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Spatially inhomogeneous strains in graphene can simulate the effects of valley-dependent magnetic
fields. As demonstrated in recent experiments1,2, the realizable magnetic fields are large enough to
give rise to well-defined flat pseudo-Landau levels, potentially having counter-propagating edge
modes. In the present work we address the conditions under which such edge modes are visible. We
find that, whereas armchair edges do not support counter-propagating edge modes, zigzag edges do
so, through a novel selective-hybridization mechanism. We then discuss effects of interactions on
the stability of counter-propagating edge modes, and find that, for the experimentally relevant case
of Coulomb interactions, interactions typically decrease the stability of the edge modes. Finally, we
generalize our analysis to address the case of spontaneous valley polarization, which is expected to
occur in charge-neutral strained graphene3,4.

PACS numbers:

I. INTRODUCTION

Among condensed-matter systems, graphene is unique
in being a flexible two-dimensional membrane whose
electronic properties are tunable through deformations
and strains. Spatially varying deformations affect the
band structure of graphene by modulating the hopping
amplitudes between lattice sites. Indeed, certain spa-
tially varying deformation patterns can mimic the ef-
fects of uniform “pseudo-magnetic fields,” which have
opposite signs in the two low-energy valleys5 (i.e., in
the neighborhoods of the K and K′ Dirac points) of
graphene. (Unlike real magnetic fields, therefore, pseudo-
magnetic fields preserve overall time-reversal invariance.)
To date, such pseudo-magnetic fields have been realized
using two distinct experimental approaches1,2; in both
experiments, the fields realized were strong enough to
drive the electronic structure deep into the quantum
Hall regime in each valley, and—in line with theoret-
ical predictions—the electronic structure measured by
scanning-tunneling microscopy (STM) was clearly seen
to consist of well-spaced pseudo-Landau levels (PLLs)
in each valley. While the PLLs in each valley, con-
sidered separately, have nontrivial topological invari-
ants3,6,7, these are opposite for the two PLLs in the K
and K′ valleys; thus, the fate of various topological fea-
tures in the full system is not completely understood.

In the present work, we address the nature of one
of the crucial topological features of strained graphene,
namely its edge states. These have been extensively ad-
dressed in the literature, for graphene subjected to real
magnetic fields (i.e., the regular quantum Hall effect in
graphene8–15), but have not been addressed for strain-
induced magnetic fields. We first show, by analyzing the
noninteracting system, that the Landau levels of strained
graphene are very sensitive to the distinction between
zigzag and armchair edges. For zigzag edges, the Lan-
dau levels (though flat in an infinite system) acquire an
appreciable linear dispersion due to their hybridization
with the pre-existing, non-topological “surface” states.

(We shall use this term to distinguish these states from
the topological “edge” states.) On the other hand, for
armchair edges, where such boundary states do not ex-
ist, the Landau levels do not disperse even near the edge;
this is in sharp contrast with the case of a real mag-
netic field16,17; as we discuss, the physics behind this
difference is that the lowest PLLs in the two valleys of
strained graphene live on the same sublattice, whereas
in the presence of a real magnetic field the correspond-
ing Landau levels live on opposite sublattices. Thus, on
a typical sample with rough edges, the edge states are
expected to be localized in the zigzag regions and as
a consequence should not contribute to transport; how-
ever, two-terminal measurements on zigzag nanoribbons
should reveal the presence of multiple edge states. We
then address the possibility that Luttinger-liquid effects
stabilize the edge states against disorder, but find that
they do not for the case of a Coulomb interaction. Fi-
nally, we generalize our analysis to the case of edge states
in spontaneously valley-polarized states, and argue that,
in general, these should not exhibit protected edge states.
(One further mechanism for the destabilization of edge
states, for instance in the experiments of Ref. 1, is their
hybridization with the Dirac sea in the surrounding, non-
strained region; however, for undoped or weakly doped
graphene this hybridization is presumably weak, owing
to the vanishing density of states at the Dirac point.)

