form in the
y direction. Interestingly, the two results coincide when
δ̃ = π/6, which corresponds to the case M = Msat/3.
At this point, the periodicity of the TST and the SDW
order are compatible.

As in the 2d case, at the level of Eq. (76) applied to
the TST, the uniform translation mode ϕ remains gap-
less. Unlike the 2d case, however, in one dimension, the
zero point fluctuations of this mode are sufficient to dis-
rupt long range SDW order, which instead manifests as
power law correlations. Nevertheless, the short distance
physics is still that of an SDW, and moreover the 1d
fluctuations are easily accounted for theoretically. This
is accomplished simply by treating ϕ as a free massless
boson, as we discuss below in Sec. V C 3.

3. Finite length L <∞

As we have discussed in Sec. V A, for a finite length
chain, we must impose the boundary conditions φy(x =
0) = φy(x = L) = 0. These conditions are incompatible
with the values, in Eq. (81), which minimize the SDW
term in the infinitely long case. This means that end ef-
fects strongly affect, and tend to suppress SDW ordering.
What do we expect? For short systems, where Ξ � 1,
the end effects will dominate, and the effects of the SDW
interaction become negligible. In other words, all com-
ponents φy will be largely not affected by the SDW term,
and the system should behave similarly to three decou-
pled chains of finite length. For long systems, Ξ� 1, the
SDW pinning should be effective far from the boundaries,
and only the pseudo-Goldstone mode Φ̃0 will behave like
a massless field (pinned at the boundaries).

Let us now address the crossover. It is convenient to
first make a change of basis37 from the φ1, φ2, φ3 to new
fields Φ0,Φ1,Φ2:



φ1

φ2

φ3


 =




1/
√

3 1/
√

2 1/
√

6

1/
√

3 0 −2/
√

6

1/
√

3 −1/
√

2 1/
√

6






Φ0

Φ1

Φ2


 . (83)

The dual fields θy transform similarly. Note that the cen-
ter of mass field is just proportional to the SDW phase

introduced earlier: Φ0 =
√

3β
(2π)ϕ. The boundary condi-

tions φy = 0 at the ends translate to Φi = 0 at the ends.
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The SDW Hamiltonian now reads Hsdw = H
(0)
sdw +H

(1)
sdw,

where the harmonic part

H
(0)
sdw =

3∑

n=1

∫
dx

[
ṽn

2κn
(∂xΦn)2 +

ṽnκn
2

(∂xΘn)2

]
(84)

is expressed in terms of renormalized stiffnesses κ−2
0 =

1 + 4J ′/(β2v) and κ−2
1,2 = 1 − 2J ′/(β2v) and velocities

ṽn = v/κn. Its interacting part (the analog of the second
line in Eq. (76) written in the new basis) reads

H
(1)
sdw = γsdw

∫
dx 2 cos[

2π√
2β

Φ1 −
π − 2δ̃

2
] cos[

2π

β

√
3

2
Φ2]

+ cos[
2π

β

√
2Φ1 +

π − 2δ̃

2
]. (85)

Note that the center-of-mass mode Φ0 ∝ ϕ does not enter
in Eq. (85). Thus it behaves as a free massless boson,
independent of the strength of the SDW coupling. The
distinction between δ and δ̃ in the SDW Hamiltonian is
not important when analyzing the crossover, and will be
dropped in this subsection from now on.

To analyze the crossover, we first carry out the renor-
malization group procedure by integrating out fluctua-
tions of the fields due to modes with wavelength less
than the system size L. In doing so, we replace γsdw

by its renormalized value at this scale,

γsdw → γsdw(L) = L−∆sdwγsdw. (86)

Note that we have done the coarse-graining step of the
RG of integrating out modes, but we have not rescaled
any fields or coordinates, so as to keep the original units
unchanged for clarity. Under this coarse-graining trans-
formation, the quadratic terms in the Hamiltonian re-
main unmodified.

In this renormalized Hamiltonian, it is appropriate to
carry out a classical saddle point approximation for Φ1

and Φ2, which are the fields pinned by the SDW coupling.
The SDW potential in Eq. (85) is minimized by Φ2 = 0,
which is compatible with the boundary condition, and
so, we can impose this condition. Then only Φ1 enters
the saddle point condition in a non-trivial way. For sim-
plicity we specialize to the case δ = π/6, or M = Msat/3.
Then we may define Ψ = 2π√

2β
Φ1 + 2π

3 , for which the sad-

dle point Hamiltonian, neglecting the decoupled Φ0 term
becomes

Hclass =

∫ L

0

dx
{
K(∂xΨ)2−γsdw(L)(cos[2Ψ]+2 cos[Ψ])

}
,

(87)
with K = β2ṽ1/4π

2κ1.
The γsdw term is clearly minimized by Ψ = 0, while the

open boundaries require Ψ(0) = Ψ(L) = 2π/3, causing
the strong suppression of SDW order by the ends. There
can be a non-trivial configuration, Ψ(x), which minimizes
the functional Hclass. To bring out the crossover physics,
we transform to dimensionless coordinates, letting

x =
√
K/γsdw(L)z, (88)

which gives

Hclass = ε0

∫ L̃

0

dz
{

(∂zΨ)2− (cos[2Ψ] + 2 cos[Ψ])
}
, (89)

with

ε0 =
√
Kγsdw(L), (90)

L̃ = (L/ξ)1−∆sdw/2 = Ξ
∆sdw/2−1
sdw , (91)

ξsdw = (K/γsdw)1/(2−∆sdw). (92)

Note that Eq. (92) agrees, at the level of scaling, with
Eq. (78) obtained earlier from general arguments. For
the purpose of minimization, the overall prefactor ε0 is
irrelevant, so it is clear already from Eq. (89) that the
properties are a function of the scaling variable Ξsdw only,
as expected.

We are now prepared for the saddle point approxima-
tion, which consists in minimizing Eq. (89). Starting
from the Euler-Lagrange equation, which has the usual
“energy” integral of motion, one obtains

(
dΨ

dz

)2

= C − (2 cos[Ψ] + cos[2Ψ]), (93)

where the integration constant (“energy”) C is fixed by

the condition dΨ(z = L̃/2)/dz = 0 as C = (2 cos[Ψ1/2] +

cos[2Ψ1/2]), where we denote Ψ1/2 ≡ Ψ(z = L̃/2). As
a result the mid-ladder value of Ψ is implicitly given by
the following integral

∫ 2π/3

Ψ1/2

dϕ√
2 cos[Ψ1/2] + cos[2Ψ1/2]− 2 cos[ϕ]− cos[2ϕ]

=
L̃

2
. (94)

The full crossover (in this saddle point approximation)
is obtained from Eq. (94). First, we observe that in the
limit Ψ1/2 → 0, the above integral diverges logarithmi-

cally, implying that indeed, Ψ(L̃/2) = 0 in the infinite-
size limit. The short system size limit is less obvious.
For small L̃, we must choose Ψ1/2 to minimize the in-
tegral. However, if we make the obvious choice to let
Ψ1/2 = 2π/3−ε, with ε→ 0+, one finds that the integral
in fact does not vanish but approaches the constant value
π/
√

6. In fact, the integral as a function of Ψ1/2 has
a non-monotonic dependence, and the minimum value
of the integral is ≈ 1.1436 < π/

√
6 = 1.2826, which is

achieved for Ψ1/2 ≈ 1.3178 < 2π/3 = 2.0944. Regard-
less, the lower bound on the integral implies that there
is a minimum dimensionless length, L̃min ≥ 2.28, such
that for L̃ < L̃min, the minimum action solution is sim-
ply Ψ1/2 = 2π/3, i.e. Ψ(z) = 1/2 for all z. For such short
systems, the boundary conditions completely disrupt the
SDW order, and the system behaves as though it were
just decoupled chains. The transition from L̃ < L̃min

to L̃ > L̃min is evidently discontinuous, since Ψ1/2 must
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(a)M/Ms = 1/3, R = 0.7

(b)M/Ms = 1/2, R = 0.7

FIG. 14: (Color online) Sz profile for R = 0.7 at (a) M/Ms =
1/3 plateau and (b)M/Ms = 1/2 in the SDW state for the
non-frustrated chain (see text). We show the DMRG results
by (black) circles and the theoretical prediction, Eq. (95),
by (red) solid line/square. The theoretical line captures all
the DMRG data points, which appear to form three different
curves. The (red) squares show the Sz(x) values at discrete
lattice site positions x, as obtained from (95).

jump from a value Ψ1/2 ≤ 1.3178 at L̃ = L̃min + ε to
Ψ1/2 = 2π/3 for shorter systems. To precisely determine

the value of L̃min requires a comparison of the action
of the non-trivial and trivial solutions to see where they
cross.

What are the consequences of this transition? In nu-
merics, the transition can be probed by varying L or
varying J ′/J at fixed L. In either case, on crossing the
transition, one expects a sharp change from SDW-like be-
havior for L̃ > L̃min to decoupled chain-like behavior for
L̃ < L̃min. In the SDW-like regime, the two modes Φ1,Φ2

may be considered to have developed a gap, and conse-
quently, the entanglement entropy of a bipartite cut of
the sample is reduced compared to the decoupled chain-
like regime. Specifically, in the SDW-like regime a log-
arithmic growth with L is expected and consistent with
central charge c = 1, while in the decoupled chain regime,
the behavior should be closer to c = 3. At the transition,
a sharp drop with increasing L of the entanglement en-
tropy is expected. More detailed predictions can be made
for the spin density profile, 〈Szy(x)〉. We make such a
comparison in the following subsection.
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FIG. 15: Sz profile of DMRG result for SDW state at
M/Ms = 1/2, R = 0.7 for frustrated chains, (a) y = 1 and (b)
y = 3. We can see from these plots that the translational sym-
metry is spontaneously broken, and that the SDW is strongly
affected by boundaries. The DMRG data are seen to obey
the symmetry 〈Sz1 (x)〉 = 〈Sz3 (L+ 1− x)〉, which follows from
Eq. (95).

D. DMRG results for SDW

A number of measurements in the DMRG give evi-
dence of the SDW state. As discussed in the previous
subsection, the SDW regime of long TSTs can be de-
scribed by pinning the fields Φ1 = Φ2 = 0, and al-
lowing for gapless fluctuations of the free massless bo-
son field Φ0. In the semiclassical approximation dis-
cussed in Sec. V C 3, one can do somewhat better by
using the Φ0 fluctuations and replacing Φ2 → 0 and

Φ1(x) →
√

2β
2π (Ψ(x) − 2π

3 ), with Ψ(x) given by the so-
lution of Eq. (93). In this way, one obtains from Eq. (73)

〈Szy(x)〉 = M̃ +
2− y

2π
∂xΨ(x) (95)

− A1

Xηsdw
sin[(2− y)(Ψ(x)− 2π

3
)− (π − 2δ̃)x].

Here the quantity

X = [
2(L+ 1)

π
sin(

π|x|
L+ 1

)], (96)

arises from the quantum average over the free boson field
Φ0, which is evaluated along the lines of Ref. 18, with the
result that the exponent

ηsdw =
πκ0

3β2
=
κ0

6

1

2πR2
. (97)

For M = Msat/3 and small J ′, we estimate κ0 ≈ 1 and

2πR2 ≈ 1 − 1/(2 ln[6
√

8/(πe)]) = 0.72 (see Appendix
A of Ref. 11), which leads to ηsdw ≈ 0.23, so the spin
density profile decays quite slowly with distance from the
boundary in the SDW regime. Note that the y = 2 chain
does not depend on Ψ, so one can directly compare the
numerically obtained magnetization profile for the ‘non-
frustrated’ chain with Eq. (95), see Fig. 14 below.

One may wonder about the selection of the y = 2 chain.
For the geometry of our simulations, the model has full
translational symmetry, y → y + 1 in the y direction.
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FIG. 16: Entanglement entropy for SDW phase for R = 0.5 at
(a)M/Ms = 1/6 below the 1/3 plateau and (b)M/Ms = 1/2
above the 1/3 plateau. Due to large finite-size effects of this
measurement, we chose to run our simulations on a larger
system size, Nx = 180, in (a), to compare to a smaller size,
Nx = 120 in (b).

This symmetry is broken by our combined choice of sad-
dle point Ψ = Φ0 = 0 in the bulk and the boundary
condition Φ0 = 0 at the edges. Examination of the inter-
action term in Eq. (85) shows that there are apparently

two other minimum solutions, Ψ = π and Φ2 = ±β/
√

6.
In the infinite system, these are equivalent to the one we
have chosen, insofar as they give identical results for all
operators if we make a suitable translation of Φ0. How-
ever, the choice of boundary condition for Φ0 prevents
this translation and results in a broken symmetry state.
By a different choice of the otherwise equivalent saddle
points, we can obtain formulae analogous to Eq. (95) but
with the y = 1 or y = 3 chains independent of Ψ. In
principle, for a finite system even the discrete transla-
tional symmetry should be unbroken, but the restoration
of this symmetry is probably only at extremely low en-
ergies at which tunneling occurs between these minima,
and indeed we find the symmetry to be spontaneously
broken in our DMRG simulations.

In the decoupled regime, L̃ < L̃min, it is more appro-
priate to just calculate the spin expectation value using
the free theory, Eq. (84), for all three fields Φ0,Φ1,Φ2.
Then we obtain, instead of Eq. (95), the result that

〈Szy(x)〉 = M̃ +
A1

Xηdc
sin[(π − 2δ̃)x], (98)

where the “decoupled chains” exponent is

ηdc =
π(κ0 + κ1 + κ2)

3β2
. (99)

In the same small J ′ approximation, this gives ηdc ≈
3ηsdw, so that ηdc ≈ 0.610. Note that there is a much
more rapid decay of the spin density profile from the
boundary in this regime.
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FIG. 17: (Color online) The transverse spin-spin correlation
function on a log-linear scale for R = 0.7 and at magnetiza-
tions (a)M/Ms = 1/6 and (b)M/Ms = 1/2, both in the SDW
state for system size Nx = 120 and x′ = Nx/2. Data points
are shown as (black) circles while the (red) line is a fit to a
pure exponential function.

We compare the spin density profile in Eq. (95) with
our DMRG data and find reasonable agreement. Fig. 14
shows a comparison of numerical data with magnetiza-
tion profile of the non-frustrated chain, i.e. the y = 2
result of Eq. (95), while Fig. 15 shows that of frustrated
chains, y = 1, 3.

We can also measure in DMRG the central charge via
entanglement entropy, which yields c = 1 for the SDW
phase as opposed to c = 3 for decoupled chains. This
is shown in Fig. 16, where the plots show that at mag-
netizations M/Ms = 1/6, 1/2 for R = 0.5, the central
charges obtained from numerics are c = 0.9, 0.95, respec-
tively. These values are very close to the predicted c = 1,
which gives evidence for the SDW.

