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We propose novel interaction-based routes to half-metal state for interacting electrons on two-dimensional
lattices. Magnetic field applied parallel to the lattice is used to tune one of the spin densities to a particular
commensurate with the lattice value in which the system spontaneously ‘locks in’ via van Hove enhanced
density wave state. Electrons of opposite spin polarization retain their metallic character and provide for the
half-metal state which, in addition, supports magnetization plateau in a finite interval of external magnetic field.
Similar half-metal state is realized in the finite-U Hubbardmodel on a triangular lattice at1/3 of the maximum
magnetization.

PACS numbers: 71.10.Fd, 72.25.-b,75.30.-m

Spin systems supporting robust magnetization plateaux
whereby macroscopic magnetizationM is fixed at a rational
fraction of the full (saturated) magnetization valueMsat in a
finite interval of external magnetic fieldh1 < h < h2 are
subject of intense experimental studies [1–5]. Typically these
materials are magnetic insulators which are well describedby
the Heisenberg-type models with short-range exchange inter-
actions between localized spins.

One of the best understood and studied plateau states is the
up-up-down (UUD) magnetization plateau atM = 1

3
Msat in

the triangular lattice antiferromagnet [6, 7]. It is a remarkably
stable state known to survive significant spatial deformation
of exchange integrals in both quantum (spin 1/2) and classi-
cal versions of the model [8–10]. The basic reason for the
stability lies in thecollinear structure of the UUD configura-
tion. Collinearity preserves U(1) symmetry of the Hamilto-
nian with respect to the magnetic field axis. The only broken
symmetry is then the discrete translational symmetry sincethe
unit cell consists of two up and one down spin. This ensures
the absence of the gapless (Goldstone) modes in the spectrum
leading to the enhanced stability.

Since the Heisenberg model is the low-energy approxima-
tion to the large-U/t limit ( t is the hopping integral andU is
on-site interaction energy, see below) of the half-filled Hub-
bard model, theinsulating magnetization plateau state is fa-
vored by strong electron-electron interactions. What happens
to the1/3 magnetization plateau state asU/t is reduced and
electrons delocalize is one of the key questions of our study.

A different class of magnetization plateau materials is pro-
vided by half-metallic ferromagnets [11–13] in which by
virtue of peculiar electronic structureall conduction electrons
have the same spin orientation. In their simplest version half-
metallic materials are then fully saturated,M = Msat. These
materials are conductors and are well understood in terms of
non-interacting electron picture [11–13].

The aim of our work is to unite these phenomena by propos-
ing two newinteracting routes to thehalf-metallic magnetiza-
tion plateau states. Both routes require finite external (Zee-

man) magnetic field, applied parallel to the two-dimensional
triangular lattice.

The weak-coupling route, described below first, relies on
tuning density of majority (say, spin-up) electronsn↑ to a spe-
cific value (3/4), commensurate with the triangular lattice, at
which the Fermi surface (FS) passes van Hove points with
logarithmically divergent density of states (Figure1). De-
pending on the total electron densityn = n↑ + n↓, the FS
of minority (spin-down) electrons may or may not be affected
by the interactions, but in any case retains its metallic char-
acter. The resulting ground state is a half-metallic magne-
tization plateau ofM = (3

4
− n↓)Msat with ferrimagnetic

(up-down-down-down) collinear spin structure.M/Msat is
generallyirrational. This novel state has no analogs in the
large-U limit of the Hubbard model and displays coexisting
spin- andcharge-density wave orders. Theoretical analysis of
this limit bears strong similarities with recent proposals[14–
19] of collinear and chiral spin-density wave (SDW) and su-
perconducting states of itinerant electrons on honeycomb lat-
tice in vicinity of electron filling factors3/8 and5/8 at zero
magnetization. The collinear SDW order there spontaneously
breaks spin-rotational symmetry of the Hamiltonian and is ac-
companied by gapless collective excitations [20] which drive
the competition between the collinear and chiral SDW at finite
temperature [16]. This complication is absent in our problem
where external magnetic field sets direction of the collinear
SDW. The resulting half-metallic state breaks only discrete
translational symmetry of the lattice and is stable to fluctua-
tions of the order parameter about its mean-field value.