Our paper is organized as follows. In Sec. II we intro-
duce the microscopic Hamiltonian for strained graphene
that was used in our numerical work, as well as an effec-
tive low-energy description that enables us to arrive at an
analytic understanding of the effects discussed here. We
then consider the physics of an armchair edge in Sec. III
and that of a zigzag edge in Sec. IV. In Sec. V we extend
our analysis to include interaction effects and their influ-
ence on edge stability. In Sec. VI we generalize our ar-
guments, in the specific case of an armchair edge, to the
case of a valley-polarized state. Finally, Sec. VII sum-
marizes our results and discusses possible experimental
signatures of edge-state physics in strained graphene.
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FIG. 1: Schematic pattern of change in hopping matrix el-
ement on red bonds and varying along x direction as δt3 =
evFBx which leads to the pseudo-vector potential Ax = 0
and Ay = Bx. The dotted green square is the corresponding
four cite unite cell and the green arrows are primitive lattice
vectors.

II. MODEL AND BULK PROPERTIES

In what follows, we shall chiefly consider the fol-
lowing noninteracting, nearest-neighbor Hamiltonian for
strained graphene:

H0 =
∑
ri

∑
a=1,2,3

(t+δta(ri))(a
†(ri)b(ri +δa)+h.c.), (1)

where δta(ri) is, the strain-induced, nearest neighbour
hopping amplitude modulation between the A-sublattice
site at ri and the B-sublattice site at ri + δa of the bi-
partite honeycomb lattice18. The bond δa connects any
A-sublattice atom to its three nearest neighbors on the
B-sublattice. In the absence of strain, the low-energy ex-
citations have a linear dispersion around the two Dirac
points at momenta ±K with K = (4π/3

√
3a0)ex, a0 be-

ing the carbon-carbon bond length18. Near the Dirac
points K and K′ one can write the Bloch states in
terms of a four-component spinor, as follows: Ψ ≡
(ψA,K, ψB,K, ψA,K′ , ψB,K′) where the first index denotes
the component of the wavefunction on the A(B) sub-
lattice of the honeycomb unit cell, and the second in-
dex denotes the component of the state that is associ-
ated with the K (K′) valley. (In what follows, we shall
write ψA,K(K′) ≡ uK(K′) and ψB,K(K′) ≡ vK(K′), in or-
der to make contact with the standard notation for Dirac
fermions.) The low energy effective Hamiltonian close to
the Dirac points then reads as:

H0 = vF [p̂xΓx + p̂yΓy] (2)

where Γx = τ3σ1, Γy = τ0σ2, vF is the Fermi velocity,
and the σ and τ operators are Pauli matrices acting on
sublattice and valley indices respectively.

Strain generates a pseudo vector potential given by

A0
x + iA3

y =
∑

a=1,2,3 δta(r)e±iK·δa near the Dirac points

±K5,18. Note that
∑

a=1,2,3 δta(r)e±iK·δa is complex be-
cause the nearest-neighbor hoppings are not symmetric
under inversion. The real part of the strain gauge field A0

x

is the same in both valleys and so couples to Q0 = σ0τ0
and can be gauged away assuming time-reversal symme-
try holds; whereas the imaginary part iA3

y, has opposite

sign in the two valleys and couples with19 Q3 = σ0τ3
leading to the valley-dependent magnetic fields realized
in the experiments of Ref. 1.

For the purposes of the present work, we shall consider
ribbon geometries, in which the strain-induced field is
taken to realize the Landau “gauge” (A = (0, Bx)). A
concrete lattice realization of this gauge field is shown in
Fig. 1. In this realization of strain, exploiting translation
invariance in y direction, the Dirac Hamiltonian can be
written in the form:

H0 = vF

[
−i∂xτ3σ1 + p̂yτ0σ2 −

e

c
Bxτ3σ2

]
(3)

where vF is the Fermi velocity, and the σ and τ oper-
ators are Pauli matrices acting on sublattice (u and v)
and valley (K and K′) indices respectively. As this strain
pattern respects translation invariance in the y direction,
it is suitable for a strained ribbon extended in the y direc-
tion. Notice that the Hamiltonian for valley K associated
with py is the same as the Hamiltonian for valley K′ with
momentum −py.

