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We consider the problem of relaxation in a one-dimensional system of interacting electrons. In the
limit of weak interactions, we calculate the decay rate of a single-electron excitation, accounting for
the nonlinear dispersion. The leading processes which determine the relaxation involve scattering of
three particles. We elucidate how particular forms of Coulomb interaction, unscreened and screened,
lead to different results for the decay rates and identify the dominant scattering processes responsible
for relaxation of excitations of different energies. Interestingly, temperatures much smaller than the
excitation energy strongly affect the rate. At higher temperatures the quasiparticle relaxes by
exciting co-propagating electron-hole pairs, whereas at lowest temperatures the relaxation proceeds
via excitations of both co-propagating and counter-propagating pairs.

PACS numbers: 71.10.Pm

Low energy excitations of a three-dimensional interact-
ing electron system are fermionic quasiparticles that in
many respects resemble bare electrons [1]. A quasiparti-
cle excitation of energy ε has finite decay rate τ−1 ∝ ε2,
where ε is measured from the Fermi level. This fact is
the foundation of the Fermi liquid theory and was con-
firmed experimentally by measuring the broadening of
the Lorenzian-shaped spectral function [2].

One-dimensional interacting fermions are convention-
ally described within the exactly solvable Tomonaga-
Luttinger model where particles are assumed to have
a linear dispersion. This model can be diagonalized in
terms of noninteracting bosonic excitations [3, 4] which
have infinite lifetimes. This feature reveals an important
limitation of the Tomonaga-Luttinger model, because in
general an excited system is expected to relax to equi-
librium. To study relaxation, one should therefore con-
sider models that take into account the curvature of the
spectrum. Recent experimental observation of different
equilibration rates of hot electrons and holes in quan-
tum wires [5] has confirmed the importance nonlinear
dispersion of electrons. Study of interacting electrons
with nonlinear spectrum is a subject of intense theoreti-
cal interest [6–13]. The area of new physics beyond the
Luttinger liquid formalism has been recently reviewed in
Ref. [14].

In this paper we consider a system of spinless fermions
and study the decay rate of a quasiparticle excitation
placed above the Fermi level, see Fig. 1. Since the com-
plete study of the effects of nonlinear dispersion is very
difficult, here we analyze the limit of weak interactions.
In this case, the scattering processes can be classified
by the number of colliding particles. Unlike in higher di-
mensions, two-particle processes do not lead to relaxation
due to the conservation laws of energy and momentum.
Therefore, the leading mechanism which provides finite
relaxation rate involves scattering of three particles [6].
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FIG. 1. A single electron excitation of energy ε and momen-
tum p1 relaxes via scattering off two other electrons. Filled
and empty circles represent, respectively, incoming and out-
going momenta. The one-dimensional topology of the Fermi
surface determines the three cases (a), (b), and (c), which we
refer to as the “2-1”-, “3-0”-, and “1-2”-type processes. While
at zero temperature only the “2-1” processes are allowed, all
three types contribute to the quasiparticle decay at nonzero
temperatures.

At zero temperature, the problem of relaxation was
studied in Ref. [7], where the quasiparticle decay rate
was found to behave as τ−1 ∝ ε8. Here we study the
effect of temperature T , and find dramatic departures
from the T = 0 case. We consider the situation when
the temperature is much smaller than the energy of the
excitation. Denoting the momentum of the excitation by
p1, we find the expression for its decay rate
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∑

p2,p3

p′
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,p′
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,p′
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′ W 1′2′3′

123 n2n3(1− n1′)(1 − n2′)(1 − n3′). (1)

This equation accounts for scattering of the quasiparticle
of momentum p1 and two others with momenta {p2, p3}
into three outgoing states {p′1, p′2, p′3}, see Fig. 1. In
Eq. (1) by ni = npi

we denote the Fermi occupation num-
bers, while Σ′ indicates summation over distinct states.
The scattering rate W 1

′
2
′
3
′

123 is determined by the Fermi
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golden rule expression, and reads

W 1′2′3′

123 =
2π

h̄
|A1′2′3′

123 |2δ(E − E′). (2)

Here the delta function imposes conservation of the to-
tal energy, defined as E = εp1

+ εp2
+ εp3

and similarly
for the outgoing momenta. The three particle scattering
amplitude is defined as a vacuum expectation value

A1′2′3′

123 = 〈ap′

1
ap′

2
ap′

3
|V 1

E −H0 + i0+
V |a†p1

a†p2
a†p3

〉. (3)

It is the central object which determines the relaxation
rate (1). The unperturbed Hamiltonian H0 and the per-
turbation V are taken in the form