Next we describe thestrong coupling (large-U ) route
and show thatM = 1

3
Msat magnetization plateau (n↑ =

2/3, n↓ = 1/3), present in theU/t → ∞ limit, survives
down toUc1/t ≈ 4.3, which is significantly lower than the
zero-magnetization critical valueU120◦/t ≈ 10 below which
the three-sublattice120◦ magnetic order melts as the system
transitions to a quantum spin-liquid state [21–23]. Quite in-
terestingly, we find that in the intervalUc1 ≤ U ≤ Uc2 ≈ 4.8t
the UUD state is ahalf-metal with mobile majority (spin-up)
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FIG. 1: (Color online) The non-interacting Fermi surfaces of spin-up
and spin-down electrons (top) at1/2 magnetization and the recon-
structed fermi surface of spin-down electrons aty↓/t = 0.1 (bot-
tom). The thick black and the dashed hexagons are the first Brillouin
zones under the unfolded and folded scheme. The red hexagon,the
Fermi surface of the spin-up electron, is perfectly nested by linear
combinations of three wave vectors (the arrows). The dashedpurple
circle is an example of the hot-spot-free Fermi surface of spin-down
electrons in the hole doped system.

electrons.
Weak-coupling analysis is based on the extended Hubbard

model on triangular lattice:

H = −t
∑

〈rr′〉
(c†rσcr′σ + h.c) + U

∑

r

nr↑nr↓ + V
∑

〈rr′〉
nrnr′

−
∑

r

(

µ+
hσ

2

)

c†rσcrσ. (1)

Here〈rr′〉 labels nearest neighbour bonds,0 < U/t, V/t ≪ 1
are onsite and nearest neighbour repulsive interactions, re-
spectively. For now we set the average electron density at
n = 〈ni〉 = 〈ni↑ + ni↓〉 = 1.

The Zeeman fieldh, normalized to include the usualgµB

factor, is tuned to produceM = 1

2
Msat magnetization so

that on averagen↑ = 3/4 and n↓ = 1/4 per site. Un-
der this condition the FS of spin-up electrons (Figure1) is
given by a perfect hexagon whose vertices, located at the M
points of the first Brillouin zone (BZ), are van Hove (saddle)
points of the dispersion with vanishing Fermi velocity [16].
These saddle points have the (logarithmically) diverging den-
sity of states which leads to singular susceptibility (see be-
low). They are connected by the wave vectorsQ1 = 2π√

3
ŷ and

Q2,3 = ∓πx̂ − π√
3
ŷ (Fig. 1), which are halves of the cor-

responding reciprocal lattice vectorsG1,2,3 [14]. In addition,
parallel faces of the FS are perfectly nested by linear combi-
nations ofQ’s. Spin-down FS is nearly circular (Fig.1) with
no special features.

The special role of the wave vectorsQ1,2,3 is conveniently
quantified by charge susceptibilityχσ(q) of spin-σ electrons
defined as

χσ(q) =
1

N

∑

k

nk,σ − nk+q,σ

ǫk − ǫk+q

. (2)

HereN is the number of sites,nk,σ is the occupation number
of fermions with spinσ and momentumk and

ǫk = −2t
(

cos kx + 2 cos
kx
2

cos

√
3ky
2

)

(3)

is the free-particle dispersion. Straightforward calculation,
outlined in [24], shows thatχ↑(Qa) is strongly divergent,
whileχ↓(Qa) is finite,

χ↑(Qa) = −C↑
t

ln2
( Λ

q0

)

, C↑ =
1

2π2
, (4)

χ↓(Qa) = −C↓
t
, C↓ ≈ 0.136. (5)

HereΛ ∼ π/a is the ‘size’ of the BZ (a is the lattice spacing)
while q0 ∼ 1/L is the microscopic cut-off which scales as the
inverse linear size of the latticeL ∼

√
Na.

