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We study the charge response of conformal field theories (CFTs) at non-zero temperature in 2+1

dimensions using the AdS/CFT correspondence. A central role is played by the quasinormal modes

(QNMs), specifically, the poles and zeros of the current correlators. We generalize our recent study

of the QNMs of the a.c. charge conductivity to include momentum dependence. This sheds light

on the various excitations in the CFT. We begin by discussing the R-current correlators of the

N = 8 SU(Nc) super-Yang-Mills theory at its conformal fixed point using holography. For instance,

transitions in the QNM spectrum as a function of momentum clearly identify “hydrodynamic-to-

relativistic”crossovers. We then extend our study to include four-derivative terms in the gravitational

description allowing us to study more generic charge response as well as the role of S-duality, which

plays a central role in understanding the correlators. The presence of special purely-damped QNMs

can lead to new behavior, distinct from what occurs in the aforementioned gauge theory. We also

extend previous conductivity sum rules to finite momentum and discuss their interpretation in the

gravity picture. A comparison is finally made with the conformal fixed point of the vector O(N)

model in the large-N limit.
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I. INTRODUCTION

The subject of strongly-coupled quantum criticality (QC) without well-defined quasiparticle excitations has long

been an important focus of the study of correlated electron systems. The simplest examples of such states in two

spatial dimensions are provided by quantum critical points described by conformal field theories (CFT3s). The

traditional condensed matter approach to the non-zero temperature dynamics of such systems has been to apply the

quantum Boltzmann equation, and related perturbative field-theoretic methods1. However, such methods are designed

for systems with long-lived quasiparticles, and the range of their applicability to systems without quasiparticles is

unclear. The AdS/CFT correspondence2 has provided a new set of tools to investigate the dynamics of QC3: an

important advantage of this method is that quasiparticles do not appear at any stage in the computation, and even

the leading results do not contain artifacts linked to the existence of long-lived quasiparticles. Instead, a simple picture

of the dynamics emerges in terms of the quasinormal modes (QNMs) of a gravitational theory on an asymptotically

Anti de Sitter (AdS) spacetime. In a recent paper we described the structure of these QNMs in some detail for

spatially uniform probes4. This paper will extend the analysis to allow for spatial dependence, and describe the

dispersion of the QNMs as a function of spatial momentum. As we shall see, this yields far deeper insights than the

zero-momentum response.

Our objects of study are two-point correlation functions of currents in thermally excited CFT3s. Expressed in

frequency-momentum space these are 〈Jµ(ω,k)Jν(−ω,−k)〉, where the average is over the thermal density matrix,

while µ, ν are spacetime indices. Such correlators yield, for instance, the frequency-dependent charge conductivity in

the limit of vanishing momentum. We emphasize that such current correlators can be probed experimentally in QC

systems with emergent Lorentz invariance. An important example is the quantum phase transition between a bosonic

Mott insulator and a superfluid in two spatial dimensions, which is described by the well-known QC O(2) model.

Recent experiments with ultra-cold atoms in optical lattices have realized such a QC point, both in three5 and two6–8

dimensions. The excellent control in these experiments gives hope that the universal QC charge response could be

measured in the near future. On the other hand, as interactions are strongly relevant in such critical systems, the

theoretical description of many quantities remains very challenging, especially concerning the current correlators of

the U(1) charge in real time and at finite temperature. Holographic methods have successfully yielded some fresh

insights into the problem at hand3,4,9,10. For instance, the frequency-dependent conductivity of a strongly correlated

CFT (with supersymmetry) has been exactly computed3 using the AdS/CFT correspondence2. It was remarkably

found that the conductivity does not vary with frequency because of an emergent self-duality, which is not expected

to hold for generic CFTs. Further extensions9,10 of the original holographic model have yielded frequency-dependent

conductivities that can be expected in quantum fluids with particle- or vortex-like excitations. A sharp distinction

between the two types of response can be made by examining the correlators at complex frequencies4: the particle-like

conductivity has a pole at a frequency of order −iT , whereas the vortex-like conductivity has a zero there. These

become manifest at real frequencies by the presence of a maximum or minimum at zero frequency, respectively. In

the former case, a small-frequency peak is obtained to which we refer as the Damle-Sachdev (DS) peak11. At a formal

level, it shares the same single-pole structure as the Drude peak characterizing the transport of a gas of electrons

subject to a source of inelastic scattering (disorder). An important difference is that translation symmetry is not

broken in a CFT, instead the finite d.c. conductivity results from the particle-hole symmetry at zero charge density.