In this Landau “gauge”, the wavefunctions in the
zeroth PLL have the four-component form ΨK

0,py
=

(φ0,py
, 0, 0, 0) and ΨK′

0,py
= (0, 0, φ∗0,py

, 0), respectively,

where φ0,py
is the mth Landau orbital in the lowest (non-

relativistic) Landau level, namely φpy
∝ exp(−ipyy−(x−

pyl
2
M )2/2l2M ) where lM is the magnetic length associated

with the strain induced pseudo-magnetic field. In the
higher PLLs, the wavefunctions take the form ΨK

n,py
=

(φn,py , φn−1,py , 0, 0) and ΨK
n,py

= (0, 0, φ∗n,py
, φ∗n−1,py

).
These forms should be contrasted with those for graphene
in a real magnetic field; in the case of a real field, the
Landau level wavefunctions in the two valleys have oppo-
site sublattice structure, whereas in the case of a strain-
induced field, the wavefunctions have the same sublattice
structure.

In our treatment of the noninteracting problem we
have suppressed the physical spin, and thus ignored the
(weak) intrinsic spin-orbit coupling in graphene. How-
ever, the spin index can be included trivially. We shall
consider the consequences of the physical spin in Sec. V,
as interaction effects in the spinless and spinful cases are
different; moreover, a combination of interaction effects
and spin-orbit coupling was argued to lead to stabiliza-
tion of fractional phases4. (The spinless situation can be
experimentally realized by applying a large field paral-
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lel to the graphene sheet, and thus spin-polarizing the
electrons.) In the following sections we consider the two
types of edges of graphene ribbons, i.e. zigzag and arm-
chair edges, separately. In this we have followed the
common approach to study ordinary Hall edge states of
graphene in real magnetic fields20,21. For rough edges the
edge states behave differently for armchair and zigzag
sections of the edge, as we shall see. Furthermore, we
shall assume that the edge is perfectly sharp. However,
possible modulations of hopping amplitudes along the
edge22 are not expected to effect our results, because they
retain the symmetries of the problem.

III. ARMCHAIR EDGE

Having discussed the bulk properties, we now turn to
the case of a graphene ribbon with armchair edges along
the y direction. Owing to the translational invariance
along y as well as our choice of the Landau “gauge” the
momentum in y direction is a good quantum number.
On the other hand, in the ribbon geometry, translation
invariance in x direction is broken. For our analytic cal-
culations we consider the case of a semi-infinite graphene
ribbon covering the region x < 0, with an armchair
boundary at x = 0. (Notice that for armchair edge, a
finite size gap is formed. Such gap is absent for a nano-
ribbon which is 3N − 1 layer thick23,24. As the width of
the nano-ribbon considered here is also relatively large
we are not concerned with this finite size gap.)

If we make the transformations uK′ → −uK′ and
vK′ → −vK′ , the Hamiltonian in the two valleys reads
as:

HK = vF

[
−i∂xσ1 + pyσ2 −

e

c
Bxσ2

]
, (4)

HK′ = vF

[
−i∂xσ1 − pyσ2 −

e

c
Bxσ2

]
. (5)

In order to get the spectrum, we square these Hamilto-
nians, leading to:

v2F

[
−∂2x +

(
py −

e

c
Bx
)2
− e

c
Bσ3

]
Ψk = E2Ψk, (6)

v2F

[
−∂2x +

(
py +

e

c
Bx
)2
− e

c
Bσ3

]
Ψk′ = E2Ψk′ ,(7)

which is defined for x < 0. In the zeroth Landau level, in
which (for a strain-induced field) the wave functions in
both valleys are based on the same sublattice, so that the
σ matrix is trivial. The boundary condition then reduces
to the wave function vanishing on the last row. In terms
of the sublattice wave functions this reads as:

uK(py) = uK′(py) (8)