Eq. (4) suggests strong modulation of density atq = ±Qa

which motivates the following mean-field ansatz

〈nr,σ〉 =
2 + σ

4
+mσ

3
∑

a=1

cos(Qa · r), (6)

where indexσ describes two spin projections,σ =↑= +1
and σ =↓= −1. The average electron densitiesnσ =
∑

r〈nr,σ〉/N are not affected by finite order parametersmσ,
andn↑ = 3/4, while n↓ = 1/4. Ansatz (6) allows us to
approximate (1) as

H =
∑

k,σ

(ǫk − µσ)c
+

kσckσ +
1

2

∑

k,σ,a

yσ(c
+

kσck+Qaσ + h.c.)

+3NV (m↑ +m↓)
2 − 3NUm↑m↓, (7)

yσ = Um−σ − 2V (m↑ +m↓), (8)

The amplitudes of density modulation of spin-σ electrons are
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determined self-consistently

mσ =
1

3N

∑

r,a

cos(Qa · r)〈nr,σ〉

=
yσ
3N

∑

k,a

nk,σ − nk+Qa,σ

ǫ̃k − ǫ̃k+Qa

= yσχσ(Qa), (9)

where dispersioñǫk is determined by the mean-field Hamil-
tonian (7). We findm↓ = C↓(V − U/2)m↑/t, which means
|m↓| ≪ |m↑|, and

C↑
t

ln2
( Λ

q↑

)

=
(

V +
C↓
t
(V − U

2
)2
)−1

. (10)

The main effect of interactiony↑ in (7) is to provide an infra-
red cut-offq↑ ∼ |y↑/t|1/2 in the susceptibility (4) of spin-up
electrons at the van Hove points. This leads to the final result

m↑ = − Λ2t

V +
C↓

t (V − U/2)2

× exp

(

−
√

4t

C↑[V +
C↓

t (V − U/2)2]

)

. (11)

Non-analytic dependence ofm on interaction amplitudesU, V
is determined by van Hove points. The sign ofm↑ is chosen
such that the FS of spin-up electrons is gapped forall mo-
menta. We checked that the opposite sign leads to a quadratic
touching of the top two bands atΓ point and results in a state
of higher energy [24].

Equations (6) and (11) show that the ground state is a super-
position of commensurate charge-density and collinear spin-
density waves.

∑3

a=1
cos(Qa · r) takes values3,−1,−1,−1

on the sites of triangular latticer = (x, y) = d1a1 + d2a2,
wherea1 = (1, 0) anda2 = (1/2,

√
3/2) are elementary lat-

tice vectors andd1,2 are integers. We stress that the perfectly
nested FS of spin-up electrons is crucial for the spin-up elec-
trons to be gapped at arbitrary weak interaction.

In the absence of direct density-density interaction,V = 0,
the order parameter scales asm ∼ exp (−const/U). The den-
sity wave of spin-up electrons in this case is driven by the ef-
fective interaction∝ χ↓U2 mediated by spin-down electrons,
since the onsite repulsionU only couples electrons of opposite
spins. A small finiteV ≥ U2/t, see (11), changes this scaling

to a much stronger dependencem ∼ exp
(

−const/
√
V
)

.

The band structure of spin-down electrons is also modified
as (7) shows. For finitey↓, while the spin-down electrons
remain gapless, the ‘hot spots’ on the spin-down FS (which
are the points connected byQa) are gapped and the FS is re-
constructed (Figure1). By reducing the density of spin-down
electronsn↓ below 1/4, while maintaining that of spin-up
ones at the perfect nesting conditionn↑ = 3/4, one reduce
the spin-down FS below the critical volume to fit inside the
reduced Brillouin zone (dashed hexagon in Fig.1), which is
4 times smaller than the original one, and the hot spots disap-
pear altogether. This happens forncr < 0.976 (Figure1), i.e.

ncr↓ < 0.226. Under this condition, and for weak interactions
U, V ≪ t, the FS of spin-down electrons is not affected at all.
In either case, the result is ahalf-metal where spin fluctuations
are gapped andall conducting electrons have spin opposite to
the direction of the external field.