This is why we choose the designation DS instead of “Drude”.12

The poles and zeros of the retarded correlators, the QNMs, acquire a significant physical meaning for the correlated

CFT: they are excitation modes of the system. In this sense, understanding how they propagate or disperse as a

function of momentum yields important insight into the excitation channels of the CFT. In a certain sense, the QNMs

supersede the concept of weakly interacting quasiparticles. Interestingly, the AdS/CFT correspondence connects these

QNMs with discrete excitation modes of a black hole in one higher dimension13–15, which allows for the inclusion of a

finite temperature. In the case of the QNMs of the current correlators, these excitations correspond to electromagnetic

“eigenmodes” of the black hole. The holographic correspondence thus identifies the “normal” modes of black holes

with the emergent excitations of a strongly correlated CFT13–15. We mention that such QNMs have been explored
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in a variety of different holographic applications to strongly correlated systems potentially relevant to condensed

matter3,4,16–20. A recent review by Hartnoll21 covers a number of these, with special focus on the QNMs.

A. Main results

The CFT current correlators are obtained holographically via a general four-derivative bulk action9,10, which in

one limit describes the R-current correlators of an N = 8 superconformal gauge theory3. The correlators are found to

bear a strong imprint from their T = 0 Lorentz invariant form, such as a “reflection” property between the real and

imaginary parts under exchange of frequency and momentum, illustrated in Fig. 1. In almost the entire frequency-

momentum domain, except in the hydrodynamic regime, the correlators can indeed be interpreted as “smoothed”

versions of the relativistic forms. The “smoothing” occurs via the breakup at finite temperature of the T = 0

branch cuts into a discrete sequence of poles and zeros, the QNMs. We further identify sharp transitions in the

QNM spectrum as a function of momentum, and these manifest themselves at real frequencies as hydrodynamic-to-

relativistic crossovers. In this respect, we emphasize how the presence of a four-derivative term in the bulk action

can lead to distinct behavior compared to the leading two-derivative Einstein-Maxwell action. The latter is self-dual

under an electric-magnetic duality3, and this constrains the correlators considerably. Higher order terms will break

this self-duality10, and in particular give rise to a special QNM on the imaginary frequency axis, referred to as the

D-QNM due to its purely damped nature and its formal relation to the usual Drude scaling. This QNM lies at the

heart of the difference between the particle- and vortex-like responses and it is expected to be present in generic

CFT3s4,22, and indeed appears in the four-derivative holographic theory. As we have noted above, when this D-QNM

is a pole, it gives rise to a small-frequency DS peak in the conductivity, whereas a valley results when it is a zero.

A generalization of particle-vortex duality, S-duality23, which manifests itself as electric-magnetic duality in the bulk,

plays a central role in our analysis. It leads for instance to the appearance of a hydrodynamic zero in the transverse

response (i.e. when the current is transverse to the momentum). This zero becomes the standard hydrodynamic pole

ω ∼ −iD̂k2 of the S-dual theory, where D̂ is the S-dual diffusion constant. S-duality is also central in the sum rule

analysis, which we extend to finite momentum, see Eq. (38) and Eq. (41). The conductivity sum rules4,20 obtained at

zero momentum, for both the direct and S-dual4 theories, are found to rely on the bulk gauge invariance of the gauge

field holographically dual to the CFT current operator. We finally conclude with a comparison with the vector O(N)

model at its large-N conformal fixed point. For instance, we find an analogous sum rule to what is obtained in the

holographic analysis, including an almost exact agreement between static correlators entering the sum rules.

The outline is as follows: We first discuss general properties of current correlators in CFT3s in Section II. We then

turn to their explicit study in a supersymmetric gauge theory using the AdS/CFT correspondence in Section III. We

extend the analysis to more generic holographic models including a four-derivative bulk term in Section IV. Sum rules

are discussed in Section V, and finally a comparison with the vector O(N) model is made in Section VI, followed by

a conclusion.

