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The Kagomé Heisenberg antiferromagnet is mapped onto an effective Hamiltonian on the star
superlattice by Contractor Renormalization. Comparison of ground state energies on large lattices
to Density Matrix Renormalization Group justifies truncation of effective interactions at range 3
(36 sites). Within our accuracy, magnetic and translational symmetries are not broken (i.e. a spin
liquid ground state). However, we discover doublet spectral degeneracies which signal the onset of
pb—chirality symmetry breaking. This is understood by simple mean field analysis. Experimentally,
the p6 chiral order parameter should split the optical phonon degeneracy near the zone center.
Addition of weak next to nearest neighbor coupling is discussed.

PACS numbers: 75.10.Jm, 75.40.Mg

The antiferromagnetic Heisenberg model on the
Kagomé lattice

1
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is a much studied paradigm for frustrated quantum
magnetism. In the classical approximation S — oo,
this model exhibits macroscopic ground state degen-
eracy which encumbers semiclassical approximations.
There is evidence, both numerical and experimental (in
ZnCus(OH)sCl; [1]), that quantum fluctuations lead to
a paramagnetic “spin liquid” ground state [2].

Exact diagonalization studies (ED) [3], and ED in
the variational dimer singlets subspace [4], have not ap-
proached the thermodynamic limit, due to severe com-
puter memory limitations. Many methods have proposed
paramagnetic ground states, including lattice symmetry
breaking “valence bonds crystals” [5-8], algebraic spin
liquids [9] and a time reversal symmetry breaking, chiral
spin liquid [10].

To date, the lowest energy on long cylinders has
been found by Density Matrix Renormalization Group
DMRG [11, 12]. The DMRG ground state is a trans-
lationally invariant singlet, with apparently no broken
translational or rotational symmetries. This state is con-
sistent with a resonating valence bonds (RVB) state [13]
with a spin gap Ag—; = 0.13, (henceforth we express en-
ergies in units of J), and Z, topological order [12, 14]. It
is still unclear however, what are the low-energy singlet
excitations of this state [11, 15], and whether or not any
other symmetry of 4 may be broken in the infinite two
dimensional limit.

This paper reports a surprising result: The thermody-
namic ground state appears to break reflection symme-
tries, and to possess two dimensional p6 chirality, (— not
to be confused with “spin chirality” which also breaks

FIG. 1: The CORE-blocking scheme on the Kagomé lattice.
R and L denote the two pinwheel ground states of the 12 site
stars, and the arrows (pseudospins) denote the symmetrized
Ising basis which spans the reduced Hilbert space of HEOFE,
see Eq. (2).

time reversal symmetry [10]). Our conclusion is obtained
by Contractor Renormalization (CORE) [16] with 12-site
stars blocking, see Fig. 1. the stars scheme is found to
reach sufficient accuracy with range-3 (36 sites) inter-
actions. This is evidenced by comparing ground state
energies of the effective Hamiltonian H¢O%F3 to high
precision DMRG on large lattices. The small modula-
tion of bond energies is consistent, within our accuracy,
with a translationally invariant singlet state as deduced
by DMRG [11, 12].

HCYOREs is diagonalized on up to 27 stars (effectively
324 Kagomé sites). The spectra exhibit doublet degen-
eracies between states with opposite parity under reflec-
tion [17]. These signal a hitherto unexpected sponta-
neous symmetry breaking in the thermodynamic limit
into a chiral ground state. This chirality is understood as
the effect of three-star interactions. Classical mean field
theory on the effective hamiltonian explains this symme-
try breaking. A two-dimer chirality order parameter is
defined on the microscopic Kagomé model. We propose



an experimental signature of this broken symmetry in
the phonon spectrum: a splitting of symmetry-protected
degeneracy between two zone center optical modes [18].

Finally, we add weak ferromagnetic next nearest neigh-
bor interactions .J, and find that it eliminates the chi-
rality at Jo =~ —0.1.

CORE procedure. Previous CORE calculations for the
Kagomé model [19, 20] started with up-triangles block-
ing, and did not reach sufficient convergence at range 3.
Here we use much larger and more symmetric blocks of 12
site (Magen David) stars which form a triangular super-
lattice. In each star, we retain just the two degenerate
singlet ground states |L;) and |R;), depicted in Fig. 1
which form a pseudospin-1/2 basis:

| 13) W(IRWNL i));

| i) W(\R i) — | Li)). (2)
Note that the two states are Cg-invariant, and have op-
posite parity under all Dg reflections.