H0 =
∑

p

εpa
†
pap, V =

1

2L

∑

p1,p2,q

Vqa
†
p1+qa

†
p2−qap2

ap1
,

where a and a† are the fermionic operators, εp = p2/2m,
and L is the system size. The two-body interaction enters
the Hamiltonian via its Fourier transform Vq.
The scattering amplitude (3) is very sensitive to the

form of the two-body interaction V (x). It vanishes for
V (x) ∝ δ(x), i.e., Vq = const, corresponding to the con-
tact interaction between spinless fermions. Nullification
of the amplitude in this case arises because Pauli prin-
ciple prevents two electrons from sharing the same po-
sition. The amplitude (3) also vanishes for the Cheon-
Shigehara model [14, 15], defined by V (x) ∝ δ′′(x), i.e.,
Vq ∝ q2. The latter belongs to the class of the so-called
integrable models [16] for which there is no relaxation
and therefore τ−1 = 0.
In quantum wires, the interaction between electrons

is of a longer range. As an example of the most prac-
tical use, we consider the Coulomb interaction defined
by V C(x) = e2/|x|, which has the Fourier transform
2e2 ln(1/|p|). Interestingly, this logarithmic form gives
a vanishing three-particle amplitude (3), although the
model describing fermions interacting via Coulomb in-
teraction is not expected to be integrable. It is therefore
important to cut off the short distance singularity. This
is done by accounting for the finite width of the wire w.
One then obtains

V C

p = 2e2 ln

(

h̄

|p|w

)(

1 +
p2w2

h̄2

)

, (4)

keeping the first two leading-order terms. Here and in
the following we neglect numerical factors under the log-
arithm because we consider small momenta |p| ≪ h̄/w.
Calculation of the three particle amplitudes is rather

tedious [17]. For unscreened Coulomb interaction (4),
one obtains the leading order result on the mass shell

(A1′2′3′

123 )C =− 4e4

L2

mw2

h̄2
ln

(

h̄

prw

)

[

fC ((ϕ
′ + ϕ)/2)

− fC ((ϕ′ − ϕ)/2)
]

δP,P ′ , (5)

with the even periodic function fC(θ) = fC(θ + π/3)

fC(θ) = −
3

∑

j=1

9 sin(θ + 2πj/3) ln |sin(θ + 2πj/3)|
sin(3θ)

. (6)

Instead of using the incoming momenta {pj} and the out-
going ones {p′j}, for convenience here we have introduced
Jacobi coordinates P, pr, ϕ, defined as

pj = P/3 +
√

2/3pr cos(ϕ− 2πj/3), j = 1, 2, 3, (7)

and similarly for the outgoing momenta. Here P = p1 +
p2 + p3 has a simple meaning of the total momentum of
the three colliding particles. The momentum pr is given
by

pr =
√

(p1 − p2)2 + (p2 − p3)2 + (p3 − p1)2/
√
3, (8)

and measures the typical separation between the mo-
menta. We note that the conservation laws impose
p′r = pr.
We consider scattering at low temperatures, when all

scattering particles should be in the vicinity of the two
Fermi points. This enables us to classify particles as
being right- or left-moving. Throughout this paper we
study the decay of a right-moving excitation. The two
other incoming particles can be classified in one of three
ways: (i) one particle has positive momentum and the
other negative, (ii) both have positive momenta, and
(iii) both have negative momenta. These three config-
urations, respectively, have the values of the total mo-
mentum near pF , 3pF , and −pF , where pF is the Fermi
momentum. Therefore, the incoming and the outgo-
ing states must be in the same momentum configura-
tion. Thus, we can distinguish between three different
cases, which we call “2-1”, “3-0”, and “1-2” processes,
see Fig. 1. We choose notations where the momenta pj
and p′j are always on the same branch of the Fermi sur-
face, while the scattering amplitude takes into account
all possible exchange processes.
At zero temperature, only processes of “2-1” type lead

to relaxation [7]. On the contrary, at nonzero tempera-
tures all three processes have nonzero rates. In the follow-
ing we will calculate the rates and identify the dominant
processes as the temperature increases.
We start our analysis by considering the “2-1” scatter-

ing process, Fig. 1(a). In order to understand the energy
dependence of the decay rate, let us consider the mo-
mentum change of the left-moving particle-hole pair. It
is easily obtained from the conservation laws and reads
p′2 − p2 = (p′1 − p1)(p

′
1 − p3)/(p

′
3 − p2). Using the esti-

mate p′3 − p2 ≈ 2pF , we can express the conservation
laws contained in the scattering rate (2) as