II. CURRENT CORRELATORS IN A CFT

We first review some general properties of the current correlators in CFT3s, namely the meromorphic structure in

Subsection II A and the asymptotics in Subsection II B.

A. Physical imprint in the analytic structure

In the holographic models we consider below, the finite-temperature current correlators will be meromorphic in

the complex frequency plane, i.e. they will be analytic except at a discrete set of finite order poles. Moreover all

the poles (and zeros) will be in the lower half-plane (LHP) of frequency by virtue of retardedness. One can ask:

To what extent are these properties generic? For instance, it is well-known that the zero-momentum correlators,
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which give the conductivity, will generically have a branch cut at frequencies whose norm is much less than the

temperature. This branch cut emanates from the zero frequency point and is associated with the so-called long-time

tails of hydrodynamics24,25, following from the presence of gapless hydrodynamic modes at arbitrary long-wavelengths,

such as the well-known diffusive mode discussed below. At finite momentum, however, the length scale introduced in

the problem is expected to introduce an IR cutoff beyond which correlators decay exponentially and not algebraically,

thus excluding branch cuts of that sort. Such arguments seem reasonable as they are based on the universal principles

of hydrodynamics. But what about frequencies whose norm is of the order or greater than the temperature and

thus fall beyond the hydrodynamic regime? In that case, a statement regarding general interacting CFTs is hard to

establish, but it is not unreasonable to expect that a slightly (read infinitesimally) perturbed thermal CFT state will

relax back to local equilibrium exponentially fast, which is tantamount to assuming that no branch cuts will emanate

from the real axis. This does not preclude the presence of branch cuts in the LHP away from the real frequency-axis.

These are absent in the holographic models we study, but it is at present unclear if CFT3s will generically obey this

rule. It would be interesting to investigate this aspect in more detail by considering specific CFTs, such as the O(N)

vector model at finite but large N . (The N →∞ is discussed in Section VI.)

To gain further insight into the role of the QNMs, let us consider a generic meromorphic current correlator, as

obtained using holography for instance:

〈Jµ(ω,k)Jν(−ω,−k)〉 = a

∏
m(ω − ω̂mk )∏
n(ω − ωnk )

→
∑
n

an exp (−|=ωnk |t− i<ωnk t) , (1)

where a is a constant and the arrow indicates a temporal Fourier transform. Note that we are leaving out the delta

function 〈Jµ(kα)Jν(k′α)〉 = δ(3)(kα + k′α)Cµν(kα). Each pole QNM, ωnk , contributes an exponential to the time-

dependence of the correlation function. As all the poles are in the LHP, the exponentials decay in time. We thus see

that the QNMs closest to the real axis will dominate the long-time response of the system since they correspond to the

longest decay time-scales. On the other hand, the real part of the QNM frequency provides the oscillatory behavior.

As the momentum k increases from zero to infinity, these time scales will change and lead to very different behavior.

In the language of the excitation modes of the system, the absolute value of the imaginary part gives the lifetime of

the excitation, while the real part its energy. A so-called quasiparticle mode will have an energy much greater than its

lifetime; while purely damped modes do not have a real part, such as the diffusion pole. The momentum dependence

of these modes gives generalized dispersion relations for the excitations. In the case of the quasiparticle QNMs, this

replaces the usual energy-momentum dispersion relation of weakly interacting quasiparticles.

The zeros, ω̂nk , play an important role as well. Not only are they essential to determine the values of the correlator,

but in the theories we consider below, they also correspond to the QNM excitations of the S-dual theory. S-duality

(see 23 for its action on CFT3s) is a generalization of the usual particle-vortex duality familiar in the context of the

O(2) model describing the superfluid-to-insulator quantum phase transition.

Finally, as we argue below, the QNMs evolve into branch cuts in the limit of zero temperature where one recovers

power law decay in time of the correlation functions, in accordance with the behavior expected to take place directly

at the fixed point. This is physically clear given that the QNM excitations merge and form a continuum.