Another measurement we can perform is the transverse
spin-spin correlation function, which should decay expo-
nentially to support the SDW state. We observe exactly
this behavior from our simulations, as shown in Fig. 17.
Finally, power-law behavior is expected for the “octupo-
lar” correlation function7,

〈(Π3
y=1S

+
y (x))(Π3

y=1S
−
y (x′))〉 ∼ Cη3(x, x′). (100)

The operator Π3
y=1S

+
y (x) may be though of as inserting

a soliton – an extra period – into the SDW. This corre-
lation function decays in the thermodynamic limit with
the power-law exponent

η3 =
3β2

2πκ0
=

1

2ηsdw
. (101)

We indeed observe such power law behavior in the
DMRG, as shown in Fig. 18. Fitting this data (for
M/Ms = 1/2, R = 0.7) gives η3 = 3.1±0.2, while the Sz

profile in Fig. 14 for the same parameters is fit to ηsdw =
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FIG. 18: (Color online) The “octupolar” correlation function,
〈(Π3

y=1S
+
y (x))(Π3

y=1S
−
y (x′))〉 with x′ = Nx/2, shown on a log-

log scale. We show for R = 0.7 at magnetizations (a)M/Ms =
1/6 and (b)M/Ms = 1/2 in the SDW state. Our DMRG data
points are plotted in (black) circles, while the theoretical fit
to Eq. (100) is shown as (blue) line.

0.2± 0.1, yielding the product η3ηsdw = 0.62± 0.31. The
uncertainties for each exponent is crudely estimated by
tracing out the boundary values when the fitting starts
to mismatch the DMRG result. The slow decay of the
Sz profile and strong boundary effects as seen in Fig. 14
induce significant uncertainties in the estimate for ηsdw,
so we consider the degree of agreement to the expected
value η3ηsdw = 1/2 satisfactory.

VI. M = Msat/3 PLATEAU

Magnetization plateaux are observed frequently in
models of frustrated magnetism, and in a number of
experiments on such materials. Theoretically, we de-
fine a magnetization plateau as a ground state of a spin
system in a magnetic field h, such that for a range of
fields, h1 < h < h2, the magnetization (along the field)
M(h) = Mp is constant. This implies that the magneti-
zation is a good quantum number, and, since by assump-
tion the only term in the Hamiltonian coupling to the
applied field is hM , that the ground state wavefunction
itself is independent of the field in this range. More-
over, since the magnetization M is just the total spin
Sztot along the field direction, the symmetry under rota-
tions generated by Sztot is unbroken. Thus, there can be
no spin expectation values normal to the field. Further-
more, no other nearby states must cross the ground state
(in energy) in this field range, since it remains the ground
state, and thus, since states with different magnetization
must have energy depending linearly on the field, there
must be a spin gap to excitations which carry non-zero
spin Sz relative to the plateau state.

There are restrictions on such gapped states, follow-
ing from the Lieb-Schultz-Mattis theorem and related
arguments38. One way to understand them is to map
the spins to hard-core bosons, where the boson number
ni = Szi + 1/2. A gapped, insulating ground state of
bosons in one dimension must have an integer number
of bosons per unit cell. This implies that the total spin∑
i∈u.c.〈Szi 〉 per unit cell must be an integer if the unit

cell contains an even number of sites, and must instead
be a half integer if the unit cell contains an odd num-
ber of sites. Often, such gapped plateau states may be
considered as ordered states with spins arranged in some
pattern parallel and antiparallel to the field within a unit
cell.

A prominent feature in the phase diagram we obtain
is a magnetization plateau at one third of the saturation
magnetization, M = Msat/3. This has been extensively
studied in the literature for the isotropic model10,39,
R = 0, where it is usually regarded as a result of quan-
tum “order by disorder”. The structure of the plateau
state in that case is indeed in agreement with a semi-
classical approach3, and has a unit cell consisting of two
up and one down spin, forming a three-sublattice enlarge-
ment of the primitive triangular lattice unit cell. Based
on a combination of our DMRG studies and an analytic
analysis of the quasi-1d limit, J ′/J � 1 (below), we
show that, in the 2d system, the plateau state persists
in the full range of anisotropies 0 < R ≤ 1 and forms a
single phase throughout. For the one-dimensional TST,
however, we find that the plateau, while present in the
isotropic regime, terminates before reaching the decou-
pled chains limit. Both these results can be understood
from the relation between the plateau state and the SDW
phase, as will be explained in the next subsection.

A. Plateau states from SDW

The collinear SDW state shares many of the expected
elements of the plateau phase. It has an unbroken U(1)
symmetry, even in the 2d limit, and exponentially de-
caying transverse correlations in the TST. It has rather
long-range oscillating correlations of the component of
the spin parallel to the field, and consequently a markedly
modulated 〈Szy(x)〉 profile in finite systems. The distinc-
tion between the SDW and the plateau phase is that the
former is generically incommensurate and gapless.

Both these differences may be removed due to further
interactions neglected up to now, which pin the gapless
phason mode ϕ at specific discrete values. This has been
discussed at length already in Ref. 11 for the two di-
mensional case. There, it was argued that an infinite
sequence of plateaux occur at T = 0 within the SDW
phase, the strongest of these being the 1/3 plateau, and
that all these plateaux exist at arbitrarily small J ′/J .
In the two-dimensional system, the plateau width (in a
magnetic field) can be estimated to scale as J(J ′/J)9/2,
see Ref. 11. Here, we will restrict the discussion to the
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TST, and find that one-dimensional fluctuations suppress
most of these plateaux, including the 1/3 plateau for suf-
ficiently small J ′/J .

The plateau formation is due to additional interactions
neglected in the sine-Gordon Hamiltonian presented so
far in Eqs. (84,85), which involve higher harmonics of the
phason mode ϕ. The allowed terms are obtained directly
from a symmetry analysis. The action of the symmetries
of the problem on ϕ may be understood directly from
the expression for the spin operator in the SDW phase
of the TST in Eq. (82). Under each symmetry, which
is a lattice space group operation, ϕ must be chosen to
transform appropriately so that Szy(x) is a scalar. This
dictates the following transformation rules

1. translation along x, x→ x+ 1: ϕ→ ϕ+ π − 2δ.

2. translation along y, y → y + 1: ϕ→ ϕ− 2π/3.

3. 2D inversion, x→ −x, y → 2− y: ϕ→ −π/3− ϕ.

In addition, there is a “gauge invariance” arising because
of the ambiguity of ϕ due its definition as a phase vari-
able, which forces the invariance of the Hamiltonian un-
der local shifts of ϕ by 2π. Note that in this section,
we always consider the infinite L limit, and neglect the
difference between δ̃ and δ.

Using the local gauge invariance, we seek terms of the
form

Hpin =
∑

n

∫
dx tn sin(nϕ+ αn), (102)

where tn and αn are arbitrary parameters. (In general we
can also allow αn to be a slowly varying linear function of
x, which is important for a full analysis of commensurate
to incommensurate transitions, but we do not require this
here for the more limited purpose of just identifying the
relevant plateau states). Using the translational symme-
try along y, we immediately obtain the constraint that
tn = 0 unless n is a multiple of 3, and so we set n = 3k.
The inversion symmetry then forces αn = 0 (mod 2π),
so finally, we find

Hpin =
∑

k∈Z

∫
dx tk sin 3kϕ, (103)

where we have redefined the tk appropriately. Now it
remains to apply translation symmetry along x. This
simply gives the condition that 3k(π − 2δ) is an integer
multiple of 2π. Writing δ = πM = (π/2)M/Msat, we
have

M

Msat
=

3k − 2p

3k
, (104)

with k, p integers. This gives a rational family of po-
tential magnetization plateaux, whose strength decreases
with increasing k.

An actual plateau occurs for a given value of magneti-
zation characterized by integers k, p only if the associated
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FIG. 19: Entanglement entropy at (a)R = 0, (b)R = 0.2 and
(c)R = 0.4 in the 1/3 plateau state. We see that the en-
tanglement entropy approaches a constant for large x′, which
corresponds to a central charge of c = 0 in the ordered state.

term, tk, is relevant7, when considered as a perturbation
to the low energy Hamiltonian of the SDW state, which
is just the free massless field theory for ϕ. The scaling
dimension of the operator in Eq. (103) is easily obtained
as ∆3k = 9k2ηsdw = 3πk2κ0/β

2, c.f. Eq. (97), and there-
fore, under RG, we find

tk(b) = tkb
2−∆3k = tkb

2−9k2ηsdw . (105)

Here, tk is relevant, and a magnetization plateau appears
when ∆3k < 2. Consider the case k = 1, which corre-
sponds to the case M = Msat/3, and small J ′/J . There
(recall Sec. V D) ηsdw ≈ 0.23 so ∆3 ≈ 2.07 > 2, and
thus t1 is irrelevant. Because ∆3k increases quadratically
with k, clearly all other potential plateau with larger k
are absent in the quasi-1d limit. Thus we expect that for
J ′/J � 1, the SDW state remains stable, and there are
no magnetization plateaux.

With increasing J ′, however, ηsdw decreases, owing to
its dependence on κ0 in Eq. (97). Including this depen-
dence, and using the quasi-1d formula for κ0 (in the text
following Eq. (84)), we obtain the condition that t1 be-
comes relevant, i.e. ∆3 < 2, when J ′/J > 0.17. We
believe that this is still in the domain where the quasi-
1d approach is valid. The result predicts that the 1/3
plateau appears only for R < 0.83 in the TST. At fixed
M = Msat/3, the transition from the gapless SDW to
gapped plateau state at this value of R or J ′/J is in the
Kosterlitz-Thouless universality class, as is well-known
for the quantum sine-Gordon model. Consequently, the
gap vanishes exponentially on approaching the transition
from the more isotropic side, and the ground state energy
itself shows only an unobservably weak essential singu-
larity at the transition. We note that other potential
plateaux with n = 3k ≥ 6 are so strongly suppressed by
fluctuations that we do not expect any to occur, at least
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FIG. 20: (Color online) Log plot for transverse spin-spin cor-
relation function at (a)R = 0 and (b)R = 0.2 in the 1/3
plateau state for symtem size Nx = 120 and x′ = Nx/2. Data
points are shown as (black) circles while the (red) line is a fit
to the exponential function.

in the quasi-1d regime.
It is interesting to consider the spin structure on the

plateau. This depends on the sign of t ≡ t1. For t > 0,
the sin 3ϕ pinning term in Eq. (103) is minimized by
three values with equal energy, ϕ = −π/6 + 2πn/3, with
n = 0, 1, 2. For these values, using Eq. (82), the spin
density profile takes the form

〈Szy(x)〉t>0 = M̃ +A1 sin
[
π
6 + 2π

3 (x− y − n)
]
. (106)

This equation describes a three sublattice structure with
two spins “up”, i.e. with 〈Szy(x)〉 > M̃ , when x − y −
n = 0, 1 (mod 3) and one spin “down”, when x − y −
n = 2 (mod 3). This is the semi-classical up-up-down
state, and has precisely the same qualitative structure as
predicted semiclassically in the isotropic limit J ′ = J .

For the other case, t < 0, the minima occur for ϕ =
+π/6 + 2πn/3, and the spin density profile becomes

〈Szy(x)〉t<0 = M̃ −A1 sin
[
π
6 − 2π

3 (x− y − n)
]
. (107)

This describes instead a three sublattice structure with
two spins nominally “down”, with x − y − n =
0, 2 (mod 3), and the remaining one up. This state does
not have a natural semiclassical picture, and instead cor-
responds to the ‘quantum’ version of the plateau, dis-
cussed for the two-dimensional lattice in Ref. 11. A car-
icature of this state is a three site unit cell with two
sites forming a spin singlet entangled pair, and the third
(the “up” site) polarized along the field. Our DMRG re-
sults are consistent with the up-up-down configuration,
Eq. (106), suggesting that t > 0 case is realized.

We should stress that, apart from the quantitative es-
timate of κ0, nothing in this subsection depends upon the
quasi-1d approach. The conditions for the existence and
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FIG. 21: Sz profile for the 1/3 plateau state at (a)R = 0.0 and
(b)R = 0.2. We show data for the three sublattices, showing
the up-up-down structure, as square (black), circle (red) and
triangles (blue). There are slight boundary effects near the
end of the chains, near x = 0, 120; however, the chains are
well-ordered toward the center. (c) shows the Sz profile at
M/Ms = 1/3 as a function of R. We observe that the width
of the plateau decreases and eventually vanishes near R ≈ 0.8.

stability of the plateaux arising out of the SDW state
are otherwise completely general results based only on
symmetries of the TST and general arguments.

B. DMRG results for plateau

In this section, we discuss how we use DMRG to probe
into the 1/3 plateau. The first observation of its existence
is the constant entanglement entropy for the ranges of R
on the 1/3 plateau, as shown in Fig. 19. This shows an
ordered state which corresponds to central charge c = 0,
in Eq. (12). Furthermore, we can measure the transverse
spin-spin correlations, which should decay exponentially
in the 1/3 plateau. We show this measurement in Fig. 20,
for R = 0.2 as well as the isotropic case R = 0.

In Fig. 21(a,b), we plot the Sz profile of the spins form-
ing the three sublattices on the 1/3 plateau. Near x =
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FIG. 22: Finite-size scaling of the boundaries of the 1/3
plateau for Ly = 3 TST for different anisotropies, (a) R =
0.0, 0.2, 0.4 and (b) R = 0.6, 0.7, 1.0. (c) Width of the 1/3
plateau as a function of R.

L/2, we see a perfect up-up-down structure, with some
boundary effects on the edges of the chain. This gives
definitive evidence of the robustness of the 1/3 plateau
in these ranges of anisotropies. Moreover, in Fig. 21(c),
we see that the plateau persists up until R ≈ 0.8, at
which point, the system undergoes a Kosterlitz-Thouless
transition that destroys the 1/3 plateau. As described in
the previous subsections, this is a signature of the 1d TST
only: in 2d, the plateau is even more robust, extending
down to R = 1. This is further discussed in Sec. VIII A.

To characterize the properties of the plateau as well
as its width, we will adopt the following method, which
takes advantage of the total spin conservation due to the
presence of the U(1) symmetry with a magnetic field
along z-axis. In this case, we can work in a given to-
tal spin sector Sz =

∑
i S

z
i , and get the corresponding

ground state energy E(Sz)

E(Sz, h) = E(Sz)− h · Sz. (108)

Then the energy difference between two adjacent spin Sz

sectors is given by

δE(Sz, h) = E(Sz + 1, h)− E(Sz, h). (109)

Generally, at small magnetic field h, E(Sz + 1, h) >
E(Sz, h), so δE(Sz, h) > 0. However, E(Sz + 1, h) ≤
E(Sz, h) when h is large enough, so δE(Sz, h) ≤ 0.
Therefore, the boundaries of the plateau can be de-
termined when E(Sz + 1, h) = E(Sz, h), with the up-
per boundary h2

c(S
z) and lower boundary h1

c(S
z) of the

plateau given by

h2
c(S

z) = E(Sz + 1)− E(Sz),

h1
c(S

z) = E(Sz)− E(Sz − 1). (110)

Finally, the corresponding width of the plateau can also
be obtained as

W (Sz) = h2
c(S

z)− h1
c(S

z). (111)

In DMRG, the boundaries of the 1/3 plateau can be
computed using Eq. (110) by fixing the total spin to
Sz = NMs

3 . Here, Ms = 1
2 is the saturation magneti-

zation, and N is the total number of sites. As shown in
Figs. 22(a,b), both the upper and lower boundaries of the
1/3 plateau are determined using different system sizes
and anisotropies. The corresponding width of the plateau
is also given in Fig. 22(c) using Eq. (111). From this, we
can see that the plateau is very robust and remains finite
when the anisotropy, R, is small, and decreases with in-
creasing R. Interestingly, the plateau still remains finite
even R is very large, i.e., R = 0.7, although the width
W is very small. In the region 0.7 < R ≤ 1, finite-size
scaling of the data shows that the width of the plateau
is zero within the numerical error, for example, at the
decoupled chain limit R = 1.