δ(E − E′)δP,P ′ ≈ δ

(

p′2 − p2 −
(p1 − p′1)(p

′
1 − p3)

2pF

)

× m

2pF
δp1+p2+p3,p′

1
+p′

2
+p′

3
, (9)
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where the momentum conservation comes from the am-
plitude (5). We can now employ the last equation to per-
form the summations over p′2 and p′3 in the expression for
the rate (1). The summation over the remaining three
momenta p2, p3, and p′1 then determines the rate. From
Eq. (9) we conclude that the typical energy of the left
moving particle-hole pair is of the order of ε2/εF , where
ε ≃ vF (p1−pF ), and vF is the Fermi velocity. Therefore,
the integration over p2 is restricted to an energy range of
that width, while for both p3 and p′1 that range is of order
ε. As a result, at T = 0 we find the phase space volume
available for scattering to be proportional to ε2(ε2/εF ),
where εF denotes the Fermi energy [7]. Since the ampli-
tude (5) depends on momenta only logarithmically, we
infer the scattering rate τ−1 ∝ ε4. This result still ap-
plies at very low temperatures T ≪ ε2/εF , since then the
thermal smearing of the occupation numbers is not signif-
icant. However, a new behavior of the decay rate emerges
in the range of temperatures ε2/εF ≪ T ≪ ε, because
the occupation numbers n2, n2′ in Eq. (1) of the left-
moving pair become thermally smeared. As a result, the
integration over momentum p2 covers the energy range of
order T , and the phase space volume is proportional to
ε2T [14]. After careful calculation, using the amplitude
(5) and (6) for the unscreened Coulomb interaction, one
finds

1

(τ2-1)C
=

(

e2

h̄vF

)4
(pFw

h̄

)4
(

ln
h̄

pFw

)2

×
{

c1ε
4/h̄ε3F , T ≪ ε2/εF

c2ε
2T/h̄ε2F , ε2/εF ≪ T ≪ ε

(10)

where the numerical prefactors are c1 = (15−π2)/1024π3

and c2 = 3(12 − π2)/64π3. The logarithm of the ex-
pression (10) originates from the first term in the ampli-
tude (5), using pr ∼ pF . Compared to the decay rate
τ−1 ∝ ε8 of Ref. [7], our result (10) is significantly larger
due to long range nature of unscreened Coulomb inter-
action. On the other hand, the rate (10) is smaller than
the one for electrons with spin [9], because interaction
between spinless fermions is weaker as a consequence of
the Pauli principle.

At zero temperature the “3-0” processes, Fig. 1(b),
are not allowed by the conservation laws [7]. However,
they do contribute to the decay rate at finite temper-
atures. To evaluate the rate one can employ a simi-
lar strategy to the one used above for the “2-1” pro-
cesses. The momentum change of the initial excitation is
p1 − p′1 = (p′3 − p3)(p

′
3 − p2)/(p1 − p′2), which enables us

to express the conservation laws as

δ(E − E′)δP,P ′ ≈ δ

(

p′1 − p1 −
(p′3 − p3)(p

′
3 − p2)

p1 − pF

)

× m

p1 − pF
δp1+p2+p3,p′

1
+p′

2
+p′

3
. (11)

We can now use Eq. (11) to perform the summation over
the momenta p′1 and p2 in Eq. (1), which gives rise to
a factor of 1/ε in the rate. The remaining summation
over p′2, p3, p

′
3 is over the typical range of momenta of

the order T/vF and delivers the factor T 3. The detailed
calculation reveals the final result for the unscreened case

1

(τ3-0)C
= c3

(

e2

h̄vF

)4
(pFw

h̄

)4
[

ln
h̄

(p1 − pF )w

]2
T 3

h̄εF ε
,

(12)

where c3 ≈ 1.13 [17]. The logarithmic prefactor arises
from the amplitude (5), using pr ∼ p1 − pF .

The processes of “1-2” type are similar to the “3-0”
ones. In order to evaluate their decay rate, one can use
the expression for the momentum change p1 − p′1 of the
initial excitation of the same form as for the “3-0” case.
However, in the present situation the denominator p1−p′2
should be replaced by 2pF , rather than by p1−pF . There-
fore, the final result for the rate should be the same as in
Eq. (12), provided one replaces ε by 4εF , which we con-
firmed by a careful calculation. Since ε ≪ εF , the con-
tribution of the“1-2” processes is always subdominant.