B. Symmetries and asymptotic forms

We now review the symmetries and asymptotic behavior of the current correlators. This will serve as an important

comparison point throughout the work. Although most of the discussion follows Ref. 3, we make new remarks

regarding the hydrodynamic behavior of the transverse current correlators, which naturally leads to S-duality. We

consider correlation functions involving two conserved currents, Jaµ(x), in a CFT at finite temperature, where µ is

the spacetime index, while a labels the flavor. The Fourier transform of the retarded current correlator, Cabµν(x) =
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−iθ(x0)〈[Jaµ(x), Jν(0)]〉, can be decomposed as follows

Cabµν(ω,k) = PLµνΠL
ab(ω, k) + PTµνΠT

ab(ω, k) , (2)

where two sets of functions, ΠL
ab and ΠT

ab, are needed because the temperature breaks the Lorentz invariance. Note

that Cabµν/T depends only on the rescaled frequency ω/T and momentum k/T , the latter ratio arising since a CFT

has a dynamical exponent z = 1. We work in units where c = ~ = kB = 1 throughout. The transverse projector reads

PTtt = PTti = PTit = 0, PTij = δij −
kikj
k · k

, (3)

and by orthogonality: PLµν = [ηµν − kµkν/k · k] − PTµν , where kµ = (ω,k) and roman indices run over spatial

coordinates. The Minkowski metric was introduced, ηµν = diag(−1, 1, 1), such that k · k = ηλλ′kλkλ
′

= −ω2 + k2.

It is easy to see that Cabµν(ω,k) is symmetric in µ, ν and satisfies the Ward identity kµCabµν(ω,k) = 0 resulting from

current conservation. Both of these properties are in fact independently satisfied by the projectors, PL,Tµν .

Due to the rotational invariance, we are free to fix the momentum to point along the x-direction, k = (k, 0), which

yields

Cabtt (ω,k) =
k2

ω2 − k2
ΠL
ab ; Cabxx(ω,k) =

ω2

ω2 − k2
ΠL
ab , (4)

Cabyy(ω,k) = ΠT
ab . (5)

Also, Cabtx = Cabxt = − ωk
ω2−k2 ΠL while all the ones mixing y with x or t vanish, in line with the decoupling between

longitudinal and transverse responses. In the limit of zero temperature, a simple form dictated by Lorentz invariance

emerges:

Cabµν(ω,k)
∣∣
T=0

=

(
ηµν −

kµkν
k · k

)√
k · kKab , (6)

where Kab are the conductivities in the ω/T →∞ limit: Kab = σab∞. We choose the branch of the square root
√
k · k

to be in the LHP ω-plane and such that =
√
k · k > 0 when w > q. Specifically, the charge and transverse current

correlators read:

Cabtt (ω,k)
∣∣
T=0

=
k2√

−ω2 + k2
Kab , (7)

Cabyy(ω,k)
∣∣
T=0

= −
√
−ω2 + k2Kab . (8)

We note that these functions have branch points at ω = ±k: Ctt has branch poles while Cyy branch zeros.

At finite temperature and in the opposite limit of small frequency and momentum, |ω|, k � T , we obtain hydrody-

namic behavior. For example, the correlators of the conserved charge densities, Jat , read

Cabtt (ω, k) ≈
∑
`

χ`abD`k
2

iω −D`k2
, |ω|, k � T , (9)

where ` sums over the diffusive eigenmodes; χ`ab, D` are the corresponding charge susceptibilities and diffusion con-

stants, respectively. By virtue of scaling: χab = T χ̄`ab and D` = D̄`/T , with χ̄`ab, D̄` being universal dimensionless

quantities associated with the conformal fixed point, just like the Kab introduced in Eq. (6). They are related to the

d.c. conductivities via Einstein relations: σabdc =
∑
` χ

`
abD`. Crucially, the hydrodynamic charge response is charac-

terized by the presence of diffusive poles in the LHP ω-plane at ω = −iD`k
2. In the same limit, we propose that the



6

transverse current correlator is given by

Cabyy(ω, k) ≈ −
∑
`

χ`abD`(iω − D̃`k
2) , (10)

where the tilde variables D̃` obey the same scaling as their cousins D`. We shall see that in theories for which we can

define S-duality, these are the diffusion constants of the S-dual theory. Contrary to Ctt, the hydrodynamic behavior

of the transverse correlator is analytic. However, it has analogs to the diffusive poles: a set of “diffusive zeros” at

ω = −iD̃`k
2. When S-duality exists, it will map these to the diffusive poles of the S-dual theory.

