
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Electronic spectral properties of the two-dimensional
infinite-U Hubbard model

Ehsan Khatami, Daniel Hansen, Edward Perepelitsky, Marcos Rigol, and B. Sriram Shastry
Phys. Rev. B 87, 161120 — Published 29 April 2013

DOI: 10.1103/PhysRevB.87.161120

http://dx.doi.org/10.1103/PhysRevB.87.161120


BCR1236BR

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Electronic spectral properties of the two-dimensional infinite-U Hubbard model

Ehsan Khatami,1, 2 Daniel Hansen,1 Edward Perepelitsky,1 Marcos Rigol,3 and B. Sriram Shastry1

1Physics Department, University of California, Santa Cruz, CA 95064, USA
2Department of Physics, Georgetown University, Washington DC, 20057 USA

3Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

A strong-coupling series expansion for the Green’s function and the extremely-correlated Fermi
liquid (ECFL) theory are used to calculate the moments of the electronic spectral functions of the
infinite-U Hubbard model. Results from these two complementary methods agree very well at both,
low densities, where the ECFL solution is the most accurate, and at high to intermediate temper-
atures, where the series converge. We find that a modified first moment, which underestimates the
contributions from the occupied states and is accessible in the series through the time-dependent
Green’s function, best describes the peak location of the spectral function in the strongly-correlated
regime. This is examined by the ECFL results at low temperatures, where it is shown that the
spectral function is largely skewed towards the occupied states.

I. INTRODUCTION

A long standing theme in the dynamics of strongly in-
teracting systems is the reconstruction of dynamics from
the knowledge of the first few moments.1 Its appeal lies in
the relative ease with which these moments can be com-
puted, in contrast to computing the complete dynamical
correlation functions. The method of moments works
well in cases where the qualitative features of the corre-
lation functions are somewhat understood by other argu-
ments, including conservation laws in the case of spin dy-
namics. In the important problem of the strong-coupling
Hubbard model, the moments are dominated by the en-
ergy scale U ,2 the on-site repulsive Coulomb interaction,
and hence rendered useless. In contrast, for the t-J model
embodying extreme correlations, i.e., U → ∞ at the very
outset, a better prospect exists. The moments are blind
to the scale of U , since it does not occur in the Hamil-
tonian, and therefore one expects them to be meaningful
in determining the broad features of the dynamics. With
this in mind, we study a simple version of the t-J model
by focusing on J = 0, which is identical to the U = ∞
Hubbard model, thereby making more tools available for
the analysis. As we show in what follows, we have de-
veloped the capability to compute the moments of the
electron spectral function of this model by utilizing series
expansions.3,4 Experiments using angle-resolved photoe-
mission spectroscopy (ARPES)5–8 directly measure this
spectral function, providing an added impetus.

An independent source of information about the elec-
tronic spectral function is the recent analytical theory
of extremely-correlated Fermi liquids (ECFL). This the-
ory has been developed in recent publications,9,10 and
several results of the model pertaining to the detailed
line shapes find close agreement with experiment.5 On
the calculational front, the theory provides a systematic
methodology for computation, and the initial low order
implementation yields the single-electron spectral func-
tion for particle densities in the range 0 ≤ n . 0.7. The
line shapes of this calculation for n ≥ 0.5 display a char-
acteristic skewed shape found in the experimental curves

in ARPES, as detailed in Ref. (10). The computed spec-
tra are available at any temperature (high or low), and
the only limitation at present is the inability to access
the regime close to half filling with density greater than
n ∼ 0.75. Given the inherent complexity of the newly de-
veloped ECFL formalism, the possibility of an objective
cross check using series expansions is a very attractive
one, here we provide the first comparison of this nature.

We compute and compare the moments of the t-J
model with J = 0 in two dimensions by utilizing a series
expansion,13 and the ECFL theory. The two techniques
are largely complementary. While they individually run
into difficulties in different regimes, namely at low tem-
peratures for series expansion and high densities for the
ECFL, there is sufficient overlap in densities and tem-
peratures where both methods give reliable results. This
provides us with a unique opportunity to test the validity
of the answers. For ECFL, this provides a stringent test
of the resulting moments by comparing with the series
expansion. For the series expansion, the availability of
an analytical theory and hence, of the entire spectrum,
is of great advantage in interpreting the distinctions be-
tween three types of moments that can be computed (see
Eq. (7) below). We find that especially at high densities,
the line shape of the spectral function is skewed towards
occupied energies, ω ≤ 0, therefore the spectral peak
(SP) location (the maximum location in the energy dis-
tributed curves) is best estimated by the first moment
of the function with dominant contribution from unoc-
cupied states.

