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We study dynamical instability and chiral symmetry breaking in three dimensional Weyl semimetals, which
turns Weyl semimetals into “axion insulators”. Charge density waves (CDW) is found to be the natural conse-
quence of the chiral symmetry breaking. The phase mode of this charge density wave state is identified as the
axion, which couples to electromagnetic field in the topological θE · B term. One of our main results is that the
“axion strings” can be realized as the (screw or edge) dislocations in the charge density wave, which provides
a simple physical picture for the elusive axion strings. These axion strings carry gapless chiral modes, there-
fore they have important implications for dissipationlesstransport properties of Weyl semimetals with broken
symmetry.
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Introduction. Topological insulators are among the most
active research fields in condensed matter physics recently[1–
3]. Among the remarkable aspects of topological insulators
is the ubiquitous role played by Dirac fermions. In fact,
most of the recently discovered topological insulators can
be regarded as massive Dirac fermion systems with lattice
regularization[3]. When the mass vanishes, we have mass-
less Dirac fermions, which are two copies of Weyl fermion
with opposite chiralities. The Dirac fermions, which obey
the Dirac equation, are described by spinors with four compo-
nents, while the Weyl fermions are two-component fermions
described by the following simple Weyl equation

±vFσ · kψ = Eψ (1)

where± is referred as chirality (+ for left handed,− for right
handed), andvF is the Fermi velocity. Since the Dirac fermion
can be decomposed into two copies of Weyl fermion, the lat-
ter is more elementary building block. In fact, it is our current
understanding of nature that the elementary fermions such as
quarks and electrons fall into the Weyl fermion framework be-
cause the left-handed and right-handed fermions carry differ-
ent gauge charges in the standard model of particle physics[4].

It is worth noting that in writing down Eq.(1) we have as-
sumed that the two “Weyl points”, at which the energy gap
closes, are both located atk = 0. In the particle physics
context, this assumption seems to be natural, however, in
condensed matter physics, without imposing symmetry con-
straints such as time reversal symmetry and inversion symme-
try, Weyl points are generally located at different points in the
momentum space. This fact has interesting consequences for
Weyl fermion systems with broken symmetry, as we will show
in this paper.

Although Weyl fermion plays a crucial role in the descrip-
tion of elementary fermions in nature, it has been studied
in the condensed matter context only very recently[5–23].
Weyl semimetals in three dimensions (3d) are analogous to
graphene[24] in 2d in the sense that both are described in
terms of gapless fermions with approximately linear disper-
sion, but the 3d Weyl semimetals are richer in that they are
more closely related to various fundamental phenomena such

as the chiral anomaly[11, 12, 23]. Unlike the topological in-
sulators, whose transport is dominated by topologically pro-
tected surface states, in the Weyl semimetal the bulk transport
is most important. Their unique semi-metallic behaviors in3d
can potentially be engineered for semiconductor industry.

Interaction effect plays a fundamental role in the dynam-
ics of Weyl fermions. One possibility is the pairing inter-
action which leads to the superconducting instability. Qi,
Hughes and Zhang’s fermi surface topological invariant[25]
implies that if the pairing amplitudes have opposite sign for
Weyl points with the opposite chirality, topological supercon-
ductors are obtained. Another consequence of interaction,
which we will focus in this paper, is the spontaneous chiral
symmetry breaking. Chiral symmetry breaking is the phe-
nomenon of spontaneous generation of an effective mass of
Weyl fermions, namely a paring between the fermions (elec-
trons) and anti-fermions (holes) with different chiralities. Due
to chiral anomaly, the Goldstone modeθ is coupled to electro-
magnetic field asθE · B, therefore, this Goldstone mode is an
“axion”[26–29].

In this paper, we focus on the chiral symmetry breaking in
Weyl semimetal and axion strings in condensed matter con-
text, which have new features absent in particles physics. We
would like to mention that axion string can be realized on
the surface of topological insulators with a magnetic domain
wall[30], and axionic dynamics has been studied in topologi-
cal magnetic insulators[31, 32]. In the present paper we study
a new route to axionic dynamics through chiral symmetry
breaking induced by interaction effect. The resultant states
are charge density wave (CDW) states, which are experimen-
tally observable. One of our main results is that the (screw
or edge) dislocations of CDW are exactly the “axion strings”,
which are important topological defects carrying gapless chi-
ral modes. In these chiral modes electrons move solely in one
direction without backscattering. In particles physics, axion
strings have interesting cosmological implications such as the
gravitational lenses effect[33], but observable evidences are
elusive. Axion strings in condensed matter systems have the
advantage that they are much easier to detect. In the Weyl
semimetal studied in the present paper, axion strings have im-
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portant effects on the transport properties since they provide
chiral modes supporting dissipatonless transport.