If we change x → −x for K′, the two equations (6) and
(7) become identical. We can join the two equations and
the boundary condition above will then correspond to
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FIG. 2: Energy dispersion for a graphene nanoribbon with
armchair edges as a function of the momentum along the edges
(py); (a) in the presence of a strain-induced pseudo magnetic
field and (b) in the presence of a real magnetic field. The
center of mass position of the Landau orbitals is correlated
with their momentum py i.e. py = 0 is localized in the center
of the ribbon and as |py| increases, they get closer to the edge.
For the strain induced magnetic field, there is no dispersion
in the zeroth PLL, whereas for real magnetic field there are
dispersing edge states associated to the topological character
of the bulk (i.e., the quantum Hall effect).

continuity of the wave function at x = 0. The Hamil-
tonian then reduces to the simple harmonic oscillator
Hamiltonian and the boundary question is trivially sat-
isfied. The salient property of this Hamiltonian is the
fact that the energy eigenvalues are independent of py,
and thus the states near the edge do not disperse. This
is in sharp contrast with the case of a regular magnetic
field16,17, in which states near the edge do disperse.

One can understand the nondispersing nature of the
edge states intuitively as follows, for the case of a semi-
infinite ribbon with an edge at x = 0. Because both the
(K, ky) and (K ′, ky) wavefunctions are located on the
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same sublattice, and their guiding centers are at ky and
−ky respectively. One can always construct equal-weight
superpositions of the two wavefunctions, which automat-
ically satisfy the boundary condition. (By contrast, in
the case of a regular magnetic field, the two states live on
opposite sublattices and therefore cannot be superposed
to meet the boundary conditions; instead, the bound-
ary condition must be satisfied by introducing a slowly
varying envelope function16,17, and this costs additional
kinetic energy for states near the edge.) Note that these
arguments extend straightforwardly to the case of higher
PLLs.

As Fig. 2(a) shows, a numerical computation of the
band structure is consistent with the argument above.
An important implication of this argument is that there
should be no counter-propagating edge modes on arm-
chair edges; i.e., if the chemical potential lies between
two PLLs, it should not cross any states at all.

IV. ZIGZAG EDGE

We now turn to the case of nanoribbons with zigzag
edges. Even in the absence of a magnetic field, these
edges support non-dispersing modes localized at the
edges of the sample; these “surface” states occupy the
A sublattice at one end of the system, and the B sub-
lattice at the other end. Because these states are con-
fined on scales smaller than the magnetic length, they
are expected to be unaffected by a magnetic or strain
field16,17. In the case of a real magnetic field, the disper-
sion of the topological edge states16,17 occurs chiefly by
intrinsic, universal means, and is therefore only slightly
modified by the presence of zigzag surface states. The
case of a strain-induced magnetic field is fundamentally
different in this respect: as we have argued above, there
is no intrinsic dispersion mechanism. Therefore, if there
were no “surface” states on the edge, the zigzag edge
would have the same properties as the armchair edge,
and would again have no edge states. We shall now argue
that the presence of these “surface” states fundamentally
changes the behavior of Landau orbitals near the edge.

We now address the effects of this hybridization, fo-
cusing at first on the lowest PLL. In the lowest PLL, all
Landau orbitals are situated on either the A or the B
sublattice. Let us assume for concreteness that all Lan-
dau levels are situated completely on the A sublattice.
Hence, they can hybridize with the zigzag surface states
on the A sublattice (at one end of the system) but not
with the zigzag surface states on the B sublattice (at the
other end of the system). Since the Landau orbitals can
only hybridize with one physical edge of the system, the
strength of this hybridization depends on the distance of
the guiding center of the Landau orbital from the “hy-
bridizing” edge.