The CORE effective Hamiltonian on a superlattice of
size N, stars is defined by the cluster expansion,
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Here B(m) is a connected subcluster of size m in a clus-
ter a(n) of size n stars, and h(™ is defined to be an in-
teraction of range-n. The operators HS™ are constructed

by ED of Eq. (1) on a Kagomé cluster a:
2n ~ ~
M= el (4)

Here (e%,0%) are the exact 2" lowest singlet energies
and wavefunctions. The states |\Ill,> are an orthogonal
basis constructed by sequential projections of |¥S), v =
1,2,...2™ onto the pseudospin states. After projection,
the states are orthogonalized sequentially by using the
Gram-Schmidt procedure.

If interactions of all ranges n < Ny are included, then
HCORE has the identical low energy singlet spectrum as
Eq. (1) on the equivalent Kagomé lattice. However, ED
cost to compute h(™ grows exponentially with n. Thus,
the success of CORE depends on the ability to truncate
the cluster expansion at feasible n while maintaining suf-
ficient accuracy in the truncated Hamiltonian.

The error in the ground state energy 6EOC OREn can
be computed by comparison to high-precision DMRG
on large lattices with m > n stars. This error should

be much smaller than the important interactions in
HCOREn.

co h J* JY J*
ED|-6.26391]0.13818|0.00713|-0.00105|-0.00045
PT| -5.268 | 0.046 0 -0.00025|-0.00175

TABLE I: Parameters of CORE range-2 Hamiltonian, by
Exact Diagonalization, and second order Perturbation The-
ory [22].

Lattice translations. Our choice of stars for the reduced
Hilbert space nominally breaks lattice translational sym-
metry as seen in Fig. 1. The microscopic spin correlations
are computed by functional differentiation of the CORE
ground state energy with respect to source terms [21]. In
principle one must compute the effective interactions to
all ranges to restore full translational symmetry. Nev-
ertheless, symmetry breaking artifacts decrease with the
truncation range n. We can therefore identify any spon-
taneous translational symmetry breaking which signifi-
cantly exceeds the truncation error.

CORE range 2. We start with the lowest-order trun-
cation at range 2. The general form of the two-star in-
teractions allowed by lattice reflection symmetries is

HCORE: — N ¢+ hzgf + Z Jofaf, (5)
i (i5)

where ¢ labels sites, (ij) nearest neighbor bonds on the
triangular lattice. 0%, o = x,y, z are Pauli matrices.

The parameters derived from the lowest 4 eigenstates
of 24 spins, are computed by Lanczos algorithm, and
listed in Table I. It is instructive to compare the ED pa-
rameters to the second order perturbation theory (PT)
in the inter-star bonds, as was calculated by Syromyat-
nikov and Maleyev [22]. Second order PT in the connect-
ing bonds is not very accurate when connecting bonds
have exchanges equal to 1. For example, PT misses the
important J* interactions. The dominant interaction of
HCORE: ig the field h = 0.138, which would yield in the
thermodynamic system a ferromagnetic ground state po-
larized in the | |) direction. In terms of Kagomé spins,
the ground state would be a product of antisymmetric su-
perposition of pinwheel states, with local 1 fluctuations
generated by the zz, yy terms.

Within COREs, the connecting bonds energy is
FEinter = —0.21283, versus the intra-star bonds at
Eintra = —0.2225. Interestingly, the modulation is al-
ready diminished from 100%—4.3% with range-2 inter-
actions.

How accurate is HEOREz 2 Unfortunately, not
enough. The exact ground state energy per site of H for
36 sites is EFFP=-0.41276 while the CORE; energy/site
for three stars is ECORE2 -0.4277. The error in energy
per site on the tr1angular lattice is 72| EFP — E§ Oz | =
1.0757. This amounts to a large correction, just from
Range 3, of 780% of the CORE; field term h = 0.138



Jo |J2 = 0 (Kagomé) |J> = +0.1| J» = -0.1

co -5.24629 -5.17068 | -5.48631
h -0.069224 0.059323 |-0.362797
Jz -0.009028 -0.015421 | 0.001123
Jy -0.011879 0.001832 |-0.017699
J- 0.021056 0.003686 | 0.020141

Jeww|  -0.027920
Joyy| 0004550
Jeen 0.000660

-0.019649 [-0.009524
-0.004749 | 0.002394
-0.001410 | 0.010495

TABLE II: Interaction parameters of CORE range 3, with
three values of Js.