Relaxing half-fillingn = 1 condition makes the proposed
half-metal state easier to achieve experimentally. The idea is
to first adjust the total electron density to be sufficiently close,
but not quite at, van Hove singularity. Next, apply magnetic
field to drive (say, spin↑) towards density-wave instability
while at the same time de-tuning spin-↓ subsystem away from
it. As shown in [24] for the two lattice geometries, square and
honeycomb (graphene), choosing total density properly one
can achieve the desired half-metal state with relatively small
field h ≤ 0.02t. Taking t = 0.3 eV results in the estimate
h ∼ 100 T.

Strong coupling limit. We turn to the question ofM =
1

3
Msat plateau which exists in the opposite limit of strong in-

teractions,U ≫ t. To make connection with the insulating
magnetization plateau phase of the Heisenberg spin model we
setV = 0, keeping total densityn = 1 and introduce the
following mean-field ansatz:

〈nrσ〉 =
1

2
+

σ

6
− 2ησ cos(Q · r) (12)

whereQ = 4π
3
x̂ describes the UUD pattern. (cos(Q · r) takes

values1,−1/2,−1/2 on the triangular lattice.) Parameters
ησ are determined self-consistently by the equations similarto
(9). Solving them numerically we find discontinuous jump of
ησ from zero to finite values whenU ≥ 4.30t for a range ofh.
η↑ andη↓ are in general different so that the system displays a
co-existence of the spin-density and charge-density wave or-
ders [24]. Interestingly, it is the spin-down electrons that are
gapped while the spin-up electrons remain gapless around the
Fermi energy (Figure2). Spin-down electrons fill completely
the lowest of the three bandsω↓(k) in the folded Brillouin
zone, while the spin-up ones fill the two lowest bandsω↑(k).
For even stronger interactionU > 4.80t, the two upper spin-
up bands also get separated by a gap which turns the half-
metal state into an insulator with collinear UUD pattern of
local magnetization.

We compared the energy of the half-metal state with the
uniformly magnetized transverse spin-density wave state,i.e.
“cone” state in magnetic language. This state is character-
ized by the longitudinal〈Sz

r 〉 = M and transverse〈S+
q 〉 =

m0e
iq·r magnetizations [25, 26], where the ordering wave

vectorq is generally incommensurate. We determined that
the half-metal state has a lower energy for4.45t ≤ U ≤ 4.80t
[24]. The mean-field phase diagram is shown in Figure3.
Both half-metal and UUD insulator phases are plateau states
with M = 1

3
Msat.

Discussion: we described two general ways to induce half-
metal states through a combination of electronic interactions
and a finite Zeeman field. Our work provides new avenues
to half-metallic states which have potential applicationsin
future spin-dependent electronics. Despite our focus on the
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bands of the half-metal state at1/3 magnetization atU = 4.60t.
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FIG. 3: (Color online) The mean-field phase boundaries of thehalf-
metal and insulating states atM = 1/3 Msat on triangular lattice.
Solid (dashed) lines denote first (second) order transitions.

Hubbard-Heisenberg model on the triangular lattice, both of
the proposed mechanisms can be generalized to other lattice
geometries. We suggest that doped graphene, which is ac-
tively investigated for van Hove - related instabilities [27, 28],
provides convenient setting for searching for the field-induced
half-metallic plateau state.

Our proposal can also be realized in Kondo lattice systems
where the Zeeman field is provided by exchange couplings
between the itinerant electrons and ferrimagnetically ordered
local moments, see e.g. [14, 29], as well as in cold atom sys-
tems [30, 31] where it may be easier to achieve the required
spin population imbalance.

Magnetic field control of the half-metallic phase may be
useful for creating switchable interfaces between half-metal
and noncentrosymmetric superconductor which have been ar-
gued to support Majorana bound states [32].