Dynamical chiral symmetry breaking. We consider the sim-
plest model for dynamical chiral symmetry breaking, which
nevertheless captures the most salient physical consequences.
First let us present the free partH0 of the Hamiltonian. The
four-band model studied here is a simplified version of the
model of Weyl semimetal given in Ref.[7, 12]. We have
H0 = c†hc with

h = vF

3
∑

i=1

Γ
i(−i∂i − eAi − qiΓ) − eA0 (2)

where we have defined the Dirac matricesΓµ(µ = 0, 1, 2, 3)
satisfying {Γµ, Γν} = 2δµν, Γ is the chirality operator with
the propertiesΓ2

= 1 and [Γ, Γi] = 0[34], Aµ is the exter-
nal electromagnetic potential, andq = (q1, q2, q3) is a vector
that shifts the gapless points away fromk = 0. The simplest
choices of the Dirac matrices areΓ = τ3 ⊗ 1 andΓi

= τ3 ⊗ σi

( i = 1, 2, 3 ). The low energy modes from the left-hand (Γ =
+1) chirality is described byh+(k) ≈ vFΓ·(k−q) = vFσ·(k−q)
neark = q. Similarly, there is a Weyl point at−q for the
right-handed (Γ = −1) chirality. The low energy dynamics are
dominated by these two Weyl points located atQ1 = q and
Q2 = −q respectively, with

h±(k) = ±vFσ · (k −Qi) (3)

where the prefactor±1 is the chirality. For later convenience
let us define two operatorsτ± = τ1 ± iτ2 with the property
{τ±, Γ} = 0.

Now we would like to investigate the effects of four-
fermion interaction in Weyl semimetals. Let us write down
the effective action in the imaginary time as

S =
∫

dτdr{c†r [∂τ + h + m∗(r)τ+ + m(r)τ−]cr +
|m(r)|2

g
} (4)

in which we have written the interaction in terms of the aux-
iliary field m(r), which can be integrated out to give the four-
fermion interaction−g(c†rτ

+cr)(c
†
rτ
−cr).

It usually happens that a dynamically generated energy
gap can lower the ground state energy of a nominally gap-
less system. Let us investigate such possibility of condensa-
tion 〈m(r)〉 , 0. Since the low energy dynamics are domi-
nated by the two Weyl points, let us write down the expansion
cr = eiQ1rcL,r+eiQ2rcR,r+ · · ·, wherecR/L are cut off in the mo-
mentum space atΛ, i.e. cL/R,r =

∑

|p|<Λ eiprcL/R,p+ · · ·. and the
“ · · ·” terms are high energy modes with|p| > Λ. At the mean
field level we havem(r) = −g〈c†rτ+cr〉 = −ge−iQr〈c†Lτ

+cR〉,
where we have definedQ = Q1 − Q2 = 2q. We note that
〈c†Lτ

+cR〉 is a “slow” field whose characteristic momentum is
small compared to|Q|.

In the momentum space the fermion matrix in Eq.(4) can be
approximated byM = −iω + vFτ

3
σ · p + m∗(Q)τ+ + m(Q)τ−

at low energy, therefore, we can obtain the gap equation

1
2g
=

∫

dωd3p
(2π)4

1

ω2 + v2
F p2 + |m|2

(5)

from the mean-field relationm(r) = −g〈c†rτ+cr〉. The solution

to Eq.(5) can be obtained as1gc
− 1

g =
1

8π2v3
F
|m|2 ln

v2
FΛ

2
+|m|2
|m|2 ,

wheregc =
8π2vF

Λ2 . We have taken a Lorentz-invariant cutoff
|p| < Λ, ω < vFΛ in the above calculation, but if we take the
cutoff only for |p| but not for theω, we can check thatgc takes
the same value. Because we are concerned with the cases with
|m| << Λ, the solution can be approximated by

1
gc
− 1

g
=

1

8π2v3
F

|m|2 ln
v2

FΛ
2

|m|2
(6)

which shows that dynamical symmetry breaking (or “exciton
condensation”) occurs only when the interaction is sufficiently
strong (g > gc).