In the rest of this Rapid Communication, we first ex-
plain how the series expansion and ECFL results are ob-
tained (Sec. II). In Sec. III, we compare the results from
the two methods, and discuss our findings. A summary
follows in Sec. IV.
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II. PRELIMINARIES

A. Definitions of computed coefficients

We denote the imaginary-time Green’s function for the
U = ∞ Hubbard model, or equivalently, the t-J model

with J = 0, as G(i, τi; j, τj) = − 〈Tτ Ĉiσ(τi) Ĉ†
jσ(τj)〉,

where Tτ is the time ordering operator, 〈..〉 denotes the
thermal expectation value. We thus study the limit
of extreme correlations. The operators are Gutzwiller-
projected Fermi objects and related to the Hubbard X
operators as Ĉiσ ≡ X0σ

i , etc. As usual,11 this object is a
function of the time difference τ ≡ τi − τf , and we will
study its spatial Fourier transform G(k, τ). Our study
begins with the following expansions

G(k, τ > 0) = (−1)
∞
∑

m=0

(−1)m
τm

m!
am(k), (1)

G(k, τ < 0) =

∞
∑

m=0

(−1)m
τm

m!
bm(k), (2)

where the coefficients am are computed analytically as
a series in the hopping amplitude, t. The series expan-
sion can be carried out to the fourth order by hand,12

and pushed to the eighth order by a highly-efficient com-
puter program13 based on Metzner’s linked-cluster for-
malism.14 This order is the limit achievable by currently
available supercomputers. Using anti-periodic boundary
conditions, G(τ − β) = −G(τ), we obtain Eq. (2) from
Eq. (1). Here β = 1/(kBT ) is the inverse temperature
(we set t = 1 as the unit of energy, and kB = 1). There-
fore, the main calculation focuses on Eq. (1). Its Fourier
series in Matsubara frequencies, ωn = (2n+1)π/β, is ob-

tained from G(k, iωn) =
∫ β

0
eiωnτ G(k, τ) dτ . The spectral

function at momentum k and for the real frequency ν is
denoted by ρG(k, ν) and determines the Green’s function

through the relation G(k, iωn) =
∫ +∞

−∞

ρG(k,ν)
iωn−ν

dν. At high
frequencies ωn, we have an expansion

G(k, iωn) =
∑

m

cm(k)

(iωn)m+1
,

involving the “symmetric” coefficient, cm(k) (see below).
The time domain Green’s function is also given in terms
of the spectral function by the important representation

G(k, τ) =

∫ +∞

−∞

dνρG(k, ν)e
−ντ

[

Θ(−τ)f(ν) −Θ(τ)f̄(ν)
]

,

(3)
where

f(ν) =
1

1 + eβν
, and f̄(ν) =

1

1 + e−βν
. (4)

The three sets of coefficients αm (i.e., am, bm, and cm)
are easily seen to originate from the spectral function con-
voluted by a different filter function, χ(ν) (respectively

f̄(ν), f(ν), 1) as

αm(k) =

∫ ∞

−∞

νmχ(ν)ρG(k, ν) dν. (5)

Using this and the identity f + f̄ = 1, we see that the
symmetric coefficients satisfy the important relation

cm(k) = am(k) + bm(k). (6)

B. Definition of moments

Equation (5) gives the power integrals of the effective
spectral function χ(ν) × ρG(ν), and naturally leads to
three sets of moments at each k, εχm(k) = αm(k)/α0(k).
Thus, the moments can be obtained from the coefficients
am, bm, cm, and contain complementary information as
we discuss below. We assign them suggestive names

ε>m(k) =
am(k)

a0(k)
, ε<m(k) =

bm(k)

b0(k)
, ε0m(k) =

cm(k)

c0(k)
,

(7)
the greater, lesser, and symmetric moments, respec-
tively.15 The superscripts in the notation ε> and ε< sig-
nify that the contribution to these energy moments come
predominantly from the weight of the spectral function
that lies above or below the chemical potential, and hence
the unoccupied or occupied states. The coefficients at
m = 0 have special meanings: by computing the anti-
commutator of Ĉ and Ĉ†, and taking its average we find
c0(k) ≡ c0 = 1 − n

2 in this model. The coefficient b0(k)
is therefore also the momentum distribution function,

mσ(k) = 〈Ĉ†
kσĈkσ〉 = b0(k). (8)

Using Eq. (6), we find a0(k) = 1− n
2 −m(k).

In this work, we study only the first moments, i.e.,
m = 1. We argue below that these give an estimate of
the quasiparticle spectrum for a given k. It is particularly
useful to study all three moments separately since they
exhibit different behavior, and the comparison with the
spectra of ECFL gives a clearer understanding of their
differences as we discuss below.