(see Table I). Hence, we must add the Range 3 interac-
tions.

CORE range 3. To obtain HYO%Fs we compute the
interactions h(3) on the three star triangular cluster [23].
This required ED of Eq. (1) of 36 spins with open bound-
ary conditions (OBC). For verification, we ran both a
standard Lanczos routine on a supercomputer, and the
memory-economical Lanczos-SVD routine [24] on a desk-
top computer. Adding contributions from ranges 1- 3 we
obtain the following effective hamiltonian

HCOREs — Nco+2h0 + Z Jaoiof
(7).
+ Z J2000705 0, (6)

(ijk)a o

where (ijk)a label nearest neighbor triangles on the tri-
angular lattice. The interaction parameters are listed in
Table II. We do not list terms that cancel in the super-
lattice summation with Periodic Boundary Conditions
(PBC).

The magnitude of the truncated interactions is esti-
mated by subtracting the ground state energy of H¢OFFs
from that of high precision DMRG [25, 26] on clusters of
ranges up to 15 stars. In Table III we see that these in-
teractions contribute less than < 0.004 per site. If we
extrapolated CORE3 ground state energy to the ther-
modynamic limit, we get —0.447 which underestimates
the extrapolated DMRG result —0.439 [12] by at most
—0.008 per site. When we compare this estimate of the
total magnitude of neglected interactions to the size of
the dominant fields in H¢9®¥s  which are h and J,.,
we estimate that total neglected terms of all ranges >3
are at most of order 14% of the most important interac-
tion couplings.

The effects of the truncated interactions on the ground
state depend on the energy spacing and frustration of
HCOREs e shall soon see that the latter yields an non
frustrated canted ferromagnet, and excitation energies of
magnitude 0.1. Therefore the neglected interactions of
order 0.008 are not expected to modify the ground state
correlations and symmetry breaking of HCOREs — Thys,

number of stars| ES ©fF3 | pPMEC Error
2 %2 -0.418452|-0.417213| -0.001239
2x3 -0.423953|-0.422336 |- 0.001617
3 x4 -0.431150|-0.428046| -0.003104
3 x5 -0.432688|-0.429191| -0.003497

TABLE III: Ground state energies per site of HE9FF3  and
comparison to DMRG [27] on equivalent Kagomé clusters
(with OBC).
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FIG. 2: a) The mean field ground state of HCOREs exhibiting
(c®) > 0 order, which corresponds to two dimensional chiral-
ity. b) A typical singlets configuration in the corresponding
ground state of the Kagomé lattice. Notice that there is no
translational order, but that there are more pinwheel con-
figurations of |R) than |L). c) The two dimer chiral order
parameter defined in Eq.8.

we believe that CORE truncation at range 3 is sufficiently
accurate to predict the correct thermodynamic phase.

p6-Chirality. The ED spectrum of HCORFs ig evalu-
ated on lattices of up to N, = 27 stars (324 Kagomé
sites), with PBC. The most striking feature on lattices
larger than Ny, = 9, is the emergence of ground state
degeneracy of two singlets with opposite parity under re-
flections. In the pseudospin representation, even (odd)
parity states include only an even (odd) number of stars
with antisymmetric | |) states. These degeneracies signal
a spontaneous reflection symmetry breaking p6m — p6
in the thermodynamic limit.

A Mean Field (MF) energy of HCOFFs in spin-1/2
coherent states |€2;) is

EM Nc0+hzcos0 + > 10007,
(i5),0x
+ Z Jzaa cos 0;Q5Q, (7)
(ijk),a



JQ MIWF MED
0.0 10.2647|0.2257
+0.1]|0.1390(0.1476
-0.1| 0.5 |0.4999

TABLE IV: Ground state z-polarization of HOFEs on a 27
star lattice.

where Q; = (sin6; cos ¢;, sin 8; sin ¢;, cos ;). In Table II
we see that for Jo = 0, the dominant couplings are the
field h, and the J, and J,,, exchanges. The last coupling
is responsible for the chiral symmetry breaking, as it pulls
the spins in the +2 direction.

Minimizing EM¥ | we find a ferromagnetic state de-
picted in Fig. 2(a). The z-polarization MM¥ = 1 cos @ is
compared to ED in Table IV. For J> = 0, we find that
the chirality order is substantial with %sinﬂ_ = 0.424 by
MF, and %(0®) = 0.397 by ED.