A qualitative understanding ofgc is simple. The kinetic en-
ergy per fermion isEK ∼ vFΛ, while the interaction energy
per fermion isEI ∼ gΛ3, whereΛ3 accounts for the spatial
density of Weyl fermions. To have chiral condensation, we
must haveEK ∼ EI , or gc ∼ vF/Λ

2. To satisfy this condi-
tion, largerEI (stronger interaction) and smallerEK (narrower
bandwidth in Dirac dispersion) is favored.

Axion dynamics and topological theta term. We have seen
in the previous section that wheng > gc, chiral symmetry
is spontaneously broken. From symmetry consideration, the
Ginzburg-Landau effective action (omitting chiral anomaly at
this stage) ofm(r) can be expressed as

S m =

∫

dtdr[
1
2
γ(|∂tm

′|2 − v2
a|∂im

′|2) + δ|m′|2 + η|m′|4] (7)

whereγ, va, δ, η are phenomenological parameters, andm′ ≡
meiQ·r is the “slow” field. In the symmetry breaking phase,
δ < 0 and|m| develops a nonzero expectation value. The ef-
fective actionS m is invariant if we shift the phase ofm(r) by
a spacetime-independent phase factor, but in fact this sym-
metry is broken by chiral anomaly, which endows a topo-
logical theta term to the effective action, as we explain be-
low. Let us first writem(r) = |m(r)| exp[−iQ · r − iθ(r)]. We
can perform a chiral transformationc(r) → c(r)e−i(Q·r+θ)Γ/2,
then m(r) → m(r)ei(Q·r+θ). After this chiral transformation
the phase ofm(r) is removed andm(r) becomes real numbers,
however, due to the fact that the fermion path integral measure
is not invariant[35], this chiral transformation generates an
anomalous termS anomaly=

e2

32π2

∫

dtdrǫµνλρ(Q ·r+θ)FµνFλρ =

e2

4π2

∫

dtdr(Q · r+ θ)E ·B, where we have used the natural unit
~ = c = 1.

Taking the above chiral anomaly into account, the fluctua-
tions ofθ is described by the following simple axionic effec-
tive action

S θ =
f 2
a

2

∫

dtdr[(∂tθ)2 − v2
a(∂iθ)2]

+
e2

4π2

∫

dtdr(Q · r + θ)E · B (8)
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where the notation “fa”(≡ γ|m|) is deliberately chosen because
it is analogous to the pion decay constantfπ, namely thatfa is
the “axion decay constant”. We can also define a normalized
field a = faθ and put Eq.(8) into a more standard form

S a =
1
2

∫

dtdr[(∂ta)2 − v2
a(∂ia)2]

+
e2

4π2

∫

dtdr(Q · r + a
fa

)E · B (9)

There is an effective action analogous to the last term for pion-
photon coupling in high energy context, which is responsible
for the famous two-photon decay of neutral pion. The axion-
photon coupling is proportional to 1/ fa ∼ 1/(γ|m|), thus we
have the counterintuitive conclusion that when the chiral con-
densation goes weaker, the axion-photon coupling becomes
stronger.

Various topological responses can be calculated from the
effective action given in Eq.(8). Taking derivative with respect
to Aµ, we have the current

jµ =
e2

8π2
ǫµνλρ(Qν + ∂νθ)Fλρ =

e2

8π2
ǫµνλρ(Qν +

∂νa
fa

)Fλρ (10)

Analogous topological responses have been studied in topo-
logical insulators[30], in which the first term in absent. Let
us consider the special case of a constant magnetic fieldBzz
along thez direction, then the charge density given by Eq.(10)
is

j0 =
e2

4π2
(Qz + ∂zθ)Bz =

e2

4π2
(Qz +

∂za
fa

)Bz (11)