C. Summary of relevant ECFL results

In Ref. (10), the formalism of ECFL for general J is
implemented to second order in the variable λ, which is
closely related to the density. A self-consistent argument
indicates that the calculation in Ref. (10) is valid for den-
sities n . 0.7. It has no limitation on the temperature
or system size, since it is essentially an analytical the-
ory - resembling the skeleton graph expansion theories of
standard models in structure. We note that the ECFL
assumes a specific type of Fermi liquid with strong asym-
metric corrections,9 and the reasonable similarity to the
series data, as we will see in Sec. III, suggests that this
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FIG. 1. The first symmetric moment, ε01(k), at T = 0.77 vs
momentum around the irreducible wedge of the Brillouin zone
(the path is shown in the right inset). Lines are results from
the series and symbols for n ≤ 0.7 are from ECFL calcula-
tions. Left inset: ε01(k) for n = 0.2 at k = (π/2, π/2) from the
ECFL (diamonds), up to orders seven and eight of the series
(labeled Series7 and Series8), and up to the eighth order after
various Pade approximations, vs temperature on a logarith-
mic scale. The numbers in the subscripts of “Pade” labels
represent the order of the polynomial in the numerator and
in the denominator of the Pade ratio, respectively. “Avg.”
denotes the average between Pade{4,5} and Pade{5,4}. In the
main panel, the results for the series are either the average be-
tween Pade{4,5} and Pade{5,4} or Pade{5,5} and Pade{5,4},
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with the “error bars” defined as the differences between the
two.17

conclusion is fairly safe, at least for high enough temper-
atures. At low temperatures, there could be other insta-
bilities that are hard to capture with the series analysis,
and the present versions of the ECFL.
The full spectral function ρG(k, ν) is computed and its

moments (for the case of J = 0) are readily available for
comparison with those from the series expansion. Also
available in this work is the location of the SPs, εSP(k),
when they exist, the momentum distribution function,
etc. It is therefore possible to compute various disper-
sion curves, relating the different characteristic energies
(i.e. moments) to wave vectors, and to compare them
with the true SP dispersion. The benchmarking of these
moments provides us with valuable insight for interpret-
ing the series data, where the SPs are not available, but
the moments are.

III. RESULTS

In Fig. 1, we plot the symmetric first moment, ε01(k),
as a function of momentum at T = 0.77 for five differ-
ent densities, n = 0.2, 0.5, 0.7, 0.8, and 0.9. We find an
excellent agreement between the results from the series
and the ECFL for n = 0.2 for all the momenta around
the irreducible wedge of the Brillouin zone. At higher
densities up to n = 0.7 (beyond which the ECFL results
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FIG. 2. (a) The first greater moment, ε>1 (k), at T = 0.77 vs
momentum for the same path around the irreducible wedge
of the Brillouin zone as in Fig. 1. Lines and symbols are also
the same as in Fig. 1. (b) The bandwidth of ε>1 (k), defined
as the difference between its maximum and minimum values
at momenta shown in panel (a), vs density for T = 1.52, 1.00,
and 0.77. Panel (c) zooms in the results in panel (a) for k
along the nodal direction. The two methods more or less
agree with each other, within the error bars, in this window
for n ≤ 0.7, and therefore, we show only the ECFL results for
the latter cases.

are not quoted), the agreement is still very good, except
around the zone corner, where the disagreement grows
as the density increases.18 The results for the series are
obtained from Pade approximations as the bare results
show divergent behavior at T < 1. The number of terms
in the series is large enough to justify the utilization of
Pade approximations in order to extend the convergence
to lower temperatures. A comparison of several of these
approximations with the ECFL results for a (low) den-
sity of n = 0.2 is shown in the inset of Fig. 1. In that
case, we see that the agreement between the two methods
extends to temperatures as low as T = 0.3 using Pade
approximations.

The greater moment, ε>1 (k), is plotted in Fig. 2(a) at
the same temperature and densities as in Fig. 1. For
ε>1 (k), the overall agreement between the series expan-
sions and the ECFL results for all n ≤ 0.7 is better
than for ε01(k), especially around the X point. We also
note that ε>1 (k) exhibits a more intriguing behavior than
ε01(k). One of the prominent features of the former, seen
in Fig. 2(a), is the significant narrowing of the band by in-
creasing the density. In Fig. 2(b), we plot the bandwidth
[i.e., max(ε>1 ) − min(ε>1 )] from the series as a function
of density at T = 1.52, 1.00, and 0.77. It appears that
the bandwidth deviates from a linear dependence on n
by decreasing the temperature, and saturates for n → 1
at a non-zero value that decreases towards zero with de-
creasing T . Close to n = 1 at T = 0.77, we find a weaker
agreement between different Pade approximations, lead-
ing to larger error bars. The version of ECFL in Ref. (10)
cannot be used to study this effect as the high-density re-
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FIG. 3. Comparison of the SP location, εSP(k), and the three
moments from ECFL at T = 0.28 and for (a) n = 0.2, (b)
n = 0.5, and (c) n = 0.7. Right panels show the correspond-
ing spectral functions and their products to f̄(ω) and f(ω) at
Γ for the same densities shown in the left panels. At low den-
sities, the SP location is estimated well by the first symmetric
moment. At higher density, the spectral function is skewed
and the greater moment, which is calculated for the spectral
function after most of its weight in the negative frequency
region is cut off, provides a better estimate.