Assuming the hybridizing edge is located at x = 0,
this hybridization changes the energy of each Landau or-
bital by a factor ∼ exp[−(pylM )2]. This energy shift is
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FIG. 3: Energy dispersion for a graphene nanoribbon with
zigzag edges as a function of the momentum along the edges
(py); (a) in the presence of inversion symmetry and (b) in the
presence of a inversion symmetry breaking perturbation.

relatively large for levels situated near the hybridizing
edge (i.e., py → 0) but becomes small for levels situ-
ated far away (i.e., |py| large). Because this effect gives a
momentum-dependent energy shift, it can be thought of
as generating a dispersion for the edge states. Moreover,
because of the valley-dependence of the pseudo-magnetic
field, the states in the K valley that are near the edge
have opposite momenta to the corresponding states in
the K′ valley. (Near the “non-hybridized” edge, by con-
trast, this effect does not exist, because the surface states
are localized on the B sublattice and their matrix ele-
ments with the Landau orbitals are strictly zero.) The
size of this effect is quite strong in mesoscopic systems
(such as all existing experimental realizations of strain-
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dependent gauge fields), as one can see from diagonal-
ization on graphene nanoribbons (Fig. 3(a)). (Note that,
as previously mentioned, we have ignored the effects of
physical spin via the spin-orbit coupling. Including such
effects is interesting venue of research25 but is beyond the
scope of this paper.)

Two important observations can be made about this
surface-induced dispersion effect.

(1) The hybridization with the zigzag edge state plays
a role similar to an electric field perpendicular to the
edges of the ribbon; thus, the dispersion generated by
the zigzag surface states can presumably be either en-
hanced or compensated by the application of such an
electric field. (2) Unlike armchair edges, zigzag edges
with surface states do not mix the valleys. This can eas-
ily be seen from Fig. 3(a)—the level crossings between
PLLs from opposite valleys are not avoided, as they
would be in the presence of valley mixing. The physi-
cal reason for this is that the Landau orbitals in the two
valleys—since they are counter-propagating—couple to
orthogonal, counter-propagating linear combinations of
the zigzag surface states. Thus, for a clean zigzag edge,
there should be counterpropagating states, which can be
detected (e.g.) in two-terminal transport measurements.
Note that these counterpropagating edge states can be
gapped out by adding a valley-mixing term such as the
Kekulé distortion (see Fig. 3(b)).

In practice, perhaps the most promising candidate for
realizing a system with a clean zigzag edge is molecu-
lar graphene. In this system, one can tunably create a
Kekulé distortion2 and thus study the transition between
Fig. 3(a) and Fig. 3(b).

V. STABILITY UNDER INTERACTIONS

The considerations discussed so far apply to the case
of noninteracting edge modes. We now address the is-
sue of whether the edge modes continue to carry current
in a disordered interacting system, using the approach
of Ref.26. (Similar questions were addressed for quan-
tum spin-Hall insulators with multiple edge modes in
Ref. 27,28.) It is clear that, in the absence of interactions,
backscattering due to disorder localizes the edge modes,
leading to an insulating edge. However, there are certain
regimes26–29 in which interactions prevent the localiza-
tion of edge states, by making backscattering processes
“irrelevant” in the renormalization-group sense. (Quali-
tatively, this effect can be understood in terms of inter-
actions screening out the impurity potential; this would
happen, e.g., if the electron-electron interactions were at-
tractive30.)

For repulsive interactions, as discussed in Ref. 26, the
low-temperature behavior of the conductance is given
by the strength of the density-density interaction be-
tween the left-moving and right-moving edge states (i.e.,
forward-scattering) compared with back-scattering pro-
cesses involving momentum-exchange. For the conduc-

tance to stay finite as T → 0, the above criterion implies
that the Fourier components of the interaction potential
satisfy V (0) ≤ 1

2V (2|G|), where G is a reciprocal lattice
vector. (This is an approximate expression; the precise
momentum transfer involved in backscattering is the mo-
mentum difference between the two states on the edge,
which is ∼ |G| + 2kF , which we approximate as |G| us-
ing the assumption that the chemical potential is near the
Dirac point.) This criterion is not met by realistic inter-
action potentials. However, it has been shown26 that for
V (0) ≤ 2V (2|G|) (as in, e.g., a contact potential, or a
sufficiently short-ranged potential achieved via gating),
the conductance exhibits non-monotonic behavior and
increases with decreasing temperature until a crossover
scale

T ∗ ∼ D exp

[
− 2V (2|G|)− V (0)

V (2|G|)(2V (0)− V (2|G|))

]
, (9)

where D is the bandwidth of the Dirac band (for molec-
ular graphene this is ∼ 200 meV). The physics of this
crossover can be explored in strained graphene by tuning
the range of the inter-electron interaction via gating.