The first term here is readily understood as layered quantum
Hall effects[36], with layer thickness 2π/|Q|. The second term
can be understood as follows. Let us consider the caseQ = 0
for simplicity, and take|m| = 0 first. In a constant magnetic
field Bzz, the dispersions of Weyl fermions can be obtained as

En(pz) = ±vF

√

p2
z + 2eBzn with n = 0, 1, · · ·. The two gapless

modes are then = 0 Landau levels withE(pz) = ±vF pz, where
± corresponds to left and right chirality respectively. Now
a mass termm = |m|eiθ mixes the two counter-propagating
(essentially 1d) modes and opens a gap. The 1d charge den-
sity can be obtained from the Goldstone-Wilczek formula[37]
j0|1d =

1
2π∂zθ, therefore, the final result of 3d charge density is

j0 = (eBz/2π)(∂zθ/2π) = e2

4π2 Bz∂zθ, where we have added the
density of stateseBz/2π of Landau levels. This is exactly the
second term of Eq.(11).

Phase of charge density wave is the dynamical axion. Now
we will show that the chiral symmetry breaking leads to den-
sity waves, among which the CDW is the simplest. The charge
density is given by

ρ1(r) = 〈c†rτ1cr〉 = −
m(r) + m∗(r)

2g
= −
|m|
g

cos(Q · r + θ)(12)

and similarly ρ2(r) = 〈c†rτ2cr〉 = i[m(r) − m∗(r)]/2g =
|m| sin(Q ·r+θ)/g. Let us explain their physical consequences.

In fact, they depend on the physical degree of freedom to
which τ is referred. Let us take a simplest example, namely
thatτ3

= ±1 refers to (|A〉 ± |B〉)/
√

2, whereA, B refer to two
inequivalent sites in a unit cell[38], thenτ1

= ±1 refers toA/B
site, thusρ1 = ρA −ρB is the staggered CDW. If we look at the
charge density on siteA (or B), it shows an oscillation with
wavelength 2π/|Q|. In more general cases, other density mod-
ulation, such as CDW of more general types and spin density
waves can show up.

The natural question is how to experimentally detect the
CDW. Apart from bulk measurements, it can also be detected
by simpler surface measurements such as scanning tunneling
microscope (STM). Denoting the angle between the surface
normal andQ asα, we can obtain the surface CDW wave-
length asλ2d =

2π
|Q||sinα| .

It is worth noting that the interaction effect and CDW was
studied in 2d Dirac systems in Ref.[39–41]. More recently, in-
teraction effect on the surface of weak topological insulators
has been studied in Ref.[42], in which CDW has also impor-
tant physical consequences. The relation to chiral anomalyis
absent in these studies because the systems considered there
are in 2d, where the concept of chirality is lacking.

Dislocations in charge density wave are axion strings. Let
us turn to the central part of this paper, namely the identifica-
tion of CDW dislocations as axion strings, which may provide
dissipatonless chiral transport channel in 3d bulk materials.
An axion stringl is a one dimensional dislocation of axion
field, around which the axion fieldθ changes by 2π, namely
that

∫

C
dθ = 2π (13)

whereC is a small contour enclosingl clockwise. Axion
strings are closely related to chiral anomaly, as was studied
long ago in the work by Callan and Harvey[43] in the particle
physics context. In the Weyl semimetals studied in the present
paper, the axion strings have clear geometrical picture because
θ is exactly the phase of CDW. More explicitly, suppose that
Q = (Qx,Qy,Qz) = (0, 0,Q), then it follows from Eq.(12) that
the peaks of CDW are located at 2d planes (x, y, zn) with

zn = −
θ + 2πn

Q
(14)

wheren =integer. Whenθ is shifted, the peak positionzn

follows the shifting ofθ. In fact, the shifting ofzn around
the small loopC enclosing the axion string is readily obtained
from Eq.(14) as

∫

C
dzn = −

∫

C
dθ

Q
= −2π

Q
(15)

which is exactly the wavelength of the CDW. The Burgers
vector of the axion string as a dislocation of CDW is exactly
(0, 0,−2π/Q). For a general CDW wave vectorQ, the Burgers
vector is readily obtained as−2πQ/|Q|2.
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Let us refer the orientation of the axion stringl as l̂. Ac-
cording to the relative orientation ofl̂ andQ, the axion string
appears as different types of dislocation. Whenl̂ is parallel
with Q, we have screw dislocation [Fig.(a)], while whenQ is
perpendicular witĥl, we have edge dislocation [Fig.(b)]. We
would like to mention that the edge dislocation with chiral
modes has been studied in Ref.[44]. Weyl semimetals provide
a natural route to realize such interesting topological defects.
In the cases of edge dislocation, the origin of chiral modes is
most clear, because we can think them as the edge states of a
2d quantum Hall system, which is just the slice appearing as
the “edge”.