We now turn to the case of screened Coulomb inter-
action. We model the two-body potential as V SC(x) =
e2/|x| − e2/

√
x2 + 4d2, where d is the distance between

the wire and a conducting plane representing nearby
gates. At |p| ≪ h̄/d ≪ h̄/w, its Fourier transform is

V SC

p = 2e2 ln

(

d

w

)

− 2e2
p2d2

h̄2
ln

(

h̄

|p|d

)

. (13)

The first term in the right hand side of Eq. (13) corre-
sponds to the contact interaction V ∝ δ(x), which does
not affect spinless fermions. Therefore, the three-particle
amplitude is determined by the second term of Eq. (13)
and reads [17]

(A1′2′3′

123 )SC =− 8e4

3L2

md4p2r
h̄4

ln

(

h̄

prd

)

[fSC((ϕ
′ + ϕ)/2)

− fSC((ϕ
′ − ϕ)/2))]δP,P ′ , (14)

with the even periodic function fSC(θ) = fSC(θ + π/3)

fSC(θ) =−
3

∑

j=1

9 [5 sin(θ + 2πj/3)− sin(5θ − 2πj/3)]

4 sin(3θ)

× ln |sin(θ + 2πj/3)| . (15)

Compared to the unscreened interaction (4), the screened
interaction (13) has two additional powers of momentum.
This is reflected in the corresponding amplitude (14), up
to the logarithmic terms. As a result, the decay rates
will have four additional powers of energy with respect
to the unscreened case. For the “2-1” processes, the char-
acteristic energy change is ε, which determines the decay
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FIG. 2. Leading behavior of the decay rate of a quasiparticle
of energy ε for (a) unscreened Coulomb interaction (4), and
for (b) screened Coulomb interaction (13).

rate at zero temperature τ−1 ∝ ε8 [7]. After a careful
calculation one obtains

1

(τ2-1)SC
=

(

e2

h̄vF

)4 (
pFd

h̄

)8 (

ln
h̄

pFd

)2 (

ln
ε

εF

)2

×
{

c4ε
8/h̄ε7F , T ≪ ε2/εF

c5ε
6T/h̄ε6F , ε2/εF ≪ T ≪ ε

(16)

where c4 = 15/32768π3 and c5 = 55/9216π3. For the
“3-0” processes, the typical momentum change is T/vF
and therefore one obtains four additional powers of tem-
perature compared to Eq. (12),

1

(τ3-0)SC
= c6

(

e2

h̄vF

)4 (
pFd

h̄

)8 [

ln
h̄

(p1 − pF )d

]2

×
(

ln
ε

T

)2 T 7

h̄ε5F ε
, (17)

where c6 ≈ 22.1. The decay rates given by Eqs. (10) and
(12) for the Coulomb interaction as well as Eqs (16) and
(17) for the screened Coulomb interaction are the main
results of this paper. Now we comment on their physical
meaning.
The spectral function of a system of interacting elec-

trons described by the Tomonaga-Luttinger model dis-
plays a power-law edge singularity on the mass shell
[3, 14]. This divergence is a signature of the infinite life-
time of excitations. However, once one accounts for the
curvature of the spectrum, the divergence disappears and
the spectral function becomes broadened [7]. Therefore,
the quasiparticles on the mass shell are subject to decay.
The above-calculated decay rate describes broadening of
the spectral function in the vicinity of the particle mass
shell. Our result (16) taken at zero temperature is con-
sistent with Ref. [7]. It is worth noting, however, that
unlike our paper, where for the screened interaction all
the relevant momentum scales are assumed to be small
compared with h̄/d, Ref. [7] assumes pF ≫ h̄/d, i.e., the
Fourier components of interaction potential for momenta
of the order of the Fermi momentum were neglected.

The leading behavior of the decay rate is summa-
rized in Fig. 2. Excitations of energies much larger than
(TεF )

1/2 decay with a temperature independent rate.
For the unscreened interaction (4), we infer a new en-
ergy scale ε∗ ∼ (T 2εF )

1/3. Quasiparticles of energies
lower than ε∗ decay by exciting co-propagating particle-
hole pairs, while quasiparticles of energies larger than
ε∗ decay by exciting both co-propagating and counter-
propagating pairs. The same general picture applies in
the case of the screened Coulomb interaction (13), but
the crossover energy scale ε∗ is of order (T 6εF )

1/7. In-
terestingly, because the decay rate decreases with energy
for the “3-0” processes but increases for the “2-1” ones,
the rate has a minimum near the crossover energy scale
ε∗.
To summarize, motivated by recent experiment [5] we

have calculated the decay rate of quasiparticles in weakly
interacting one-dimensional electron systems. The dom-
inant mechanism of quasiparticle decay involves three
electrons and is illustrated in Figs. 1(a) and 1(b). The de-
cay rate shows nontrivial temperature dependence even
at T ≪ ε, see Fig. 2.
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