VI. EFFECTS OF VALLEY POLARIZATION

Thus far, we have considered the edge states of strained
graphene under the assumption that time-reversal invari-
ance is preserved. We now turn to situations in which
time-reversal invariance is spontaneously broken; such
situations naturally arise in the case of half-filled PLLs3,
in which the valley-polarized state naively appears to be
a topologically protected state. We argue in this section
that such states do not generically have topologically pro-
tected edge modes.

Within the low-energy theory, there are two valley-
polarizing perturbations, given by τzσ0 (i.e., simple
valley-polarization) and τzσz (i.e., the Haldane mass
term31). The former opens up a gap in any half-filled
PLL, whereas the latter opens up a gap only in the zeroth
PLL. We shall consider these terms separately, beginning
with the simple valley-polarization term. As discussed in
Ref. 19, this term anticommutes with two charge-density-
wave perturbations that take the form τxσ0 and τyσ0 in
the low-energy theory. Therefore, one can continuously
go from a region with the valley-polarization gap τz to
a region with the charge-density-wave (or valley-mixing)
gap τxσ0 without any gap closure. This has the follow-
ing implication. At a sharp edge, spatial modulations
like the charge-density-wave (or valley-mixing) gaps are
generically present. Thus, the valley polarization gap in
the bulk can be rotated into the valley-mixing gap at the
edge without closing any gaps, so that the entire system
remains gapped and there are no edge states. We only
consider the case of uniform charge-density-wave terms
on the edge, and neglect the question of whether dis-
ordered or local charge-density-wave terms can gap out
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FIG. 4: Corbino disk with broken valley degeneracy

the edges. One expects this mechanism to prevent edge
states from being present at half-filling of any PLL, as
long as (a) the edges mix the valleys, or (b) the charge-
density-wave is dynamically generated by interactions at
the edge. It is of course possible that very smooth edges,
which do not mix the valleys, can support chiral edge
states, but the fragility toward valley-mixing indicates
that these edge states are not in fact protected.

Before we proceed to the case of the zeroth PLL, we
briefly explain how our remarks above can be related
to the conventional flux-insertion argument32, which was
used4 to argue for topologically protected edge modes in
half-filled PLLs. Consider half-filled PLLs in a Corbino
disk geometry as shown in Fig. 4, in which the left half of
the disk has a perturbation of the form τz and the right
half has a perturbation of the form −τz; this situation,
which corresponds to magnetic domains, should typically
arise in experiments4. We assume that the gauge realized
by the strain has the property that py = 0 is near the cen-
ter of the disk, and then add a perturbation of the form
τx near the middle of the Corbino disk. (This assumption
can easily be relaxed, if one then chooses a perturbation
that is modulated along y.) Now suppose one inserts a
(real) magnetic flux through the center of the Corbino
disk: if the regions having a τz (valley-polarization) gap
were indeed topological, one would expect the flux inser-
tion to pump two charges from the edges of the disk to
its center (given the opposite nature of the strain-induced
magnetic field in the two regions). However, this is im-
possible because the center of the disk is fully gapped
and therefore incompressible; thus, we conclude that the
flux insertion argument fails, and that half-filled PLLs
do not in general have a quantized Hall conductance.
This result is intuitively plausible, as valley-mixing gaps
like τx change the size of the unit cell and can therefore
drastically affect the topological properties of the band
structure.

The argument given above holds for all the PLLs; how-
ever, an additional subtlety arises in the case of the ze-
roth PLL, owing to the possibility of a Haldane mass
gap, τzσz

31. In any PLL other than the zeroth, this term

does not open a gap. However, within the zeroth PLL, it
does open up a gap. The possibility of this gap raises the
following apparent paradox. As the Haldane mass term
generates a gap both with and without the strain-induced
field, one can imagine adding it before adding strain; in
this case, the gap generated is a topologically nontriv-
ial gap, accompanied by chiral edge states. The strain-
induced field does not compete with this gap (because
the lowest PLL is gapped out by the Haldane mass and
the other PLLs are unaffected by it), so that the topo-
logically nontrivial gap and the corresponding edge states
must continue to exist even in the presence of strain. It
is natural to suppose that the quantized Hall conduc-
tance due to the Haldane gap can be associated with the
conductance in the half-filled zeroth PLL.