It is worth noting close physical similarity between our pro-
posal and the previously proposed one-dimensional ‘Coulomb
drag’ setup [33] where role of the lattice is played by the elec-
trons in an active wire interactions with which gap out one of
the spin projections in the passive wire.

Several interesting theoretical questions can be asked re-
garding the half-metal state. First of all, the metal-insulator
transition between a half-metal and a Mott insulator, found
here atU/t ≈ 4.8, represents Mott transition not affected by
(gapped) spin fluctuations. Understanding it in details may
lead to a better characterization of the general Mott transition.
Half metal states are adjacent to many other interesting quan-
tum phases including recently proposedd + id chiral super-
conducting state [15]. If we dope such state with holes while
keeping the FS of spin-up electrons perfectly nested by a Zee-
man field, we will eventually obtain a half-metal. Understand-
ing how quantum phase transition(s) between these different
phases happen is an interesting question left for future studies.
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by NSF through Grant No. DMR-1206774 (O.A.S.) and by
NSERC of Canada (Z.H.).



5

[1] K. Kodama, M. Takigawa, M. Horvatic, C. Berthier,
H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, and F. Mila,
Science298, 395 (2002).

[2] H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T.Tone-
gawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Phys. Rev.
Lett. 94, 227201 (2005).

[3] H. Ueda, H. A. Katori, H. Mitamura, T. Goto, and H. Takagi,
Phys. Rev. Lett.94, 047202 (2005).

[4] N. A. Fortune, S. T. Hannahs, Y. Yoshida, T. E. Sherline,
T. Ono, H. Tanaka, and Y. Takano, Phys. Rev. Lett.102, 257201
(2009).

[5] H. Nema, A. Yamaguchi, T. Hayakawa, and H. Ishimoto, Phys.
Rev. Lett.102, 075301 (2009).

[6] H. Kawamura and S. Miyashita, Journal of the Physical Society
of Japan54, 4530 (1985).

[7] A. V. Chubukov and D. I. Golosov, Journal of Physics: Con-
densed Matter3, 69 (1991).

[8] J. Alicea, A. V. Chubukov, and O. A. Starykh, Phys. Rev. Lett.
102, 137201 (2009).

[9] C. Griset, S. Head, J. Alicea, and O. A. Starykh, Phys. Rev. B
84, 245108 (2011).

[10] R. Chen, H. Ju, H.-C. Jiang, O. A. Starykh, and L. Balents,
ArXiv e-prints (2012), 1211.1676.

[11] R. A. de Groot, F. M. Mueller, P. G. v. Engen, and K. H. J.
Buschow, Phys. Rev. Lett.50, 2024 (1983).

[12] K. Schwarz, Journal of Physics F: Metal Physics16, L211
(1986).

[13] M. I. Katsnelson, V. Y. Irkhin, L. Chioncel, A. I. Lichtenstein,
and R. A. de Groot, Rev. Mod. Phys.80, 315 (2008).

[14] I. Martin and C. D. Batista, Phys. Rev. Lett.101, 156402
(2008).

[15] R. Nandkishore, L. S. Levitov, and A. V. Chubukov, Nat Phys
8, 158 (2012).

[16] R. Nandkishore, G.-W. Chern, and A. V. Chubukov, Phys. Rev.
Lett. 108, 227204 (2012).

[17] G.-W. Chern, R. M. Fernandes, R. Nandkishore, and A. V.
Chubukov, ArXiv e-prints (2012), 1203.5776.

[18] G.-W. Chern and C. D. Batista, ArXiv e-prints (2012),
1204.5737.

[19] M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and
R. Thomale, Phys. Rev. B86, 020507 (2012).

[20] M. A. Metlitski and S. Sachdev, Phys. Rev. B82, 075128
(2010).

[21] H. Morita, S. Watanabe, and M. Imada, Journal of the Physical
Society of Japan71, 2109 (2002).
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