VII. LOW FIELD REGIME

At zero field, there is already considerable work
on the spatially anisotropic Heisenberg model in two
dimensions10,40–45. Away from the quasi-1d region, i.e.
for 0 < R . 0.8, the ground state of the 2d model is un-
ambiguously magnetically ordered, in a coplanar spiral
with an incommensurate wavevector that varies contin-
uously with R. With increasing anisotropy, the ground
state is less clear, and is quite difficult to resolve numer-
ically, owing to the fact that correlations between chains
set in only at extremely long length scales for small J ′/J .
A controlled renormalization group approach predicts,
however, that in the limit 0 < J ′/J � 1, the system
develops a collinear magnetic state instead of the spi-
ral one12. Such a collinear state is qualitatively distin-
guished from the spiral one by its pattern of symmetry
breaking, which leaves a residual U(1) spin rotation sym-
metry about the ordering axis, in contrast to the spiral
state which fully breaks SU(2) symmetry with no residual
continuous invariance remaining.

Here we turn to the situation in the one-dimensional
TST. We argue that in this case the spiral order is con-
verted by 1d quantum fluctuations into a fully gapped
state with spontaneous staggered dimerization. The ar-
gument is quite general and is expected to hold for any 1d
system with local non-collinear order and a half-integer
spin per unit cell. Furthermore, specifically for the TST,
we show that the tendency to short-range spiral order is
more robust than in 2d, and unlike in 2d, it prevails over
collinear order even in the limit of arbitrarily small J ′/J .
Thus staggered dimerization is predicted at zero field for
all 0 ≤ R < 1 for the TST. See Appendix C 1 for an
alternative calculation that leads to the same conclusion
as the one presented below.
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Given the presence of dimerization in zero field, we
can discuss the behavior in low fields, or more properly
for small magnetization, in terms of the elementary ex-
citations of the symmetry broken dimerized state, which
are domain wall solitons. We obtain in this way differ-
ent gapless phases at low field, including the SDW state
discussed previously from the quasi-1d point of view.

A. Zero field dimerization from spiral order

In the following, we assume that on short space and
time scales, the spins establish a similar spiral order to
that of the 2d system. This notion can be made more
systematic by considering spin tubes made by wrapping
the triangular lattice into cylinders with larger circumfer-
ence. Once the circumference is large enough compared
to the correlation length of the spiral order, the latter
should become well-established. It seems reasonable to
regard this as being the case already for the circumfer-
ence three TST studied here. This is corroborated also
by the close correspondence of the phase diagram in the
weakly anisotropic limit, R� 1, and the expected semi-
classical one, as discussed already in Sec. III.

With this assumption, the description of the TST
should be that of a Non-Linear σ-Model (NLσM) for the
spiral order, confined to the finite width cylinder. This
starting point is similar to the one of Haldane46 applied
to unfrustrated spin chains of spin S, which locally es-
tablish collinear Néel order. From this formulation, Hal-
dane established the existence of a featureless gapped
state for integer S, while it is known that chains with
half-integral S harbor a gapless Bethe chain-like phase
instead. The case of the TST is distinct from Haldane’s
analysis, however, owing to the different symmetry of the
order. While the collinear Néel case is described by a vec-
tor O(3) NLσM, the spiral case is instead described by a
NLσMwith a matrix SO(3) order parameter47. Here the
matrix may be constructed from the local spin order,

Si ∼ m(n̂1 cosq · ri + n̂2 sinq · ri), (112)

where n̂1 and n̂2 specify the plane of the spiral, with
n̂1 ·n̂2 = 0, q the spiral wavevector, and m the amplitude
of the quasi-static moment. One can construct from this
the SO(3) matrix

O = (n̂1|n̂2|n̂3) , (113)

with n̂3 = n̂1 × n̂2.
If on short space and time scales, spiral order is

present, we expect that an appropriate effective NLσM
action is given by

SNLσM = (114)

1

2g

∫
dx dτ

{1

v
Tr
[
∂τOT∂τO

]
+ vTr

[
∂xOT∂xO

] }
.

Note that, for a quasi-1d system with circumference Ly,
the effective coupling constant g ∼ c/Ly � 1 for large Ly,
with some constant two-dimensional coupling constant c.

Famously, in Haldane’s analysis of spin chains with
a vector O(3) order parameter, the näıve NLσM action
must be supplemented by a topological term46. Topology
of the order parameter is also important here, but its na-
ture is rather distinct from Haldane’s case. For clarity, we
compare and contrast the two situations here. The vector
O(3) order parameter comprises a manifold isomorphic to
the sphere S2. Its topology is summarized by the homo-
topy groups Π1(S2) = 0 and Π2(S2) = Z. The former
implies that there are no non-trivial loops on the sphere,
and correspondingly no singular point defects in two di-
mensions. The latter, second homotopy group implies
that there are classes of non-trivial smooth configurations
of the order parameter in two dimensions, parametrized
by an integer. These configurations are skyrmions, lack-
ing any singularity. Because of the lack of any singu-
larity, the skyrmions appear in a continuum limit of the
O(3) vector NLσM , and modify the physics of the NLσM
through a topological θ-term, which gives a phase factor
to configurations with non-zero skyrmion number. Based
on this NLσM with θ-term, Haldane postulated distinctly
different behavior for integer and half-integer spin chains.

In the matrix SO(3) case, the order parameter man-
ifold is S3/Z2, and the corresponding homotopy groups
are Π1(S3/Z2) = Z2 and Π2(S3/Z2) = 0. The trivial
second fundamental group means that non-singular con-
figurations of the order parameter have no topological
distinctions. This implies that a continuum limit exists
in which there are no topological defects and there is no
topological term. Instead, the non-vanishing first homo-
topy group implies that there are singular point defects
in two dimensions, with an Ising character. Note that
in our theory, these are point defects in space-time, or
instantons. Such defects are well-known in classical two-
dimensional non-collinear magnets, and are known as Z2

vortices48. They do not appear in the continuum NLσM
, but are allowed in a lattice theory. Instead, the proper
way to treat them is to embed the continuum theory in
a larger one in which the defects appear as operator in-
sertions, with some fugacity and selection rules. This sit-
uation is familiar from the Kosterlitz-Thouless analysis
of the classical XY model, in which the näıve continuum
theory is just the Gaussian spin-wave line, and the de-
fects are point vortices which are treated as a kind of
Coulomb gas36. It occurs also in the quantum analysis
of 2+1 dimensional collinear antiferromagnets, where the
singular defects are hedgehogs or monopoles. The sepa-
ration of these defects and the continuum theory is the
basis of the theory of deconfined quantum criticality49.

With this understanding, we may first consider the
SO(3) matrix NLσM without any Z2 vortices, which is
simply described by Eq. (112). There is no topologi-
cal term. This SO(3) NLσM is, like all NLσM’s in two
dimensions for non-abelian groups, asymptotically free.
Lacking any quantum phase factors, we expect simply
that it develops a gap at a length scale ξ ∼ eg0/g ∼ e g0c Ly ,
and that order parameter (hence spin) correlations decay
exponentially beyond this scale. The gap itself behaves as
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∆ ∼ v/ξ. Note the difference from Haldane’s case, where
the θ term, which is non-trivial for half-integer spin, fun-
damentally alters the behavior of the continuum NLσM,
leading to gapless behavior in the half-integer spin case.
Here, there is no topological term, and the system is al-
ways gapped with exponential spin correlations.

Now we can consider the role of the Z2 vortex instan-
tons. Such a vortex is described in the field theory by
an operator, ψ, which inserts the vortex at a particular
space-time point. It is crucial to consider the quantum
numbers of a Z2 vortex, i.e. how the operator ψ trans-
forms under physical symmetries. The relevant opera-
tions are time-reversal, translation, and inversion. It can
be argued (we discuss this in Appendix D) that the vortex
operator is invariant under time-reversal and translations
along y, and transforms under the other two operations,
translation along x, Tx, and inversion, P , according to

Tx : x→ x+ 1, ψ → (−1)Lyψ, (115)

P : x→ −x, y → −y, ψ → (−1)Lyψ. (116)

From the above properties, we see that for odd Ly, ψ has
the transformation properties of a staggered dimerization
operator. In general, two operators with the same sym-
metry are expected to have non-zero overlap in the op-
erator sense, and their correlations will be proportional.
Thus, for odd Ly, the Z2 vortex operator ψ can be viewed
as a staggered dimerization order parameter.

Let us consider the correlations of ψ. Its two-point
correlation function is obtained by inserting two Z2 vor-
tices in the system at separated space-time points. When
they are widely separated, the result should be just the
product of two independent Z2 vortices. Naively, using
Eq. (112), such a vortex has an action which diverges log-
arithmically with the system size. However, its effective
action is expected to be finite, due to the vanishing order
and stiffness beyond the scale ξ. Roughly, the effective
action for a single vortex is thus obtained by replacing
the system size by ξ, so Sv ∼ 1

g ln ξ ∼ g0/g
2. Then we

expect that

lim
x→∞

〈ψ(x)ψ(0)〉 ∼ e−2Sv ∼ e−g0/g
2 ∼ e−cL2

y , (117)

with some constant c. The saturation to a finite value as
x→∞ implies 〈ψ〉 6= 0, and hence, for odd Ly, the exis-
tence of staggered dimer order. For even Ly, there is no
connection of Z2 vortices to dimerization, so although the
former are present, the system forms simply a featureless
gapped state.

We can probe into this state by measuring the entan-
glement entropy in DMRG for a range of anisotropies at
zero field. We show this in Fig. 23, where an oscillatory
behavior of period 2 gives clear evidence of the dimerized
phase described above.
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FIG. 23: Entanglement entropy at (a) R = 0, (b) R = 0.2
and (c) R = 0.7 at zero field. The oscillatory behavior with
periodicity 2 shows the dimerized ground state.

B. Gapless states in low but non-zero field

As argued in the previous subsection, the ground state
in zero field is a non-magnetic dimerized state with a
gap to all excitations. As a consequence of the gap, the
ground state is unchanged by application of a sufficiently
small field. The ground state changes when the field is
large enough that a state with non-zero spin crosses the
energy of the spin zero ground state. Generally, if the
transition to a state of non-zero magnetization occurs
continuously, we can think that the state with non-zero
magnetization consists of a dilute set of elementary exci-
tations above the zero field ground state.

We must consider therefore the elementary excitations
of the dimerized state, and in particular those which
carry non-zero spin (as these couple to the field). The
most important such excitations are the topological soli-
ton excitations which are characteristic of the broken
Ising symmetry of the dimerized state. Such solitons
are domain walls, connecting the two distinct dimerized
ground states. As is well-known from the study of the
Majumdar-Gosh chain50, solitons of this type carry spin,
and in particular for the TST, one can readily argue that
the solitons carry half-integer spin, namely Sz = 1/2,
3/2, as shown in Fig. 24. Both values of the spin are
possible, and generally differ in energy. The solitons are
topological excitations insofar as they are non-local: they
cannot be created by the action of any local operator on
a dimerized ground state. In addition to the topological
soliton excitations, non-topological excitations carrying
spin Sz = 1 also exist. They can be visualized either by
replacing a singlet dimer by a triplet of aligned spins, or
as a bound pair of Sz = 1/2 solitons.

Generally, if the magnetized state is realized as a di-
lute system of non-topological Sz = 1 triplons, then the
dimerization is not disrupted and must persist for M > 0.
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FIG. 24: (Color online) Toy picture of solitons. The blue
shade, covering three sites, in (a) corresponds to the Sz =
1/2 soliton in Eq. (118) while the three blue arrows in (b)
corresponds to a single Sz = 3/2 soliton.

Numerically, however, the dimerization appears to be dis-
rupted at all non-zero M . We will assume henceforth
that the magnetized state (at small M > 0) should be
regarded as a collection of topological soliton excitations,
and neglect the Sz = 1 triplons.

In general, the excitations can be characterized by spa-
tial quantum numbers in addition to spin. For an excita-
tion localized in x in the TST, we may consider the trans-
formations under translations along y, Ty, and under in-
version, P . From Fig. 24, it is clear that the Sz = 3/2
soliton is invariant under both. However, this is not the
case for the Sz = 1/2 soliton, which has additional struc-
ture. In general, out of the three non-dimerized spins in
the “core” of the domain wall, we can form three linearly
independent states with Sz = 1/2,

|m〉 =
1√
3


ζm



↓
↑
↑


+



↑
↓
↑


+

1

ζm



↑
↑
↓




 , (118)

where ζ = e2π/3 and m = 0,±1. These are simply mo-
mentum eigenstates along the 3 site chain. The state |0〉
is invariant under the Ty and P operations, while the chi-
rality eigenstates |±〉 form a two-dimensional irreducible
representation. In general, the chirality states would dif-
fer in energy from the scalar one. If we crudely model the
soliton core as a three-site antiferromagnetic Heisenberg
chain, then we see that the chirality states have lower en-
ergy, so we expect that the elementary solitons take this
form. Consequently, there are two chirality “flavors” to
the Sz = 1/2 solitons.

To understand the impact of the solitons, we will need
the relation between the microscopic lattice operators
and those which describe the solitons. The simplest to
consider is the dimerization operator, or the bond kinetic

energy, Bx,y = ~Sx,y · ~Sx+1,y. This is negative on singlet
bonds and has zero average on bonds with uncorrelated
spins. In a ground state, it oscillates with period 2 in the
x direction. However, the singlets are shifted over by one
sublattice on crossing a soliton, so

Bx,y ∼ B + (−1)x+N(x)ε0, (119)

where B is the non-zero average, and ε0 is the ampli-
tude of the bond modulation. We have defined N(x) =∑
x′<x a

†
+,x′a+,x′ + a†−,x′a−,x′ + a†3,x′a3,x′ , which is the

number of solitons to the left of the position x. The
N(x) factor accounts for the shift in the singlet position
on crossing each domain wall.

Next we turn to the spin density operator Szx,y. We
are interested in its action on states which consist of a
low density of solitons. It is helpful to consider a carica-
ture of these states in which solitons are described by a
wavefunction which is a product of columns of singlets,
spaced by occasional non-singlet columns with either the
chiral Sz = 1/2 form, or fully aligned Sz = 3/2 spins, as
shown in Fig. 24. If the operator Szx,y acts on a column
x which is part of a singlet, it converts that singlet to an
Sz = 0 triplet state. This triplet costs a non-zero energy
equal to the zero field spin gap, and having Sz = 0 gains
no energy back from the magnetic field. Thus if we re-
strict our description to a low energy one, below the zero
field spin gap, we can simply take Szx,y to annihilate the
state in this case. If, however, x is located at the posi-
tion of a soliton, then Szx,y gives back a low energy state,
which consists either of the original soliton or one with
reversed chirality. Notably, in moving down the 1d sys-
tem, solitons alternate between odd and even columns of
the lattice. Thus a non-zero spin is only measured when
Szx,y acts on an even or odd site, if the number of solitons
to the left of the position x is fixed. This lets us write
the following expression for the spin operator,

Szx,y ∼
[
1 + (−1)x+N(x)

] [
a†+,xa+,x + a†−,xa−,x

+ζya†+,xa−,x + ζ−ya†−,xa+,x + a†3,xa3,x

]
, (120)

where a+,x, a−,x are annihilation operators for chiral
Sz = 1/2 solitons, and a3,x is an annihilation operator
for an Sz = 3/2 soliton.