gion n ∼ 1 is beyond its regime of validity.
Another interesting feature of ε>1 (k) [Fig. 2(a)] is the

change in sign of its slope near the Γ point as the density
increases towards unity. To better study this feature, in
Fig. 2(c), we report only the results along the nodal di-
rection. We find that for n & 0.7, the greater moment
initially decreases as the momentum increases from zero,
leading to a negative curvature, or effective mass, at the
Γ point. This feature becomes more pronounced as we
increase the density, or decrease the temperature (see
Fig. 3). These results hint at a possible reconstruction of
the Fermi surface, i.e. the negative mass persisting and
extending in k space so as to reach the Fermi momen-
tum. The appearance of such a hole pocket in the (hole)
underdoped regime, could be of interest in ARPES and
quantum oscillation studies. However, establishing this
firmly requires higher order terms in the series, and is
therefore difficult.
So far, we have seen that for intermediate temperatures

and at relatively small densities, the ECFL agrees ex-
tremely well with the results of the series expansion. But,
unlike the series expansion, ECFL is not limited to high
temperatures at those densities and can be used to study
the moments, and more importantly, the real-frequency
spectral functions, at much lower temperatures. There-
fore, we focus on the ECFL results at n = 0.2, 0.5, and
0.7, and at a reduced temperature of T = 0.28, a temper-
ature at which the series do not converge. In Fig. 3(a)-
3(c), we plot ε01(k), ε

>
1 (k), and ε<1 (k) from the ECFL,

along with εSP(k), obtained from the spectral functions,
at different momenta. We find that in the physically in-
teresting region of low temperatures and high densities,

where correlation effects are strongest, the location of the
SP is generally better estimated by the greater moment
than by the symmetric, or the lesser one [see Fig. 3(c)].

The spectral functions shown in Figs. 3(d)-3(f) help us
understand why this is the case. There, we plot the spec-
tral functions, ρG(k, ω), ρG(k, ω)f̄(ω), and ρG(k, ω)f(ω),
corresponding to the three moments at k = (0, 0), where
the differences between the moments are the most pro-
nounced, vs frequency. At n = 0.2, there exists a rel-
atively sharp quasiparticle peak in ρG whose location
matches the first symmetric moment (marked by a dark
arrow) very well. ε>1 (k), on the other hand, falls slightly
to the right of the quasiparticle peak (marked by a light-
colored arrow) as most of the spectral weight in negative
frequencies is cut off after multiplying ρG by f̄(ω) [see
Eq. (5)]. Also, since there is very little spectral weight in
the positive frequency side, ε<1 (k) is very close in value
to ε01(k). As the density is increased to n = 0.5, the
spectral function is skewed as a result of correlations. In
this case, at small k, there is much more spectral weight
on the left of the SP than on the right, causing the sym-
metric moment to be smaller than εSP(k). This feature
becomes more significant at a higher density of n = 0.7,
where almost all of the spectral weight is in the negative
frequency side. As a result, multiplying ρG by f̄(ω) helps
in neglecting the excess weight on the left side of the SP.
Hence, ε>1 (k), which is readily available from the series
at even higher densities, may be used as an indicator of
εSP(k) using this insight from the ECFL spectra.

IV. SUMMARY

We employ two complementary methods, namely, a
strong-coupling series expansion and the ECFL, to calcu-
late the moments of the spectral functions for the infinite-
U Hubbard model. Unveiling the basic physics of the
model is benefited by the complementarity of those ap-
proaches. Furthermore, the series expansion results pro-
vide the first independent check of the ECFL theory,
which has been self-consistently established. At interme-
diate temperatures and low densities, where the results
from both methods are available, we find a very good
agreement between the two. Unlike ECFL, the series is
not limited to small densities and, by increasing the den-
sity in the series to near half filling, we find interesting
features in the dispersion of the moment with dominant
contributions from unoccupied states (the greater mo-
ment). These include a significant narrowing of its band
as well as hints of Fermi surface reconstruction. Unlike
the series, the ECFL is not limited to high temperatures
and, by exploring the ECFL results at lower tempera-
tures, we find that the greater moment better describes
the location of the SP as the density increases. This is un-
derstood based on the skewing of the spectral functions in
the negative frequency region in the strongly-correlated
regime.
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