III. N = 8 SUPER-YANG-MILLS

We first examine a special theory whose holographic description is believed to be very simple: it is a 2+1D Yang-

Mills theory with gauge group SU(Nc) and N = 8 supersymmetry26. In a certain large-Nc limit, the theory flows

to a strongly coupled CFT. Further, it is believed that this CFT admits a holographic description in terms of a

string theory (or rather its 10+1D extension, M-theory). The holographic duality maps the vacuum of the CFT to

a stack of Nc M2-branes which can be described by M-theory on AdS4 × S7. In the large-Nc limit, the M-theory

reduces to classical supergravity and the AdS/CFT correspondence allows one to relate the correlators of the classical

gravity on AdS4 to those of the CFT living in one lesser spatial dimension. In particular, the CFT has a set of SO(8)

R-symmetries, which map to the symmetries of the sphere S7 via the holographic correspondence. The R-symmetries

can be thought of as rotations amongst the N = 8 supercharges, which get mapped to rotations of the 7-sphere in

the dual theory.

The correlators of the 28 =
(
8
2

)
R-currents {Ja=1,...,28

µ } are entirely encoded in two functions, ΠL,T , due to the

SO(8) symmetry:

Cabµν(ω,k) = δab
[
PLµνΠL(ω, k) + PTµνΠT (ω, k)

]
. (11)

Only the diagonal correlators remain finite allowing us to drop the flavor indices. A further simplification was shown to

exist3 because of the presence of a self-duality which manifests itself as an electric-magnetic duality in the gravitational

description. As a result, the longitudinal and transverse correlators are directly related:

ΠL(w, q)ΠT (w, q) = χ2
0(−w2 + q2) , (12)

where we have introduced the rescaled frequency and momentum:

w =
3ω

4πT
, q =

3k

4πT
. (13)

We have also introduced the charge susceptibility3 χ0 = (4πT/3)g−24 , where g−24 = (
√

2/6π)N
3/2
c is the inverse

coupling squared of the gauge field holographically dual to a given R-current, as discussed in more detail below. It

should be noted that that the frequency and momentum are rescaled by the diffusion constant, D0 = 3/4πT , which

is related to χ0 by the Einstein relation D0χ0 = σ0, where the d.c. R-charge conductivity is σ0 = 1/g24 . By virtue of

the self-duality mentioned above, the a.c. conductivity was remarkably found to be frequency independent3, a fact to

which we return in the next section.

We finally note that as a result of Eq. (12), the charge correlator Ctt, Eq. (4), can be expressed in terms of the

transverse one, ΠT = Cyy:

Ctt(w, q) = − χ2
0q

2

ΠT (w, q)
(14)



7

A. Bulk action for boundary correlators

We introduce the basic holographic tools needed to compute the correlators and refer the reader to some reviews

aimed at condensed matter researchers for further background on this rich topic21,27–29. In the AdS/CFT correspon-

dence, the global currents in the CFT are dual to gauge fields in the bulk. Since the current correlators are diagonal

in the R-charge flavor index, and the bulk gauge coupling tends to zero in the large-Nc limit we can focus on a single

U(1) gauge field Aa(t, x, y, r) instead of considering the full non-abelian SO(8) gauge structure. The coordinate r is

along the extra spatial dimension. This gauge field will be dual to a current operator Jµ(t, x, y) that can be thought to

live on the boundary at r =∞. The AdS/CFT correspondence relates the current correlator to the value of the gauge

field at the boundary of the bulk 3+1D spacetime. One then trades the problem of computing two-point functions in

a correlated CFT with that of solving Maxwell equations for Aµ in a specific curved spacetime. The latter contains a

(planar) black hole and the r-coordinate of the horizon is proportional to the temperature of the boundary CFT. The

spacetime tends to AdS4 as r approaches infinity. The gravitational 3+1D Maxwell-Einstein action used to calculate

the current correlators of the boundary CFT reads3

Sbulk =

∫
d4x
√
−g
[

1

2κ2

(
R+

6

L2

)
− 1

4g24
FabF

ab

]
, (15)

where g is the determinant of the metric gab with Ricci scalar R; F ab is the field strength tensor of the probe U(1)

gauge field Aa, where roman indices run over the bulk spacetime components, (t, x, y, r). L is the radius of curvature

of the AdS4 spacetime while the gravitational constant κ2 is related to the coefficient of the two-point correlator of

the stress-energy tensor Tµν of the boundary CFT (this is reviewed in Ref. 30 for e.g.), an analog of the central charge

of CFTs in 1+1D. The gauge coupling constant g24 = 1/σ∞ dictates the infinite-w conductivity.