Finally we consider the spin raising operator, S+
x,y, con-

taining the XY components of the spin. Acting on a site
which is part of a singlet bond, the raising operator con-
verts the singlet to an Sz = 1 triplet, with amplitude
∓1/
√

2 depending upon whether the site is the left or
right member of that singlet. The triplet with Sz = 1
has overlap with the state of two adjacent Sz = 1/2 soli-
tons (as well as other states not in the low energy sector).
Simple algebra shows that, for instance



|s〉
| ↑↑〉
|s〉


 = (121)

1

3

[
|+〉|+〉+ |−〉|−〉 − 1

2
(|+〉|−〉+ |−〉|+〉)

]
+ · · · ,

where on the left hand side, |s〉 represents the singlet
state, and the columns represent the three columns in
the TST. One the right hand side, the state has been de-
composed into soliton states, and the ellipses represent
higher energy states. Here we took the triplet to reside
in the middle row. The other triplets can be obtained by
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translation, as the chirality states are translational eigen-
states. From this construction, we obtain the analogous
relation to Eq. (120),

S+
x,y ∼ (−1)x+N(x)

∑

m=±

[
ζmya†m,xa

†
m,x+(−1)x+N(x)

+a†m,xa
†
−m,x+(−1)x+N(x)

]
. (122)

The low energy excited eigenstates will not consist of
localized quasiparticles but delocalized ones, as solitons
may hop between columns of the same sublattice, i.e.
even or odd x. As a consequence, the states are eigen-
states of the x-momentum kx, which is defined modulo π
rather than the usual 2π, due to the doubled background
unit cell of the dimerization. In the dilute limit we should
consider only the states near the minimum energy of the
corresponding energy bands. For the Sz = 3/2 solitons,
which are inversion symmetric, if this minimum is non-
degenerate it must occur at kx = 0 or kx = π/2. We
expect it to occur at the latter, kx = π/2 value, owing
to the dominant antiferromagnetic spin correlations. For
the Sz = 1/2 solitons, inversion symmetry implies in-
stead that if the positive chirality (q = +1) soliton has
minimum energy at kx = q0, then the negative chirality
soliton has its minimum energy at kx = −q0. We are
not aware of a general argument to fix the momentum
q0, however, and expect it is generically non-zero. We

have checked this by a crude and uncontrolled variational
calculation of the soliton dispersion, which indeed gives
minimum energy states with opposite non-zero momenta
for opposite chirality (this calculation gives q0 = π/6,
but we do not expect this to be accurate).

With this in mind, we focus only on the minimum en-
ergy states and take a continuum limit, writing

a±,x ∼ ψ±(x)e±iq0x, (123)

a3,x ∼ Ψ(x)ei
π
2 x, (124)

where ψm(x) and Ψ(x) are taken as slowly varying con-
tinuum boson fields. Then Eqs. (120)(122) become

Szx,y ∼
[
1 + (−1)x+N(x)

] [ ∑

m=±
ψ†mψm

+
∑

m

eim(2q0x+ 2π
3 y)ψ†mψ−m + Ψ†Ψ

]
, (125)

S+
x,y ∼ 2i sin q0

∑

m

eim(2q0x+ 4π
3 y)m(ψ†m)2

+2 cos q0(−1)x+N(x)
∑

m

eim(2q0x+ 4π
3 y)(ψ†m)2

+2 cos q0(−1)x+N(x)ψ†+ψ
†
− (126)

We are now in a position to write down an effective continuum theory to describe the low magnetization state in
terms of bosonic field operators ψm for Sz = 1/2 solitons with chirality m and Ψm for the Sz = 3/2 solitons, all taken
near their band minima. By symmetry, it takes the form

Hlow =

∫
dx
{ ∑

m=±
ψ†m
(
− 1

2m1
∂2
x + ε1/2 − h/2

)
ψm + Ψ†

(
− 1

2m2
∂2
x + ε3/2 − 3h/2

)
Ψ + V [ψ†+ψ+, ψ

†
−ψ−,Ψ

†Ψ]
}
.

(127)

Here V is a general potential of quartic order and higher
in the fields, representing interactions of the solitons. We
have dropped terms above which mix the different soliton
species, e.g. ones which might annihilate one Sz = 3/2
soliton while creating 3 Sz = 1/2 solitons. Most such
terms, at least at low order, are prohibited by various
symmetries, such as translation and inversion symmetry,
at least for a generic incommensurate wavevector q0 for
the Sz = 1/2 solitons.

Consider increasing the magnetic field h from zero.
The ground state remains the soliton vacuum, i.e. the
dimerized state, until the energy of a state with non-zero
solitons crosses the energy of the vacuum. Assuming re-
pulsive interactions between solitons, this occurs when
the energy of a single soliton vanishes, and this type of
soliton will enter the system. We must compare the en-
ergies ε1/2−h/2 and ε3/2− 3h/2, and see which vanishes
first on increasing h. If the Sz = 3/2 soliton energy is

large, ε3/2 > 3ε1/2, then the Sz = 1/2 solitons will ap-
pear, at h = 2ε1/2. Conversely, if ε3/2 < 3ε1/2, then the
Sz = 3/2 solitons will appear, at h = 2ε3/2/3. The crit-
ical ratio ε3/2/ε1/2 = 3 is valid at infinitesimal soliton

density, i.e. M → 0+. At larger magnetization, interac-
tions amongst solitons may become important, and will
probably tend to disfavor the Sz = 1/2 solitons further,
since these must occur at a higher density and hence in-
teract more strongly. Since in any case we do not know
the energies ε3/2, ε1/2, we cannot actually use this criteria
quantitatively. Instead, we simply consider both types of
soliton liquids as possibilities, and determine their prop-
erties at a phenomenological level.

Let us consider first the Sz = 1/2 case. Then we can
neglect the Ψ particle, which has an energy gap even
when the ψq solitons enter the system. The structure
of the solitonic state is determined to a degree by the
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potential V in Eq. (127). By symmetry, it has the form

V [n+, n−, 0] =
a

2
(n2

+ + n2
−) + bn+n−. (128)

With a > 0 for stability, the state depends upon the coef-
ficient b. If we assume b < a, then it is favorable for both
solitons to enter the system in equal amounts, and the
system forms a one dimensional Bose liquid of particles
with two flavors. Owing to the strong quantum fluctu-
ations in one dimension, this is a Luttinger liquid phase
with two independent massless bosonic modes, associated
to the two conserved densities. In the CFT terminology,
this is a state with central charge c = 2. If instead b > a,
it is preferable for the system to choose one state of soli-
ton only. In this case there is a spontaneously broken
discrete symmetry (inversion P ), and only a single mass-
less bosonic mode, or c = 1. We focus on the former case,
b < a, which we argue describes the same phase as the
semi-classical incommensurate planar state.

To see this, we show that the spin correlations in the
two-flavor Sz = 1/2 soliton liquid have the same form
as those in the 1d incommensurate planar phase, de-
scribed in Sec. III E. In the soliton liquid, we can use
the usual bosonization of bosons for each of the two
species, ψm ∼

√
n̄s/2e

−iθm , ψ†mψm ∼ n̄s/2 + ∂xφm/π

(and Ψ†Ψ = 0), where φm is the dual field to the boson
phase θm. With this, we may conveniently represent the
non-local operator N(x) = n̄sx+

∑
m φm/π, where n̄s is

the mean soliton density. Note since each soliton carries
Sz = 1/2 spread over the TST of width 3, the average
magnetization per site is M = 1

3 n̄s/2 = n̄s/6. Then

Bx,y ∼ B + ε0 cos[(π + 2δ)x+ ϕ], (129)

Szx,y ∼ (1 + cos[(π + 2δ)x+ ϕ])
(
M +

∂xϕ

6π

+ns cos[θ+ − θ− + 2q0x+
2π

3
y]
)
, (130)

S+
x,y ∼ 2i sin q0

∑

m

eim(2q0x+ 2π
3 y)me2iθm

+2 cos q0 cos[(π + 2δ)x+ ϕ]
(
ei(θ++θ−)

+
∑

m

eim(2q0x+ 2π
3 y)e2iθm

)
. (131)

Here 2δ = πn̄s = 2πM/3 and ϕ = φ+ + φ−. We can
compare the above to the semi-classical result. In the
semi-classical limit, the bosonic phases θ± are weakly
fluctuating, while φ± and hence ϕ are strongly fluctu-
ating. Then the dominant terms in the spin operators,
with smallest scaling dimension, are those which do not
contain any of the strongly fluctuating phases,

Szx,y ∼ M + ns cos[θ̃ + 2q0x+
2π

3
y], (132)

S+
x,y ∼ −4 sin q0 e

iθ sin[θ̃ + 2q0x+
2π

3
y], (133)

where we defined θ = θ+ +θ− and θ̃ = θ+−θ−. This can
be directly compared to Eqs. (20) of Sec. III E. We see

that the form of the spin operators is identical to that in
the incommensurate coplanar state. Thus we can regard
the Sz = 1/2 chiral soliton liquid as another limit of the
same phase.

Let us turn to the case of the Sz = 3/2 soliton liquid.
As there is no chirality quantum number in this case, the
state can be simply viewed as a Luttinger liquid without
spin, and is expected to be described by a c = 1 theory
of a single massless boson. We argue that this Sz = 3/2
soliton liquid is in fact another SDW phase very similar to
the one obtained by the quasi-one-dimensional approach
of Sec. V C. While one might have expected to find the
identical SDW phase in this way, we instead find that the
Sz = 3/2 soliton liquid is an SDW state with a different
SDW wavevector, in particular with Qy = 0, contrasting
with the value Qy = 2π/3 obtain from the quasi-1d ap-
proach. If the Sz = 3/2 liquid indeed occurs, therefore,
we presumably require a phase transition to the other
SDW state upon increasing magnetization.

To observe the SDW structure of the Sz = 3/2 soli-
ton liquid, we again consider the spin correlations. Now
we have no chiral solitons, ψ†mψm = 0. This immediately
implies that there are no low energy excitations with spin
Sz = 1 and hence no low energy content to the S± oper-
ators. Thus XY correlations decay exponentially in this
phase, exactly as in the the SDW phase. To examine the
Sz correlations, we can bosonize the non-chiral bosons.
This gives Ψ ∼ √nseiϑ, Ψ†Ψ ∼ ns + ∂xϕ/π, with dual
phases ϕ, ϑ. Now N(x) = nsx + ϕ/π, and we note the
relation between the magnetization and soliton density
is changed to M = ns/2, since the solitons have spin
Sz = 3/2. We see then that

Szx,y ∼ (1 + cos[(π + 2δ)x+ ϕ])(M +
∂xϕ

2π
). (134)

Higher harmonics of the above cosine also appear in a
more careful treatment. Note that the incommensurabil-
ity is different in this case: 2δ = πns = 2πM . Eq. (134)
can be compared to the corresponding formula, Eq. (82),
for the quasi-1d SDW state in the TST. We see that it is
identical, save for the presence of a factor 2πy/3 inside
the cosine in the quasi-1d case. This shows that the two
states have the same structure, save for a difference in
the SDW wavevector, as mentioned above.

VIII. DISCUSSION

In this paper, we have presented a comprehensive anal-
ysis of the field-anisotropy phase diagram of the three-
leg spin-1/2 triangular spin tube, of interest primarily as
an approximation to the corresponding two dimensional
Heisenberg model on the anisotropic triangular lattice.
Pronounced quantum effects, strongly deviating from the
expectations based on classical analysis, occur through-
out the phase diagram. In this section, we will discuss the
implications of our results for two dimensions, and how
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FIG. 25: (Color online) Finite-size scaling of the boundaries
of the 1/3 plateau for cylinders of width Ly = 6, and dif-
ferent anistropies: (a)R=0.0, 0.2, 0.4, 0.6. (b) Width of the
1/3 plateau as a function of R for cylinder of width Ly = 6,
shown as (black) squares. The data points at R > 0.6 (hol-
low square) are based on a preliminary finite-size scaling for
quasi-2D system with Lx ∼ Ly. The plateau width for Ly = 3
(blue circles), from Fig. 22, is shown for comparison.

robust these quantum effects are to other modifications
to the model.

A. Implications for two dimensions

Throughout the paper we have commented on how re-
sults obtained in the one-dimensional TST geometry ap-
ply to the two-dimensional spin-1/2 system. Here we
summarize these connections, with particular attention
to the phase diagram in 2d. With a few exceptions,
the phases we obtained for the TST have straightfor-
ward analogs in 2d, and consequently we expect the 2d
diagram to be only slightly modified.

For example, on the isotropic line, R = 0, away
from very small field, all the phases we found are
precisely those expected from the semiclassical analy-
sis of Refs. 3,4. We expect the semiclassical analysis
to only work better in 2d, so the same coplanar and
plateau states, and their incommensurate analogs for
small anisotropy, 0 < R � 1, should occur there as
well. We note that all coplanar states are intrinsically
stabilized by quantum effects.

Perhaps the most striking feature amongst these states
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FIG. 26: Schematic phase diagrams for the two dimensional,
S = 1/2 system. The shaded regions and boundaries con-
taining full circles are based on preliminary DMRG results
for circumference Ly = 6, 9 systems in addition to the TST
with Ly = 3. Other boundaries are drawn by hand using the
considerations described in the text. Two possible schematics
are drawn, differing in the extent of the cone phase. In (a) it
is limited to the quasi-1d regime, while in (b) it extends to
enclose the SDW state. The latter possibility is more clas-
sical. Intermediate or more complex cases are also possible.
See text for further explanations.

is the 1/3 magnetization plateau, which extends well be-
yond the semiclassical regime in our phase diagram for
the TST, Fig. 22. In addition to the TST, we have
also studied the 1/3 magnetization plateau for Ly = 6
cylinders, see Figure 25. Close to the isotropic limit,
R � 1, the plateau width is only slightly changed by
the increase in width from Ly = 3 to Ly = 6, and
its value ∆h ≈ 0.7J agrees well with previous numer-
ical studies10,39,51,52. This trend in width is consistent
with our picture that for small R the phases proximate
to the plateau are commensurate planar ordered ones in
the 2d limit. The broken U(1) symmetry of these phases
makes them sensitive to infrared quantum fluctuations in
the 1d geometry, since of course continuous symmetries
are unbroken in 1d. Hence in the thinner cylinders, the
commensurate plateau state competes slightly more effec-
tively against the planar phases than in two dimensions,
leading to a wider plateau for smaller circumference.

In the intermediate region, 0.2 . R . 0.7, the trend is
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much more striking and opposite to that for small R: the
plateau width is seen to increase significantly compared
with that for Ly = 3. The same is true in the larger
anisotropy limit, 0.7 . R < 1, for which our prelimi-
nary results, based on the finite-size scaling for quasi-2D
systems with Lx ≈ Ly (for such highly anisotropic sys-
tems, we were unable to converge the Lx → ∞ limit),
still suggests a finite 1/3 plateau, consistent with ana-
lytical arguments put forward in11 and in Sec. VI. The
increase of the plateau width is understood as being due
to a greater stability of crystal phases in two dimen-
sions. Our DMRG results strongly support existence of
the 2d magnetization plateau state for all values of spa-
tial anisotropy 0 < R < 1.