In Fig. 2(b) we depict a typical dimer configuration
which contributes to the p6 - chiral RVB state. One can
see the predominance of R pinwheel chirality over L. The
most local order parameter for this chirality is the two
dimer correlation depicted in Fig. 2(c),

Ci = (SaSyr(a) ~ SaSya) - (8)
d

where the dimer singlet projectors are
Sa =1/4—84q, - Sa,, 9)

and " (d) (n'(d)) is the bond emanating from 4 at angle
m/3 (27/3) relative to the dimer bond opposing i. The
two terms in C measure parts of pinwheels of opposite

chirality.
Translational symmetry. At range 3, the energy of
internal triangles Fa,,,., = —0.686, and connecting tri-

angles is F,,,,, = —0.665 (depicted by solid and dashed
lines respectively in Fig. 1). This relative modulation of
about 3.0% lies within the truncation error. Thus we can
affirm that CORE3 ground state is consistent with trans-
lational invariance in agreement with DMRG [11, 12].

Singlet Ezxcitations. In the 27 star lattice, the low-
est singlet excitation above the two degenerate ground
states is AEgs—o = 0.28, which has a non zero wavevec-
tor. This excitation gap does not vary much with lat-
tice size. Within the pseudospin Hamiltonian, it can be
understood as a local spin flip from the ferromagnetic
ground state. We note that the singlet gap is slightly
higher than two S = 1 magnons at energies Fg—; = 0.13.
This conclusion differs from that obtained by ED on 36
site PBC, which found a large number of singlets be-
low the spin gap [28]. Since our effective Hamiltonian
describes excitations on much larger lattices, we are in-
clined to associate these low singlets with the smaller
PBC lattice geometry.

p6m p6  0pad > 0%
<

I' g |

FIG. 3: Kagomé phonon spectra in p6m phase, and p6 - chiral
phase, calculated within a nearest neighbor spring constant
model given in Ref.[29]. In the top right, the dimer chiral
correlations induce a linear coupling between excess dimer
density dpq and chiral ionic displacements, as depicted by
the arrows. This adds a chiral term to the dynamical matrix
which splits the degeneracy of the optical phonons at the zone
center.

Ezxperimentally, fluctuating two-dimer correlations are
tricky to observe directly. Fortunately, real compounds
have sizable magneto-elastic coupling between the ions
and the dimer singlets. While, on average, dimer density
and bond lengths are uniform in the RVB state, dimer
density fluctuations, dpg governed by the characteristic
singlet energy scale, are linearly coupled to the ionic dis-
placements. In Fig. 3, the effect of a temporary excess
of dimers on a triangle is shown. In the chiral phase,
imbalance between the left and right bonds emanating
out of the triangle produces a chiral force on the ions as
depicted by the arrows. Integrating out the dimer den-
sity fluctuations results in a chiral perturbation to the
phonon dynamical matrix [17]. By symmetry [18], the
degeneracy between two optical modes is removed at the
zone center, as shown in Fig. 3. These phonons are polar,
and therefore accessible to infrared spectroscopy but not
to Raman scattering[30].

Finite J,. We have added next nearest neighbor in-
teractions with coupling Jo to Eq. (1), and calculated
the parameters of HCOFFs a5 shown in Table II. For
Jo = 0.1, we find the same doublet degeneracies, and
chirality, as for the pure model Jo = 0 [14]. In contrast,
for a weak negative J; = —0.1 the spectrum changes
dramatically: The doublets are removed, and the ground
state is fully polarized in the 1 direction. The precise
nature of this phase has not been yet explored. Interest-
ingly, we notice that in proximity to the parameters of
Table II, one finds the Ising antiferromagnet in field. Its
ground state contains ferromagnetic hexagons with re-
versed spins in their center. It represents the Hexagonal
Valence Bond Solid state, previously shown to have low



variational energies [5], and proposed for Jy ~ —0.1 [31].

Summary. Using CORE we arrived at an effective
Hamiltonian, whose accuracy was determined to be suf-
ficiently high so as to trust its predictions for the ther-
modynamic limit. Its ground state is consistent with a
translationally invariant RVB phase, but with broken p6
chiral symmetry. A 2-dimer chiral order parameter is
defined, which may be numerically explored on large lat-
ices. Experimentally, it may be detected by splitting of
optical phonon degeneracy.
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