There are chiral modes propagating along the axion
strings[43], therefore, axion strings may serve as unique trans-
port channels in a 3d materials with axionic dynamics. Such
chiral modes carry dissipationless current just like the quan-
tum Hall edge and quantum anomalous Hall edge states, but
the former are distinct in that they are buried in 3d bulk.

It is worth mentioning that dislocations in topological ma-
terials has also been studied in Ref.[45], but we would like
to emphasize several prominent differences between the axion
strings studied here and the dislocation lines in weak topo-
logical insulators studied in Ref.[45]. First, in Ref.[45]the
dislocations carrying gapless modes are indeed dislocations
of crystal lattice, while in our paper the crystal lattice re-
mains intact, and axion strings are just dislocations of CDW.
Secondly, the gapless modes studied in Ref.[45] are helical
modes, which are unstable towards back scattering if time re-
versal symmetry is broken, while the gapless modes living on
the axion strings studied in the present paper are robust chiral
modes. It is also worth noting that in Ref.[12] line disloca-
tion with chiral modes was studied, but CDW is absent there,
more importantly, the bulk is also gapless there and the cou-
pling between dislocation mode and bulk mode can induce
dissipation.

To conclude this section we remark that the formation of
axion strings in Weyl semimetals can be triggered by rapidly
lowering the temperature fromT > Tc to T < Tc, whereTc is
the critical temperature of chiral condensation (Kibble-Zurek
mechanism).

Discussions and Conclusions. We have studied the dynam-
ical chiral symmetry breaking and topological responses in
Weyl semimetals. We have adopted a simple four-fermion
interaction to simplify formulas. In more realistic models
g is replaced byg(Q). We note that an attractive interac-
tion −g(Q) < 0 at momentumQ is needed for the chiral
symmetry breaking. The values ofg(Q) for various materi-
als depend the material details, which is beyond the purpose
of this paper. It is useful to mention that an effectively at-
tractive electron-electron interaction can appear at somespe-
cial momenta commensurate with the reciprocal lattice. Such
electron-lattice coupling effect is responsible for the Peierls
transitions in 1d systems, and we expect that dynamical chiral
symmetry breaking may also occur in 3d by this mechanism
if 2π/|Q| is commensurate with the crystal lattice. In this case
the chiral symmetry breaking can be thought as generalized

FIG. 1: Axion strings as dislocations of charge density wave.
(a)Screw dislocation. (b)Edge dislocation. The delineated sheets are
the peaks of CDW. In both (a) and (b), the axion string is alongthe
z direction. The Burgers vector is parallel to the axion string in (a),
while perpendicular to it in (b).

Peierls transitions, which induces dimerization, trimerization,
etc.

Our model provides a geometrical picture of axion, which
manifests itself as the phase of CDW. One of our main re-
sults is the identification of axion strings as CDW (edge or
screw) dislocations, which has no analog in particle physics.
The axion strings have 1d robust chiral modes along them,
which have great potential applications if the chiral symmetry
breaking (exciton condensation) of Weyl fermion is realized
in experiment. In this paper we studied the general cases with
Q , 0. WhenQ = 0 there is no CDW associated with the
chiral symmetry breaking, but the axion strings do exist and
have important implication for 3d transport properties.

ZW thanks Chao-Xing Liu and Xiao-Liang Qi for helpful
discussions. ZW is supported by Tsinghua University Initia-
tive Scientific Research Program (No. 20121087986). SCZ
is supported by the NSF under grant numbers DMR-0904264
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Note added. After this work was finished, we became
aware of a related work[46] on symmetry breaking in Weyl
semimetal by Zyuzin and Burkov, though CDW and axion
strings were not studied. Due to nonzero density of states con-
sidered in their work, the gap equation is also different from
ours.
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