Several experimental spin-1/2 materials with the tri-
angular lattice structure have indeed been observed
to support a 1/3 magnetization plateau, including the
well documented material Cs2CuBr4

53,54 as well as
Ba3CoSb2O9, studied more recently55. A notable ex-
ception is Cs2CuCl4, which is isostructural to Cs2CuBr4,
but does not exhibit a magnetization plateau56. In our
opinion, as explained in detail in Ref. 11, the plateau is
destabilized in this case by three-dimensional coupling,
which is stronger (relative to the appropriate J) in the
Cs-based magnet in comparison with the Br-based one57,
with perhaps strong Dzyaloshinskii-Moriya (DM) inter-
actions in Cs2CuCl4 playing an additional role58.

The SDW phase dominates a large fraction of the phase
diagram for the TST. This is an entirely quantum phase
(since it requires modulation of the length of the static
moments), which in 2d exhibits incommensurate collinear
long-range order along the field direction. Being of quan-
tum origin, one may wonder whether the SDW persists
into 2d. Based on renormalization group arguments, dis-
cussed extensively in Ref. 11, we know that the SDW
indeed must exist in the quasi-1d regime, J ′ � J , when
inter-chain correlations are relatively weak. We expect
that the region occupied by the SDW may be somewhat
curtailed in 2d relative to that in the TST, but that it still
is quite large. This is based on intuition and numerical
evidence that inter-chain correlations remain suppressed
for relatively large J ′ due to frustration.

Experimental verification of this novel magnetic state
is clearly called for. In this regard we would like to
point out a recent series of experiments on quasi-1d spin-
1/2 material LiCuVO4. While much of the interest in
this material stems from the high-field nematic phase
predicted59 and observed60 to occur near the satura-
tion field, several experimental studies61–64 have found
strong evidence in favor of an incommensurate longitu-
dinal SDW phase in the intermediate range of magnetic
fields. To understand this finding better, it is important
to realize that the inter-chain exchange in this material is
of zig-zag (triangular) type albeit of predominantly fer-
romagnetic sign65. The considerations of Section V make
it clear that the SDW phase is not sensitive to the sign of
inter-chain J ′ and should appear in the model with fer-
romagnetic J ′ as well, see for example Ref. 66 for explicit

calculations. We thus would like to posit that a recent
neutron scattering study67, which observed longitudinal
spin fluctuations but no transverse ones, is very much
consistent with SDW phase scenario. Like the spin ne-
matic phase, which is expected to occur at much higher
magnetic fields, the SDW phase does not support low-
energy transverse spin excitations. It would also be in-
teresting to seek evidence of an SDW state in Cs2CuBr4.

The above aspects of the TST and 2d phase diagrams
are qualitatively similar. Qualitative differences are ex-
pected at low and high fields. At zero field, the TST ex-
hibits a dimerized phase, which we attribute (Sec. VII)
to quantum fluctuation effects specific to one dimension.
In 2d, most of the zero field line should exhibit incom-
mensurate spiral order, with a small region of collinear
antiferromagnet at small J ′/J , as argued in Ref. 12. At
high field, near saturation, where the TST shows both
coplanar and cone phases, we saw in Sec. IV D 2 that
in 2d only the coplanar state occurs. This is a rather
surprising result, since the coplanar state might be con-
sidered more quantum than the cone. This observation
poses a tricky problem of connecting the limit of field ap-
proaching saturation at fixed small J ′, where the copla-
nar state is expected, to the limit of vanishing J ′ at fixed
field slightly below saturation, where we instead expect
a cone state. In 2d, therefore, a phase boundary must
emanate from the saturation point at J ′ = 0, and we do
not presently understand where this boundary extends
to.

Putting together all these considerations, we can con-
struct schematic phase diagrams for two dimensions. The
two simplest possibilities we could construct are shown
in Fig. 26. The quasi-1d analysis, which was carried out
directly in 2d in Ref. 11, demands the cone, SDW, and
plateau phases at non-zero field and small J ′/J . It also
requires a collinear anti-ferromagnetic state at zero field
and small J ′/J . This collinear state is expected to be
rapidly destroyed in favor of the SDW as the field is im-
posed. It is likely to become canted as it does so, but in
the absence of a detailed description of this narrow region
descending from the collinear antiferromagnet at zero
field, we label it “quasi-collinear” in the figures. Near the
isotropic line, the semi-classical description requires com-
mensurate (C) planar and incommensurate (IC) planar
states, as well as the 1/3 plateau. Finally, near satura-
tion, the dilute spin-flip approach becomes exact, and the
solution of the BS equation required the IC planar phase.
The shaded phases and the boundaries containing cir-
cles are taken from preliminary DMRG results for more
two-dimensional system with Ly = 6, 9 lattice spacings
around the circumference. The remaining phase bound-
aries are drawn arbitrarily to connect the known regions
demanded by the above reasoning in the simplest possi-
ble manner consistent with scaling. The principal uncer-
tainty in the diagrams is the extent of the cone phase. We
expect it to occupy a relatively small portion of the phase
space, despite the fact that it is the classical ground state
everywhere below saturation except on the R = 0 line!
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In the first schematic, Fig. 26a, the cone state occupies
the minimum possible area, while a more semi-classical
situation might be as shown in Fig. 26b.

1. Comparison to other work

It is interesting to compare our results to those of Tay
and Motrunich10, which is the only other comprehensive
study of the full anisotropy-field phase diagram of which
we are aware. We caution that a strict comparison is not
possible because both their and our predictions for 2d are
somewhat schematic, being based on conjectural extrap-
olation of results for the 1d TST (us) and finite clusters
(them). Nevertheless, one notices immediately similari-
ties between their schematic 2d phase diagram, Fig. 10
of their paper, and our Fig. 3. First, the region near the
isotropic line is in both cases quite close to semiclassical
predictions. Small differences appear at low fields, where
indeed quantum effects of the finite systems studied in
both works are probably maximal. Second, near the sat-
uration field, they also find a wide range of incommen-
surate planar phase (called incommensurate V in their
study). Our analytical BS analysis indicates that this
phase in fact extends over the full range of anisotropy,
a fact which was not resolved in their diagram. Third,
both studies indicate the robustness of the 1/3 plateau.
As already mentioned above, our results for the width
of the plateau ∆h ≈ 0.8J at the isotropic point R = 0
agree well with those of Refs. 10,39. The more recent ex-
act diagonalization study51 predicts smaller width, about
0.5J , but this is based on extrapolating ∆h from small-
size clusters. For R > 0, Ref. 10 is the only one we can
compare with, and qualitative agreement is quite good.
Our DMRG work completes the phase diagram, demon-
strating the 1/3 plateau existence for all J ′ > 0.

The major distinction between the two works is in our
finding of the SDW state in a wide field anisotropy range,
where Tay and Motrunich postulate separate spin liquid,
spiral (corresponding to our cone state), and quasi-1d
regimes. In our work, renormalization group arguments
rather clearly establish the SDW phase in the small J ′/J
regime in 2d, which is the quasi-1d region of Tay and
Motrunich. We think it likely that even in 2d, the SDW
phase extends to R ≈ 0.5.

B. Suppressing the quantum effects

As remarked above, we predict two types of quan-
tum states – coplanar phases and collinear SDWs – in
the 2d S=1/2 model. While remarkably robust in this
case, these quantum phases can be suppressed by other
changes to the model: larger spins S > 1/2, three-
dimensional coupling, and Dzyaloshinskii-Moriya (DM)
interactions.

1. Higher spin

We first consider S > 1/2, and find that the quan-
tum phases are strongly suppressed. We begin with the
vicinity of the saturation field. In Sec. IV D 2, we showed
that for S = 1/2 the system forms a coplanar state in
this limit for all 0 < J ′/J ≤ 1. This is surprising since
except for the isotropic case, the coplanar phase is not
a classical ground state. Using the calculations sketched
below, we find that with increasing S, the classical re-
sults are recovered, with the coplanar phase restricted to
increasingly narrow region near the isotropic limit, where
it occurs due to classical degeneracy.

To do so we use the representation below22 , which is
more convenient than the Holstein-Primakoff one:

S†r =
√

2S[1 + (Ks − 1)b†r br]br, (135)

Szr = S − b†r br,

where Ks =
√

1− 1/(2S). This expression reproduces
the matrix elements of spin raising and lowering opera-
tors between states with different magnetization exactly
within the two-magnon (two spin flip) subspace. The ad-
vantage of this form is that it requires no 1/S expansion.
Note that for S = 1/2 (135) reduces to (26), thanks to
the hard-core condition (br)

2 = 0, while for large S � 1
we recover Holstein-Primakov asymptote Ks ∼ −1/(4S).
Note that for S ≥ 1 the hard-core constraint is not re-
quired and as a result the U -term is absent from the
two-magnon Hamiltonian25. The Hamiltonian within the
two-magnon subspace retains the form in (28) but now
the interaction term is a bit more complicated,

V (k, k′, q) =
1

2

(
J(q) + J(k + q− k′)

)
(136)

−SKs

(
J(k + q) + J(k′ − q) + J(k) + J(k′)

)
,

J(k) = 2J cos[kx] + 4J ′ cos[
kx
2

] cos[

√
3ky
2

].

Numerical solution of the BS equation (44) for the two-
dimensional triangular lattice, which proceeds along the
same lines as in Sec. IV D, finds that for higher spins
S ≥ 1, near the saturation field the coplanar phase near
the isotropic limit is limited to a region J ′ > J ′cr > 0, with
a cone phase obtaining instead for J ′ < J ′cr. The critical
value monotonically increases with S, taking the values
J ′cr/J ≈ 0.1, 0.5, 0.61 for S = 1, 3/2 and 2, respectively.
These findings show that the absence of the cone state for
S = 1/2 found here is a very unusual feature of the most
quantum case. Larger, more classical spins, do recover
the classically expected state, although still in a limited
range of J ′/J .

We next turn to the SDW phase. Since this state is
rooted in the one-dimensional limit, we consider just the
limit of weakly coupled chains, for S > 1/2, and in partic-
ular S = 1. We find that the SDW is completely absent
in this case.



34

To see this, we consider a magnetic field above the
lower critical field h∆ needed to overcome the non-zero
Haldane gap (∆s=1 ≈ 0.41J for J ′ � J). This turns the
gapped (and, essentially, decoupled – see Refs. 68,69
spin-1 chains into critical Luttinger liquids27,70,71. It
turns out that these critical chains are characterized by
a Luttinger parameter K = 1/(4πR2) ≥ 1 for all val-
ues of the magnetic field above the gap-closing h∆.70,71

This immediately implies that the scaling dimension of
the longitudinal spin density operator Szπ−2δ(x) in (72)
is K > 1 as well, which makes inter-chain SDW coupling
in (76) (which has twice this scaling dimension) strictly
irrelevant. As a consequence the SDW phase does not oc-
cur in the quasi-1d limit. Since this was its most stable
regime in the S = 1/2 case, it may well be that the SDW
phase is totally absent for S = 1! It would be interesting
to check this in future simulations.

What replaces the SDW? The large value of K implies
an increased tendency to spin ordering transverse to the
field direction, and indeed the twist term (4th term in
(75)) is instead always relevant, leading to stabilization
of the cone state. This result is supported by analytical27

and numerical72 studies of the spin 1 zigzag ladder. For
example, Ref. 72 finds a finite vector chirality (that is, a
cone state) for all values of the magnetization in the case
of J1 − J2 spin-1 chain, along the J1 = J2 line.

Note that above, we found that the cone state was also
stabilized for small J ′/J in the vicinity of saturation. It is
likely then that the cone phase evolves smoothly between
the 1d limit J ′/J = 0+ and the approach to saturation at
finite J ′/J . Moreover, the presence of the cone state at
small J ′ implies the absence of any magnetization plateau
in that regime. The predictions appear quite similat to
those of the semiclassical analysis of Ref. 4, which sug-
gests that the full phase diagram for S = 1 might be
well described semiclassically. It is clear that in partic-
ular the 1/3 plateau must terminate at some finite (and
perhaps not particularly small) value of the J ′/J ratio in
this case.

2. Three dimensional coupling

Another experimentally-relevant modification of the
spin-1/2 Hamiltonian is three dimensional coupling. We
consider the simplest case of unfrustrated antiferromag-
netic inter-plane exchange interaction J ′′ between iden-
tical triangular layers. Provided the three dimensional
coupling is unfrustrated, we expect that the particular
form is not too important. Such an interaction is ex-
pected to make the spin system more classical and thus
to promote the classical cone state over the coplanar one.

Considering again the regime near saturation, one may
readily solve the BS equation, appropriately modified to
the three-dimensional situation. We indeed find that
high-field co-planar configuration changes to the cone one
for sufficiently large J ′′/J ratio. When the triangular lat-
tice is isotropic, J ′ = J , this occurs for (J ′′/J)cr ≈ 0.2,

in agreement with the calculation in Ref. 23. Not unex-
pectedly, the critical J ′′ becomes smaller for weaker inter-
chain exchange J ′. For example, for J ′/J = 0.75, as per-
haps appropriate for Cs2CuBr4, we find (J ′′/J)cr ≈ 0.15
while for J ′/J = 0.34 (the Cs2CuCl4 case), (J ′′/J)cr ≈
0.034. One-dimensional scaling arguments, described in
Appendix B 3, suggest that (J ′′/J)cr ∼ (J ′/J)2 when
J ′/J � 1, in agreement with the numerical values listed
above.

In the 1d limit, J ′/J � 1, introduction of unfrustrated
J ′′/J � 1 disfavors SDW order in favor of a cone phase.
This is discussed in detail in Sec.V of Ref.11. Thus three-
dimensional coupling, if unfrustrated, tends to remove all
quantum features of the phase diagram.

3. Dzyaloshinskii-Moriya interactions

A variety of DM interactions can be present in anis-
totropic triangular lattice systems, depending upon the
crystal symmetry and microscopic details. This can lead
to diverse effects which are difficult to discuss without
being more specific. For the materials Cs2CuCl4 and
Cs2CuBr4, the symmetry allowed DM interactions were
obtained and discussed in detail in Ref.11. Here we de-
scribe only the effects of the dominant DM term in those
materials, which can be written as

HDM =
∑

x,y

D · Sx,y × (Sx−1,y+1 − Sx,y+1) , (137)

in the notation of this paper, with the DM-vector D =
Dâ oriented along the crystallographic a axis, normal to
the triangular planes.

Though small, a non-zero D has significant effects in
both zero field and when a magnetic field is applied nor-
mal to the triangular plane, i.e. parallel to the DM-
vector. In these situations, unlike the J ′ interchain cou-
pling, it is not frustrated either by the dominant chain
interactions J or by the applied magnetic field. It tends
to favor the cone state (or a spiral in zero field), and can
obliterate the more quantum coplanar and SDW phases
completely if sufficiently strong in this field orientation.
Indeed, with this field orientation, an arbitrarily weak
DM coupling inevitably forces the state in immediate
proximity to the saturated state to be a cone phase, for
all values of J ′/J . This occurs because the DM coupling
splits the degeneracy of the two minimum energy spin
wave modes, already at the single spin wave level, making
a two-component condensate impossible when the spin
flip magnons are sufficiently dilute.

We note, however, that when the magnetic field is ap-
plied normal to the a axis, i.e. in the triangular plane, it
itself frustrates the DM interaction. In this situation, the
DM interaction is largely ineffective and has only minimal
perturbative effects on the spin correlations. These field
orientations are therefore optimal for observing quantum
effects.
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C. Experimental implications and future directions

Our study indicates that a number of “quantum” or-
dered states may be found in S = 1/2 anisotropic trian-
gular lattice systems. These states are not so exotic as
quantum spin liquids, and are well characterized by their
symmetries and associated order parameters. They are
instead quantum in the weaker sense that they cannot
be obtained in the classical limit. Most notably, we ob-
tained a SDW state whose order involves (quasi-)periodic
modulation of the length of the spin expectation value,
along the field direction. We suggest this state occupies
a wide swath of the field-anisotropy phase diagram, pro-
vided perturbations to our model are not too strong.