On the other hand, the Haldane gap—when projected
onto the zeroth PLL—can be rotated into the charge-
density-wave gaps discussed in Ref. 19; thus, its pro-
jection into the zeroth PLL is topologically trivial and
cannot generate edge states. Therefore, if one gaps out
the zeroth PLL by adding a charge-density-wave gap and
then adds a Haldane mass, there should be no gap clo-
sure and no topological transition (because these per-
turbations anticommute). Consequently, the topological
properties deduced by first adding the Haldane mass and
then the strain appear to disagree with those deduced by
adding the strain and then the Haldane mass, leading to
a paradox.

Our numerical diagonalization studies, plotted in
Fig. 5, suggest that the resolution is as follows—the topo-
logically protected Haldane edge state is connected to
higher-order PLLs, and crosses the zeroth PLL without
hybridizing with it. Thus, although these edge states give
rise to a robust, quantized Hall effect, the mechanism is
unrelated to the low-energy PLL structure. Indeed, in
the limit where the Haldane mass term is much smaller
than the other perturbations, we find that these edge
states move far away from the Dirac points, demonstrat-
ing that they are unrelated to the PLLs. In addition,
when the electron density is tuned to be at the charge
neutral point, and the valley polarization (hence the Hal-
dane mass) is generated spontaneously by interactions,
the interaction effects are operative nominally only for
the half-filled lowest PLL, but not for the other PLLs
that are totally empty or occupied. I.e., the Haldane
mass is selectively generated for the lowest PLL, but not
for the other PLLs. We would then expect there is no
edge state at all in this case.

VII. CONCLUSIONS AND OUTLOOK

In the present work we have addressed the properties
of the edge states of strained graphene in the quantum
Hall regime. We have argued that the edge physics is not
universal—owing to the lack of topological protection—
but is strongly dependent on the nature of the edge.
Whereas armchair edges do not support edge states
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FIG. 5: Pseudo-Landau level (PLL) structure in the presence
of a large Haldane mass gap. As one can see, the topologically
protected edge modes guaranteed by the Haldane mass term
do not mix with the PLLs, but appear to originate at much
higher energies.

at all, zigzag edges are expected to support counter-
propagating edge states. Furthermore, in the case of
zigzag edges, the hybridization between the PLL states
and the zigzag “surface” states gives rise to dispersion
of the PLLs; for short-range interactions, these counter-
propagating edges are expected to manifest themselves
via nonmonotonic temperature-dependence of the con-
ductance. Finally, we considered the case of valley-
polarized edges (e.g., a quantum Hall ferromagnet in
charge-neutral strained graphene) and argued that, in
general, valley-polarization does not imply a finite Hall
conductance, because (within the zeroth PLL) valley po-
larization can be continuously transformed into a charge-
density wave, which is evidently non-topological.

Our results have several experimental implications.
Most notably, the difference between the dispersion near
zigzag and armchair edges can easily be detected using
the spectroscopic methods of current experiments. In ad-
dition, transport experiments would—assuming the con-
tribution of the PLLs could be isolated—provide several
clear signatures. For example, for strained graphene rib-
bons having clean zigzag or armchair edges, the strik-
ing difference between the former case (with multiple
counterpropagating edge modes) and the latter (no edge
modes at all) should be easily detectable via two-terminal

measurements. Similarly, a nonmonotonic temperature-
dependence of the two-terminal conductance would pro-
vide a signature of interaction effects near the edges. Fi-
nally, either spectroscopy or transport can address our
prediction that, for half-filled PLLs, the regions between
magnetic domains should (a) contain no propagating
modes, and (b) exhibit spontaneously broken transla-
tional symmetry.
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