The particular material Cs2CuBr4 appears a good can-
didate for the observation of the SDW state, since three-
dimensional coupling is known to be relatively weak
there, and experiments have already identified the 1/3
magnetization plateau. Direct observation of the SDW
would consist of observing the incommensurate order-
ing wavevector evolving monotonically with field, for
fields above and below the plateau, and correlating this
wavevector with the average magnetization. We ex-
pect it to approximately follow the 1d relation, q =
π(1 −M/Ms), away from the plateau. Given its 1d ori-
gin, one might well also expect that the inelastic spectra
retain 1d features, such as spinon continua, in the SDW
state and even in the plateau state above the gap. Of
course, at low energy, in the vicinity of the SDW wavevec-
tor, we expect the collective phason mode to dominate.
There must therefore be significant rearrangement of the
spectra on passing from low to high energy. A more de-
tailed understanding of the spectral evolution with en-
ergy, field, and anisotropy may make an interesting sub-
ject for future study.

In Cs2CuBr4, many additional features suggestive of
phase transitions were identified above the 1/3 plateau
in the magnetization process with an in-plane field.54 Our
study indicates that few such transitions should be ex-
pected in the pure J − J ′ model. Likely additional DM
interactions (beyond the one given in Eq. (137)) and per-
haps further-neighbor couplings are at play. Study of
their effects is a possible avenue for more research.

More generally, the richness and surprisingly quantum
nature of field-anisotropy phase diagram of the relatively
weakly frustrated triangular lattice suggests that the be-
havior on more frustrated lattices such as the kagomé and
pyrochlore may be even more interesting. The methods
used here should be helpful in attacking these problems.
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Appendix A: Sine-Gordon model and
commensurate-incommensurate transitions

In this appendix, we summarize the Commensurate-
Incommensurate Transition (CIT) within the sine-
Gordon model, which appears in multiple places through-
out the manuscript. We consider the sine-Gordon action
in d+ 1 dimensions, with the form

Ssg =

∫
ddx dτ

{
κ

2
(∂τϑ)2 +

∑

µ

ρµ
2

(∂µϑ)2

−λ cos [n(ϑ− qx)]

}
, (A1)

where ϑ is the sine-Gordon field. We can write an alter-
native expression in terms of the shifted field, ϑ̂ = ϑ−qx,
so that

Ssg =

∫
ddx dτ

{
κ

2
(∂τ ϑ̂)2 +

∑

µ

ρµ
2

(∂µϑ̂)2

+δ∂xϑ̂− λ cos
[
nϑ̂
]}

, (A2)

with δ = ρxq. In general, large δ prefers an incommensu-

rate state, where the field ϑ̂ is non-uniform and unpinned,
while for small δ, a commensurate phase occurs, where

ϑ̂ is pinned to a fixed value by the cosine term. The
detailed nature of the sine-Gordon model depends upon
dimensionality, so we treat the d = 1 and d ≥ 2 cases
separately.

1. d ≥ 2: mean-field transition

For d ≥ 2, the fluctuations of the phase field ϑ̂ are
small even in the absence of the sine-Gordon term, i.e.
for λ = 0. This can be seen from the fact that, al-
ready at the Gaussian level, the free boson propagator
is non-divergent at small momentum for d ≥ 2. This
implies that the fluctuations of ϑ are bounded, and one
can therefore treat the entire problem by a saddle point
approximation. Moreover, one can show that fluctuation
effects are negligible in the (quantum) CIT for d ≥ 2.
More formally, D = d + 1 = 2 + 1 is the upper critical
dimension for the CIT.

Therefore in this case we may proceed by simply mini-
mizing the action in Eq. (A2). The minimum action con-
figuration is independent of the d−1 coordinates normal
to x and τ . This gives

Ssg = Ld−1
⊥ βE1d, (A3)
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5 where L⊥ is the system width in the directions normal
to x, and β is the length of the imaginary time integra-
tion. The one-dimensional energy is then

E1d =

∫
dx
{ρ

2
(∂xϑ̂)2 + δ∂xϑ̂− λ cos(nϑ̂)

}
, (A4)

where ρ = ρx. Notice that δ only appears as
a boundary term, which means that the energy de-
pends on δ only through the winding number, N =(
ϑ̂(x = L)− ϑ̂(x = 0)

)
n
2π . Consider the case N = 0.

Then, the solution is uniform, i.e. ϑ̂ = 2πk/n, with
k = 0, 1, 2.... With N = 1, one obtains a well-known
soliton solution of the sine-Gordon model36, which reads

ϑ̂(x) =
4

n
arctan

{
e
±n

√
λ
ρ (x−x0)

}
, (A5)

where x0 is the location of the center of the soliton. Note
that the soliton has a width w ∼

√
ρ/λ, and energy E ∼√

ρλ. This gives a critical value,

δc = 4
√
ρλ/π, (A6)

such that, for δ < δc, domain wall solitons cost positive
energy and so, are unfavorable, resulting in a commensu-
rate wavevector. For δ > δc, it is favorable for solitons to
be present, and the minimum energy configuration will
be an array of solitons which characterizes an incommen-
surate phase.

Eq. (A6) defines the location of the CIT phase bound-
ary. We may also discuss its critical properties. On
the commensurate side, no solitons are present, which
implies the winding number N = 0 precisely, and the
ground state energy and field configuration are indepen-
dent of δ. Thus, there is no visible critical behavior in
the ground state (hence in equal time correlations) in
the commensurate phase. On the incommensurate side,
however, the minimum energy configuration of ϕ̂(x) de-
pends upon δ. It can be considered as an array of soli-
tons, whose main characteristic is the spacing ` between
solitons. This spacing is determined by the balance of
the negative energy to introduce a soliton (which favors
many solitons with a short spacing) and the repulsive en-
ergy of interaction between solitons (which favors large
spacing). The repulsive interaction is exponentially small
in the separation ` in units of the width w. Hence the
energy of the array is

E1d = EC1d − (δ − δc)
2πL

n`
+ c
√
ρλ
L

`
e−`/w, (A7)

where c is an unimportant constant, and L/` is the total
number of solitons. Minimizing this over `, one finds the
critical behavior, to leading logarithmic accuracy,

` ∼ w ln

[
δc

δ − δc

]
, (A8)

for 0 < δ − δc � δc. The presence of the soliton array

implies that the average gradient of the phase ϑ̂ is non-
zero, which defines the incommensurability wavevector
q:

q = ∂xϑ̂ =
2π

n`
∼ 1

w| ln[δ − δc|/δc]|
Θ(δ − δc). (A9)

The incommensurability q in the incommensurate phase
gives the shift of the ordering wavevector from its com-
mensurate value. Other critical properties at the CIT in
d ≥ 2 are readily obtained from the results above. For
example, the ground state energy density is simply the
saddle point value of E1d, which scales as

E

L
∼ − δ − δc
| ln(δ − δc)|

Θ(δ − δc). (A10)

2. d = 1: quantum fluctuations

In the case d = 1, fluctuations of the phase field cannot
be neglected. This can be anticipated from the Gaussian
level result that, in the absence of a sine-Gordon term,
the free boson Green’s function is logarithmically diver-
gent at small momentum, signalling large fluctuations of
ϑ. Hence we must deal directly with the 1+1-dimensional
action,

Ssg =

∫
dx dτ

{
κ

2
(∂τ ϑ̂)2 +

ρ

2
(∂xϑ̂)2 + δ∂xϑ̂− λ cosnϑ̂

}
.

(A11)

Once again, δ is the coefficient of a pure boundary term,
which simply counts the number of solitons in the system.
A finite density of solitons will be generated, provided
the energy of a soliton for δ = 0 is compensated by this
boundary energy, which equals 2πδ/n. Thus we need the
energy of a soliton at δ = 0, i.e. in the pure quantum
sine-Gordon model.

We estimate this as follows. The scaling dimension of
the cosine term, ∆n, is easily calculated, and is equal to

∆n =
n2

4π
√
κρ
. (A12)

The cosine is relevant when ∆n < 2, and irrelevant if
∆n > 2. When it is irrelevant, there is no pinning of the
phase field at low energies. A state of this type is known
as a “floating phase”, and because of the lack of pinning,
the state becomes immediately incommensurate for any
non-zero δ, i.e. δc = 0, and there is no CIT.

When the cosine is relevant, then when δ = 0, the
phase is pinned at low energies, and the energy of a soli-
ton is non-zero. We need to estimate this energy to locate
the value δc which defines the CIT. We do this by renor-
malization group (RG) arguments. Renormalizing out to
a length ξ, the cosine is reduced by fluctuations by an
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amount proportional to ξ−∆n , so λeff ∼ λξ−∆n . For a
possible soliton of width ξ, the energy cost is of order

εs ∼
ρ

ξ

(
2π

n

)2

− λeffξ. (A13)

The actual soliton size is determined by optimizing this
over ξ, which gives

ξ ∼
( ρ

λn2

) 1
2−∆n

, (A14)

and thus an energy cost for the soliton of order

εs ∼ λ
1

2−∆n

( ρ
n2

) 1−∆n
2−∆n

. (A15)

This energy should equal the energy gain 2πδc/n from
the boundary term at the CIT, which gives

δc ∼
√
λρ

(
λ

ρ

) ∆n
4−2∆n

. (A16)

Note that this approaches the mean-field result of the
previous subsection when ∆n → 0, and becomes very
suppressed when ∆n → 2− (since we must assume λ < ρ
for consistency of the treatment).

We now turn to the critical behavior, which in 1+1 di-
mensions is a storied problem in critical phenomena. It is
sometimes referred to as a Pokrovsky-Talapov transition,
due to the solution by those authors.73 We recapitulate
the essence of the argument. As in the mean-field case,
for δ < δc, there are no solitons in the system, and the
ground state energy is independent of δ, i.e. there is no
sign of criticality in any static quantity. However, the ex-
citation gap for creating a soliton vanishes linearly with
δc − δ. For 0 < δ − δc � δc, we expect a low density
of solitons to be present in the system, again determined
by the balance of the (negative) single soliton energy and
the repulsive soliton-soliton interactions.

We must, however, in this case treat the problem quan-
tum mechanically. In particular, we must consider the
effects of interactions properly in the low density limit.
In this limit, the kinetic energy and momentum of in-
dividual solitons is vanishingly small, and well-known
results for low energy scattering apply. In particular,
for short-range repulsively interacting particles in one di-
mension, the probability of transmission vanishes in the
low energy limit. Thus effectively, regardless of the mi-
croscopic strength of the interaction, or of its short dis-
tance structure, the solitons behave at low densities as
though they were hard core particles, which cannot pass
one another. To model this behavior, we can treat the
solitons as fermions. Interactions at longer distances be-
yond the local hard core are weak and unimportant, so
the fermions are effectively free.

The free fermion problem is trivially soluble, so we can
easily obtain the critical behavior. When δ > δc, we sim-
ply fill the negative energy fermion states to form a Fermi
sea. The sine-Gordon model has Lorentz invariance, so
the dispersion of the solitons must be relativistic, hence
the energy for a single soliton is

Esol =
√
ε2s + v2k2 − 2π

n
δ, (A17)

where the velocity v =
√
ρ/κ, and εs = 2πδc/n. The

Fermi momentum kF is determined by the condition
Esol = 0. It will be small near the CIT, so we may
expand the relativistic dispersion into its non-relativistic
limit

Esol(kF ) = −2π

n
(δ − δc) +

k2
F

2m
= 0, (A18)

with m = εs/v
2. This determines the Fermi momentum

kF =

[
4πm

n
(δ − δc)

]1/2

∼
√
δ − δc. (A19)

The density of solitons is just kF /π, as usual for spin-less
fermions, so the incommensurability is thus

q =
2π

n

kF
π

=
2kF
n
∼
√
δ − δc. (A20)

The square-root behavior is quite distinct from the log-
arithmic one in d ≥ 2. We may also easily obtain the
behavior of the ground state energy density, as the total
energy of the Fermi sea,

E

L
=

∫ kF

−kF

dk

2π

[
k2

2m
− 2π

n
(δ − δc)

]

∼ −(δ − δc)3/2Θ(δ − δc). (A21)

Many more results, e.g. for correlations in the incom-
mensurate phase, can be readily obtained from the free
fermion formulation, but we leave this to the reader to
discover for themselves in the literature.

Appendix B: Detailed calculations of BS

In this appendix, we present our solutions to the Bethe-
Salpeter (BS) equation in Eq. (44). This equation ap-
plies only near saturation field, where the system can
be modeled as dilute (hard core) bosons. We substitute
our ansatz, Eq. (46), into the BS equation. With the
constraint equation, Eq. (45), which enforces s = 1/2,
we obtain a set of linear equations for the constants Ai,
which can be written in a matrix form as
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τ11 τ12 τ13 τ14 τ15 τ16 τ17

2Jτ21 2Jτ22 + 1 2Jτ23 2Jτ24 2Jτ25 2Jτ26 2Jτ27

2Jτ31 2Jτ32 2Jτ33 + 1 2Jτ34 2Jτ35 2Jτ36 2Jτ37

2J ′τ41 2J ′τ42 2J ′τ43 2J ′τ44 + 1 2J ′τ45 2J ′τ46 2J ′τ47

2J ′τ51 2J ′τ52 2J ′τ53 2J ′τ54 2J ′τ55 + 1 2J ′τ56 2J ′τ57

2J ′τ61 2J ′τ62 2J ′τ63 2J ′τ64 2J ′τ65 2J ′τ66 + 1 2J ′τ67

2J ′τ71 2J ′τ72 2J ′τ73 2J ′τ74 2J ′τ75 2J ′τ76 2J ′τ77 + 1







A0

A1

A2

A3

A4

A5

A6




=




1
2J
0

2J ′

0
2J ′

0




(B1)

where we have defined

τlm(k, k′; Ω) ≡
∫

q

Tl(q)Tm(q)

ε(k + q) + ε(k′ − q) + Ω
(B2)

T(q) = (1, cos qx, sin qx, cos qy, sin qy,

cos(qx − qy), sin(qx − qy)), (B3)

and Ω ∝ |h− hsat|. Although the τ ′lms are integrals over
simple trigonometric functions and other known quanti-
ties, e.g. the dispersion, these integrals are divergent in
both one and two dimensions and must be treated with
care. It is possible, however, to analyze them asymptoti-
cally. Once these integrals are evaluated, we can solve for
the constants Ai to obtain Γ(q) from our ansatz, Eq. (46).
In the next two subsections, we take the reader through
our asymptotic analysis.

1. Asymptotic behavior of τlm for the 2d case

In this section, we calculate the τlm’s for the 2d
case. As aforementioned, we are interested in perform-
ing asymptotic analysis in the limit Ω → 0, as the full
integrals are too complicated to evaluate fully. We can
partition the integrals into the the first two subleading
terms, Blm ln(Ω) + Clm, where the constants B,C are
independent of Ω. We can consider two cases: one with
the same incoming momenta, i.e. the cone phase with
Γ1 = Γ(Q,Q, 0) = Γ(−Q,−Q, 0), and the other with dif-
ferent incoming momenta, i.e. the coplanar phase with
Γ2 = Γ(Q,−Q, 0) + Γ(Q,−Q,−2Q). Here, the wave
vector Q minimizes the dispersion relation in Eq. (29),
which can now be substituted into Eq. (B2). After some
algebraic simplifications, we obtain

τlm =
1

4π2

∫ 2π

0

dqx

∫ 2π

0

dqy
Tl(p)Tm(p)

a+ b cos qy
. (B4)

The exact forms of a, b will depend on whether the in-
coming momenta are same or different. In this appendix,
we will only present our results for l = m = 1, in which
case, we can integrate analytically over qy in Eq. (B4),
and obtain the following

τ11 =

∫ 2π

0

dqx
1√

a2 − b2
(B5)

To proceed further, we need to specify the exact form of
a and b.

1. Same incoming momenta: For the same incoming
momenta, a, b take on the following form

a = Ω + J(2 + j2 − (2− j2) cos qx)

b = J(−2j2 cos(qx/2)), (B6)

where we define j ≡ J ′/J . The integrand diverges
near qx = 0 like 1/qx in the limit Ω→ 0, and thus,
integral is logarithmically divergent. After some
analysis, the integral takes on the following form,

τ11 ∼ −
1

2πj
√

4− j2
ln(Ω) +

ln(2j(4− j2))

πj
√

4− j2
. (B7)

2. Different incoming momenta: For this case, a, b are
as follows

a = J(Ω + 2 + j2 + (−2 + j2) cos(2πx1)

+ j
√

4− j2 sin(2πx1)

b = −2Jj(j cos(πx1) +
√

4− j2 sin(πx1). (B8)

The integrand now has two divergent points at qx =
0 and qx = − arccos(1 − j2/2)/π. Therefore, in
comparison with the previous case, the logarithmic
term doubles, and the integral takes on the form

τ11 ∼ −
1

πj
√

4− j2
ln(Ω) +

2 ln(j(4− j2))

πj
√

4− j2
. (B9)

2. τlm for the TST case

In computing the τlm’s for the TST, we turn the two-
dimensional integral in the previous section into a single
integral over qx and a sum over qy. As one can imagine,
the asymptotic behaviors differs in the TST from the 2d,
in that, in the limit Ω→ 0, the integrals diverge as 1/

√
Ω.

Therefore, the two subleading terms of the integrals are
Blm/

√
Ω+Clm, where again, B,C are independent of Ω.

We present our results for l = m = 1 for the two cases of
the same and differing incoming momenta.

1. For the same incoming momenta, we obtain the
following expression
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τ11 =
1

6 4
√
j2 − j + 1

√
Ω

+
4

3
√

9j2 + 24
√

(j − 1)j + 1j − 24j + 36(j−1)
(j−1)j+1 + 36

+O(
√

Ω), (B10)

where again, j ≡ J ′/J .

2. We now compute τ11 for the case of differing incom-

ing momenta, in which case, the integral evaluates
to

τ11 =
1

3 4
√

(j − 1)j + 1
√

Ω
+

1

3
√

3

√
j
(

3j + 4
√

(j − 1)j + 1− 4
) +O(

√
Ω). (B11)

3. Weakly coupled chains limit

In this appendix, we analytically check the results
of Sec. IV D 2 in the limit of weakly coupled chains,
J ′ � J . Recall that the calculation was done for a full
two-dimensional lattice. Hereafter, we will use Cartesian
coordinates, (x, y), for convenience. In this limit, we can
express the spin flip operator as a continuous function
of x, which is along the chain direction, while keeping
the chain index y ∈ Z discrete. Then, from Eq. (71),
we write this operator as Ψy(x) ∼ S+

y,π(x), where its low
energy theory is described by the following action

S1d =
∑

y

∫
dxdτ

{
Ψ†y(∂τ −

1

2m
∂2
x − µ)Ψy

−t(Ψ†yi∂xΨy+1 + h.c.) + uΨ†yΨ
†
yΨyΨy

+vΨ†yΨ
†
y+1Ψy+1Ψy

}
. (B12)

The spin-flip (magnon) mass, m = 1/J , follows from
the quadratic dispersion of the magnon mode near mo-
mentum π in a fully polarized chain. Additional inter-
action terms describe the hard-core constraint (u term)
as well as the transverse (t = J ′xy/2) and longitudinal
(v = 2J ′z) parts of the interchain exchange interaction
J ′. Note that t-term contains a spatial derivative with
respect to x, which reflects the frustration of the inter-
chain exchange by the triangular geometry. In addition,
this term contains a factor of i from the staggered factor
(−1)x = eiπx in Eq. (71), and from the fact that x takes
half-integer values on odd chains (see Eq. (2), Fig. 1(a),
and Appendix D6 of Ref. 11).

We can analyze each term of Eq. (B12) through simple
dimensional analysis, which will deem all these terms to
be relevant under RG. Denoting the spatial scale along
x as L, we can conclude that τ ∼ L2, Ψy scale as 1/

√
L,

while thee three interaction terms, t, u and v, scale as

L. Hence, these are relevant interactions and must be
included in our analysis of the low energy theory.

We can Fourier transform Eq. (B12) and write the
Hamiltonian that corresponds to this action,

H1d =
∑

k

Ψ†k(
k2
x

2m
+ 2tkx cos[ky]− µ)Ψk

+
1

2N

∑

k,k′,q

V (k, k′, q)Ψ†k+qΨ
†
k′−qΨk′Ψk.(B13)

Here V (k, k′, q) = V (q) = 2u + 2v cos[qy]. Note that
while the range of kx is not restricted, −∞ < kx < ∞,
that of ky is limited by the lattice, −π ≤ ky ≤ π. This
single particle dispersion contain two degenerate moment
at Q1 = (−2tm, 0) and Q2 = (2tm, π).

The single particle dispersion has two degenerate min-
ima, at Q1 = (−2tm, 0) and Q2 = (2tm, π). We can now
compute the renormalized couplings Γ1,Γ2 in a similar
manner as the previous subsections. However, we alter
our ansatz of the BS equation, Eq. (44), to take the form
Γ(q) = A0 + A1 cos[qy], because the odd contribution,
∝ sin[qy], vanishes under the integral as the denomina-
tor in Eq. (44) is even for all combinations of incoming
and transferred momenta.

Computing Γ1,Γ2 requires one to solve two linear equa-
tions for A0, A1, which involve 2d integrals over functions
with denominators like [k2

x/m+16mt2 sin2[ky/2]+Ω] (for

Γ1) and [(kx−4mt sin2[ky/2])/m+4mt2 sin2[ky]+Ω] (for
Γ2). We first evaluate these integrals analytically by sep-
arating out the leading terms in ln[Ω/(mt2)], then taking
the limit u→∞ to, again, enforce the s = 1/2 constraint.
The expressions are as follows

Γ1

8πt
=

1 + 4
3γ

(1 + 4
3γ) ln Υ + 4 ln 2 + 4γ( 4

3 ln 2− 1)
,(B14)

Γ2

8πt
=

1

ln Υ + 2 ln 2
, (B15)
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where γ = v/(πt) and Υ = 16mt2/Ω. Given these forms,
we can conclude that Γ1 > Γ2 for γ ≥ γc = 3 ln 2/(6 −
4 ln 2) ≈ 0.644. Since we are considering the isotropic
Heisenberg model, where γ = 4/π > γc, we observe that
the coplanar fan state prevails over the cone state in the
J ′ � J limit, in agreement with the full lattice approach
in Eq. (48), once the parameters m,t,v are expressed in
terms of exchange integrals.

With this approach, we can also estimate the width of
the planar fan state near saturation field through simple
dimensional analysis of Eq. (B12). Since the chemical
potential, µ = hsat − h, scales as L2 and the t interac-
tion scales as L, the phase boundary between the planar
and the lower-field phase must scale as ∆h ∼ (J ′)2/J .
This boundary separates the planar fan phase from the
cone phase, a region in which a standard bosonization de-
scription of Sec. V becomes appropriate. Details of this
analysis are presented in Appendix C 2.

Similar reasoning allows one to estimate the stabil-
ity of the planar fan state with respect to inter-layer
coupling J ′′, which is always present in real materi-
als. It is clear that (non-frustrated) inter-layer cou-
pling corresponds to adding a simple single particle hop-
ping term between layers with a different z-coordinated∫
dτdx

∑
z J
′′(Ψ†y,zΨy,z+1 + h.c.) term to the action in

Eq. (B12). Such a term also scales as L2, which im-
plies that the phase boundary between the planar and
the cone phase in the J ′− J ′′ plane takes on a quadratic
shape, J ′′ ∼ (J ′)2/J .

Appendix C: Additional one dimensional analysis

The purpose of this appendix is to show that the TST
geometry with 3-legs is unique in that the renormalized
couplings generated through RG produce significantly
different physics for N = 3 compared to that of N > 3, in
the limit J ′ � J . Moreover, we show that the arguments
given below further support our claims in Sec. VII for the
existence of a dimerized state near low field. Finally, we
conclude this appendix with a more thorough analysis of
the cone state near high fields.

1. Zero field analysis by quasi-1d methods

We start with the zero field case of Eq. (1) in the limit
of decoupled chains J ′ � J , where each Heisenberg chain
can be bosonized using the Wess-Zumino-Witten SU(2)1

theory, with central charge c = 1. In this theory, the spin
operator can be decomposed into its uniform My(x) =
JR,y(x) + JL,y(x) and staggered Ny(x) magnetizations

Sx,y → a0 [My(x) + (−1)xNy(x)] , (C1)

and its scalar product can be written in the continuum
limit

Sx,y · Sx+1,y → (−1)xεy(x), (C2)

where εy(x) is the staggered dimerization. With J ′ = 0,
this theory describes the Luttinger liquid fixed point of
the decoupled chains. The scaling dimensions of these
continuum operators, M,N, and ε, determine the rele-
vance of each operator as it perturbs this fixed point. The
uniform magnetization has scaling dimension 1, whereas
both the staggered spin magnetization and the staggered
dimerization have scaling dimension 1/2. These three
continuum operators form a closed operator algebra with
well-defined operator product expansions (OPEs) used
widely in literature11–13,74–77. For instance, the product
of JR and N can be expanded as

Ja(x, τ)N b(x′, τ ′) =
iεabcN c(x, τ)− iδabε(x, τ)

4π (v(τ − τ ′)− i(x− x′) + a0στ )
,

(C3)
where τ is the imaginary time, v = πJa0/2 is the spin
velocity, and a0 is the short-distance cutoff.

Let us now consider interchain Hamiltonian perturbing
the decoupled Heisenberg chains,

V = J ′
3∑

y=1

∑

x

Sy(x) (Sy+1(x) + Sy+1(x− 1)) . (C4)

Perturbation theory is formulated by expanding the par-
tition function Z =

∫
e−S0−

∫
dτV up to quadratic order,

i.e.

Z '
∫
e−S0

[
1−

∫

τ

V +
1

2
T

∫

τ1

∫

τ2

V (τ1)V (τ2)

]
, (C5)

with an implied short time cutoff α = a0/v. Here, T is
the time-ordering operator. To utilize this perturbation
theory and the OPEs, we express Eq. (C4) in terms of
continuum operators, Eqs. (C1) and (C2),

V1 = 2a2
0J
′

3∑

y=1

∑

x

My(x) ·My+1(x), (C6)

V2 = −a2
0J
′

3∑

y=1

∑

x

My(x) · ∂xMy+1(x), (C7)

V3 = a2
0J
′

3∑

y=1

∑

x

Ny(x) · ∂xNy+1(x), (C8)

V4 = −a2
0J
′

3∑

y=1

∑

x

Ny(x) · 1

2
∂2
xNy+1(x), (C9)

where V = V1 + V2 + V3 + V4. It is crucial to realize
that the periodic boundary conditions enforced in the y-
direction by the TST system, c.f. Fig. 2, allows us to
rewrite any operator O as

3∑

y=1

∑

x

OyOy+1 =

3∑

y=1

∑

x

OyOy+2. (C10)

Using OPEs, one can show that the nearest neigh-
bor chain couplings of the staggered magnetization and
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dimerization enter in the third power of J ′,

V = J3

3∑

y=1

∑

x

(
Ny(x) ·Ny+1(x)− 3

2
εy(x)εy+1(x)

)
,

(C11)
where J3 > 0 and J3 ∝ (J ′)3. This is done by first
generating ∂xNy−1∂xNy+1 by quadratic in V3+V4 terms.
Next, this term is fused with V1 to generate the J3 ∝
(J ′)3 interaction. The calculations are similar to those
described in Refs. 11–13,76,77 and refer the reader to
these papers for more details.

In a 2d system11,12, however, we find that the gener-
ated term is instead quartic in J ′, with interaction con-
stant J4 ∼ (J ′)4/J3 and is of the opposite (negative) sign
J4 < 0 in comparison with J3 above. It turns out that
J3 ∼ (J ′)3 > 0 is a feature of the N = 3 TST model
only: wider tubes with N > 3 are anologous to the 2d
case, where the renormalized couplings ∼ (J ′)4/J3 < 0.
Note that this difference is important as it implies that
spin tubes with N > 3 are not frustrated by the periodic
BC along the y-direction.

Going back to the N = 3 TST, both of the gener-
ated interactions in Eq. (C11) are strongly relevant (scal-
ing dimension 1) and scale to strong coupling under RG
transformations. It would appear that because of the
greater numerical coefficient of εyεy+1 in Eq. (C11), it is
the dimerized ground state that emerges from the com-
petition in the strong coupling. However, this argument
is not complete as it neglects the crucially important ef-
fect of marginally irrelevant in-chain backscattering term,
∝ JR · JL, which in fact breaks the symmetry between
the Ny · Ny+1 and εyεy+1 interactions in favor of the
first one12. This outcome is not unexpected as it is well-
known that in-chain marginal current-current interaction
spoils the extended SU(2)R × SU(2)L symmetry of the
Heisenberg chain by subleading logarithmic corrections
which modify chain spin correlations as follows78,79

〈Ny(x)Ny(0)〉 = (ln[x])1/2x−1,

〈εy(x)εy(0)〉 = (ln[x])−3/2x−1. (C12)

Essentially, the same mechanism promotes interchain
Ny · Ny+1 interaction over that of staggered dimeriza-
tions. In the infinite 2d lattice, this leads to the stabi-
lization of the collinear antiferromagnetic phase12, which,
however, is not possible in the TST geometry.

It is important to realize at this point that the rele-
vant J3

∑
yNy ·Ny+1 interaction, which describes non-

frustrated coupling of staggered magnetizations on neigh-
boring chains, changes the geometry of the system into
that of a rectangular spin tube. The renormalized, rele-
vant coupling, J3, become comparable to the intrachain
exchange J under RG and forces Néel vectors N1,2,3 to
order into the familiar 120◦ pattern on every rung. Our
1d reasoning stops at this scale, but further progress can
be made by assuming that the spin tube with J3 ∼ J
can be accessed from the opposite limit of the strong
rung exchange J⊥ � J80. In this limit, the spins on each

rung form 3-spin triangles that interact via J⊥ = J3, and
are coupled to neighboring triangles by a weak exchange
J . The ground state of each triangle is 4-fold degener-
ate and is characterized by two quantum numbers, total
spin srung = 1/2 and chirality τ , which is itself another
pseudo-spin 1/2 object. The physical meaning of τ is
just a sense of either a clockwise or a counterclockwise
rotation of the ‘unpaired’ spin-1/2 in the ground state
of the individual triangle. In other words, in addition
to spin 1/2, the ground state now carries finite momen-
tum ±2π/3 due to chirality. Focusing on this low-energy
subset of triangle’s states, one can derive spin-orbital
Hamiltonian81

Hs−o =
J⊥
N

∑

x

srung(x) · srung(x+ 1)×

×[1 + αN (τ+
x τ
−
x+1 + τ−x τ

+
x+1)] (C13)

describing correlated dynamics of spins and chiralities.
For the triangular ladder considered here, N = 3 and
αN = 4. The presented arguments remain valid for any
odd N , however. See Ref. 81 for N = 5 and Ref. 82 for
N > 5. Analytical80,83 and numerical81,84,85 studies of
the model (C13) find dimerized ground state, in agree-
ment with our consideration in Section VII A. Fig. 23,
which shows oscillatory behavior of the entanglement en-
tropy for different values of R, represents clear evidence
of the dimerized ground state.

Finally, we conclude by discussing the way to generate
an interaction of the uniform magnetizations from the
next neighboring chains. This is done by fusing V1 in
Eq. (C6) with itself, which yields, under Eq. (C5),

δHMM = − (2J ′)2

2

∑

y

∫

x

∫

x′
〈Mz

y (x, τ)Mz
y (x′, τ ′)〉

×Mz
y−1M

z
y+1, (C14)

Because the result is converging, the integral of the y-
th chain correlation function can be extended to the full
x − vτ plane. This, using important short-distance cut-
off ∼ a0sign(τ) and y = vτ (see Ref. 77 for detailed
discussion), leads to

∫ ∞

−∞
dx

∫ ∞

−∞
dy
( 1

(y + ix+ a0sign(y))2
+ h.c.

)
= 4π.

(C15)
As a result we obtain for the amplitude of δγMM =
(J ′)2/(πv), where v is magnetization dependent spin ve-
locity.

2. Cone state

Now, turn on the magnetic field. When a large enough
magnetic field is applied to the TST, the “twist” or-
der, the fourth term in Eq. (75), becomes more relevant
than the SDW. This was discussed in previous papers
for the two-chain ladder27 as well as the 2d triangular
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lattice11,12. As both the SDW and the cone interac-
tion amplitudes in (75) are of the order J ′, the relative
importance of the two interactions can be estimated12

from a comparison of their scaling dimensions, ∆saw =
1/(2πR2) and ∆cone = 1 + 2πR2. These two dimensions

are equal when 2πR2 = (
√

5− 1)/2, which takes place at
sufficiently high magnetization M ≈ 0.6Msat. Because
of rather steep dependence M(h) of the magnetization
on the magnetic field near the saturation, this value of
magnetization corresponds to h ≈ 0.9hsat, see Fig. 2 in
Ref. 12. A similar conclusion is obtained by comparing
mean-field transition temperatures of these two ordered
states as functions of magnetization, see Ref. 11.

These arguments, however, are not complete be-
cause they do not take into account the fluctuation-
generated interactions between spin densities on next-
nearest chains. The most important of these in the pres-
ence of an external magnetic field is given by

V ′cone = δγcone

∑

y

∫
dx S+

π,yS−π,y+2 + h.c.. (C16)

Even though the generated coupling constant is small,
δγcone � J ′/J � 1, this interaction does not involve
spatial derivatives and has scaling dimension 2πR2 which
approaches 1/2 as h → hsat. Thus, this is a strongly
relevant term.

In a 2d system11,12, δγcone ∼ (J ′)4/J3 < 0 as discussed
in the previous subsection. (Note that (C16) is written
in the ‘sheared’ system of coordinates.) When translated
into Cartesian coordinates, it implies antiferromagnetic
(positive) exchange interactions between spins on next-
nearest chains at the same position x along the chain12.
Crucially, as emphasized in the previous section, the TST
geometry allows for a stronger renormalized coupling, of
the order of δγcone ≡ J3 ∼ (J ′)3/J2 > 0.

The difference is due to slightly different routes to
(C16) in 2d and N = 3 TST geometries. One can first
show that, when you start from the original cone inter-
action

Vcone = γcone

∑

y

∫
dx S+

π,y∂xS−π,y+1 + h.c., (C17)

one can couple the derivatives ∂xS±π on the next-nearest
chains y and y + 2,

V ′′cone ∼
γ2

cone

v

∑

y

∫
dx ∂xS+

π,y∂xS−π,y+2 + h.c.. (C18)

This step parallels calculations leading to Eq. (C11) with
minor variation due to U(1) symmetry of the system in
the presence of an external magnetic field. In this sit-
uation the scaling dimension of the Sπ field is smaller
than 1/2 which leads to a slightly different numerical pre-
factor in the renormalization. However the functional
dependence on J ′ remains the same. Secondly, for all
N > 3 one also needs to generate

V ′MM = −δγMM

∑

y

∫
dx Mz

yM
z
y+2, (C19)

which was described in the end of the previous subsec-
tion, Sec. C 1 . Here, δγMM ∼ (J ′)2/J . Fusing next
(C18) and (C19) together leads to the result (C16). In
the N = 3 TST, however, the second step is not required
due to (C10), and we end up with a larger coupling of
the order δγcone ∼ (J ′)3/J2 > 0 in (C16).

To compare the original Vcone with the generated V ′cone

quantitatively, we can estimate the RG scale ` at which
the coupling constant of the interaction becomes of the
order one (in units of spin velocity v). For (C17) this
is, with logarithmic accuracy, `cone ∼ − ln(J ′)/(2 −
∆cone) = − ln(J ′)/(1− 2πR2), while for (C16) it is `3 ∼
−3 ln(J ′)/(2 − 2πR2). We immediately conclude that
`3 < `cone for all values of 2πR2 ∈ (1, 1/2), i.e. that the
generated cone interaction term (C16) is more relevant
than the bare one for all values of magnetization in the
case of N = 3 TST. Similar consideration allows us to an-
alyze the competition between the generated cone V ′cone

interaction and the SDW one, which is characterized by
the RG scale `sdw ∼ −2πR2 ln(J ′ sin[δ])/(4πR2−1). We

find that `sdw < `3 for 1 ≥ 2πR2 ≥
√

7− 2 ≈ 0.65, which
corresponds to low-to-intermediate range of magnetiza-
tion M & 0.25. At higher M , however, the modified cone
interaction takes over the SDW one. (For the 2d case,
the comparison is less conclusive as the result sensitively
depends on numerical factors inside the argument of the
logarithm11.)

We now investigate the consequences of the strong
J3 ≡ δγcone interaction in Eq. (C16) for the TST prob-
lem. In the high-field region where SDW fluctuations are
suppressed, the Hamiltonian of the system is given by the
sum of H0 in Eq. (69), the generated direct coupling V ′cone

in Eq. (C16), and the original cone interaction Vcone in
Eq. (C17), which now is a subleading one in comparison
with (C16). With this, we perform abelian bosonization
form of the interaction potential and arrive at the follow-
ing expression,

HTST
cone = J3

∫
dx{cos[β(θ1 − θ2)] + cos[β(θ2 − θ3)] + cos[β(θ3 − θ1)]} (C20)

+
βJ ′

2

∫
dx{∂x(θ1 + θ2) sin[β(θ1 − θ2)] + ∂x(θ2 + θ3) sin[β(θ2 − θ3)] + ∂x(θ3 + θ1) sin[β(θ3 − θ1)]}.
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For J3 � J ′, which is the appropriate regime accord-
ing to our RG arguments above, this potential is mini-
mized by configurations with cos[β(θy − θy+1)] = −1/2
for all y. This allows for two different values of sine terms,
sin[β(θy − θy+1)] = ±

√
3/2. In fact, different signs de-

scribe states with different vector chiralities defined as

κzy =
(
Sy × Sy+1

)
z
∼ sin[β(θy − θy+1)]. (C21)

Thus, different signs of κzy correspond to different senses

of rotation (clockwise or counterclockwise) of eiβθy as we
go from one chain to the next. These chiralities also rep-
resent useful order parameter describing two degenerate
cone states86.

To account for the subleading twist terms with spatial
derivatives in (C20), we shift θy → θy + υx, where υ is
determined by the requirement that in the new ground
state, the bosonic field θ is twist-less, i.e. 〈∂xθy〉 = 0.
Minimizing H0 +HTST

cone over υ, we find

υ = −βJ ′〈sin[β(θy − θy+1)]〉 ∼ −J ′κzy (C22)

This shows that the doubly-degenerate cone state is
characterized by incommensurate transverse spin corre-
lations, by virtue of the relation S+

y = (−1)xeiβθy →
exp[i(π + υ)x + iβθy]. Depending on the spontaneously
chosen vector chirality, Eq. (C21), transverse spin corre-
lations are picked at either Q1,x = π + υ (for κzy > 0) or
Q2,x = −π + υ (for κzy < 0) along the chain.

Appendix D: Transformation properties of Z2

vortices

In this appendix, we address the transformation prop-
erties of the Z2 vortex instanton operator ψ. We give sev-
eral arguments. First, these properties have been implic-
itly obtained in the case of a three leg spin tube, slightly
different from the one studied here, in Ref. 87. There, the
authors explicitly evaluate the Berry phase contribution
to the action for instantons on the lattice. Microscopi-
cally, the instantons are associated with columns of spa-
tial links along the x-direction of the cylinder (see below
how this arises in another formulation). They showed
that, due to the Berry phase, a single pair of instantons
(an odd number of instantons cannot occur) is accompa-
nied by a weight,

eiSBP = e2πiS(x−x′), (D1)

where x and x′ are the locations of the instantons. For
half-integer spins, this gives an oscillating factor equal to
+1 or -1 if the separation between instantons is even or
odd, respectively. From this we can extract the trans-
formation properties. If we translate one of the instan-
tons, x → x + 1, we see that the weight in Eq. (D1)
changes sign. This requires ψ → −ψ, in agreement with
Eq. (115). Under inversion, P , about a lattice site, the in-
stantons, which live on the links, change from the even to

odd sublattice of bonds and vice-versa. Inverting a single
instanton, therefore, changes the parity of x, and hence
also the sign of the weight in Eq. (D1). Thus, again,
ψ is odd under inversion, in agreement with Eq. (116).
Since the instantons do not move under time-reversal or
translation along y, the invariance of ψ under these op-
erations is obvious. Thus, for the case Ly = 3, for the
model studied in Ref. 87, the symmetry of the instanton
operator is determined as shown in the text.

We turn now to an alternative derivation of the trans-
formation laws, which gives the general result, and clar-
ifies its generality. Here we follow the general strategy
of Ref. 88, in which the Z2 vortices are explicitly sepa-
rated from the smooth configurations of the SO(3) order
parameter using a slave particle construction. This is
achieved by writing the unit vectors defining the SO(3)
matrix in terms of a “slave spinon” zα:

n̂1 + in̂2 = εαβzβσαγzγ , (D2)

where the complex, two component vector zα is con-
strained to have unit norm,

∑
α z
∗
αzα = 1. This repre-

sentation faithfully reproduces the orthonormality con-
straints on the n̂i, but is two to one: the physical or-
der parameter O is unchanged by the transformation
zα → −zα. This is actually a gauge invariance, since
the transformation is made locally. The Z2 vortex is a
configuration in which, on encircling the center of the
defect, zα returns not to itself but to −zα.

As explained in Ref. 88, a low energy effective theory,
appropriate to describe the regime with a local spiral or-
der, as well as a quantum disordered phase, is a 2+1
dimensional Z2 gauge theory coupled to the spinon vari-
ables zα. We refer the reader to Ref. 88 for details. The
Z2 vortex in this theory appears as a configuration of a
spinon field which has a discontinuity zα → −zα across a
semi-infinite “cut” emanating from the vortex. This Z2

vortex is accompanied by an Ising vortex, the so-called
“vison”, which is itself a defect with a non-zero Ising
gauge field crossing the same semi-infinite “cut”. In this
way, the topological defects of the spiral magnet become
identified with the visons of the Z2 gauge theory.

The discussion in the previous paragraph applies to Z2

vortices in two-dimensional space, which are particles in
the 2+1-dimensional theory. We need to go from this to
the description of instantons in the 1+1-dimensional the-
ory obtained by applying periodic boundary conditions
in the y direction. A 1+1-dimensional instanton can be
viewed as an event in which a pair of Z2 vortices is nucle-
ated: one of them winds around the cylinder and finally
arrives back at the other Z2 vortex and annihilates it.
We can, by the previous argument, consider the parti-
cles nucleated and annihilated to be visons in the gauge
theory.

Such a process was considered in Ref. 89 (in the Sup-
plementary Material), where it was shown that the oper-
ator representing this process in the Ising gauge theory
has the transformation properties in Eqs. (115), (116),
i.e. this operator can be viewed as a staggered dimer-
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ization operator for odd Ly. There, a rectangular lattice
gauge theory was studied, but the basic physics is quite
general. Let us consider the translation. We ask about
the amplitude to first wind one vison around the cylinder
at position x, and then wind another at position x + 1.
The overall phase of the amplitude for both processes
taken together gives the transformation property of the
instanton operator under translation. The visons reside
at the plaquette centers of the original lattice, and the
winding trajectories form closed circles at fixed x, cir-
cumnavigating the cylinder. Together, these two events
form two such circles that enclose one column of sites
in the lattice. The fundamental property of a vison is
that it has a mutual statistical interaction with “electric”
gauge charges, with the wavefunction acquiring a phase
of π whenever one encircles the other. For a S = 1/2
system, a unit gauge charge is present at every lattice

site – this represents the physical spin at each site. The
net effect of the two events together is that one vison is
wound around each site of the lattice between the two
circles, leading to an overall amplitude of (−1)Ly for the
two processes together. Here, Ly is the number of sites
contained between the two circles. This gives the result
in Eq. (115). Note that we may also roughly understand
this phase factor by considering the smooth rotations of
microscopic spins between the two contours, all of which
rotate by 2π, and, due to their s = 1/2 spinor transfor-
mation properties, each acquire a minus sign. A simi-
lar argument shows that spatial inversion gives the same
phase factor. Explicit calculations for these factors in the
Ising gauge theory can be found in Ref. 89. Note that
these arguments do not depend at all on the interactions
in the model, just the presence of these symmetries and
fundamental statistics of the particles.
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75 D. Sénéchal, Theoretical Methods for Strongly Correlated
Electrons pp. 139–186 (2004).

76 O. A. Starykh and L. Balents, Phys. Rev. Lett. 93, 127202
(2004).

77 O. A. Starykh, A. Furusaki, and L. Balents, Phys. Rev. B
72, 094416 (2005).

78 J. Voit, Journal of Physics C: Solid State Physics 21, L1141
(1988).

79 I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, Journal
of Physics A: Mathematical and General 22, 511 (1989).

80 H. Schulz, in Strongly Correlated Magnetic and Super-
conducting Systems, edited by G. Sierra and M. Martin-
Delgado (Springer, 1997), vol. 478 of Lecture Notes in
Physics, p. 136.

81 K. Kawano and M. Takahashi, Journal of the Physical So-
ciety of Japan 66, 4001 (1997).

82 V. Subrahmanyam, Phys. Rev. B 50, 16109 (1994).
83 E. Orignac, R. Citro, and N. Andrei, Phys. Rev. B 61,

11533 (2000).
84 S. K. Pati and R. R. P. Singh, Phys. Rev. B 61, 5868

(2000).
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