In the absence of the gauge field, which is here only a probe field used to calculate the linear response, the metric

that solves the gravitational EoM associated with Sbulk is:

ds2 =
r2

L2

(
−f(r)dt2 + dx2 + dy2

)
+
L2dr2

r2f(r)
, (16)

where f(r) = 1− r30/r3. Such a metric describes a spacetime with a planar black hole whose event horizon is located

at r = r0 and singularity at r = 0, and that asymptotically tends to AdS4 as r → ∞. The position of the event

horizon is directly proportional to the temperature of the boundary CFT,

T =
3r0

4πL2
. (17)

As T → 0, the black hole disappears and we are left with pure AdS4, which is holographically dual to the vacuum of

the CFT. The presence of a horizon permits the study of thermal states since the energy that is Hawking radiated

from it “heats up the boundary”. It will be more convenient to use the dimensionless coordinate u = r0/r, in terms

of which Eq. (16) becomes

ds2 =
r20
L2u2

(
−f(u)dt2 + dx2 + dy2

)
+
L2du2

u2f(u)
, f(u) = 1− u3 . (18)

The EoM for the probe gauge field is then the Maxwell equation ∇aF ab = 0, where ∇a denotes a covariant derivative

with respect to the background metric, gab. As we are interested in the current correlator in frequency-momentum

space, we Fourier transform the gauge field:

Aa(t, x, y, u) =

∫
d3k

(2π)3
e−iωt+ik·xAa(ω, kx, ky, u) , (19)

where the coordinate u was left un-transformed since there is no translational invariance in that direction. We shall
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actually solve for the full u-dependence of Aa. We work in the radial gauge Au = 0. Without loss of generality, we

also set the spatial momentum to be along the x-direction, (kx, ky) = (k, 0). As a result of the self-duality described

above, to obtain the full charge response we only need to solve for the transverse correlator Cyy = ΠT . It can be

obtained using the AdS/CFT dictionary:

ΠT (w, q) = −χ0
∂uAy
Ay

∣∣∣∣
u=0

, (20)

where Ay is the transverse gauge mode with 3-vector (w, q, 0). The explicit EoM for Ay is3

A′′y +
f ′

f
A′y +

w2 − q2f
f2

Ay = 0 (21)

where primes denote u-derivatives. Note that we are using the rescaling introduced above for the frequency and

momentum, Eq. (13). To obtain the retarded correlator, we apply an in-falling boundary condition for the waves at

the horizon and solve the equation numerically3,4,10.

In the next section, we examine the frequency-momentum dependence of these correlators in detail.

B. Familiar behavior of the current correlators

Before looking into the QNMs of the current correlators, which correspond to complex frequencies in the LHP, we

first study their behavior at real frequencies. This has been previously done using the AdS/CFT correspondence in

Ref. 3. We briefly review the results and make some new observations.

The numerical solution can be found in Fig. 1, where the real and imaginary parts of Ctt and Cyy are shown in

the (w, q) plane. A salient feature is that the real parts of Ctt and Cyy seem to be mirror images of the imaginary

parts with respect to the w = q line. This is shown more clearly in Fig. 2, where the red dashed lines show the

real part reflected along the w = q line, −<Cyy(q, w). The agreement is excellent away from the region w ∼ q.

Further, the real parts of both Ctt and Cyy are finite mainly in the region q > w, while the imaginary parts have

support mostly in the complementary region, w > q. We note that the above properties, that are only approximately

true here, are exactly satisfied by the zero temperature Lorentz invariant correlators, Cyy = ΠT = −σ∞
√
−ω2 + k2

and Ctt = k2σ∞/
√
−ω2 + k2. In fact, the numerical solution for ΠT not only closely resembles

√
−ω2 + k2 but

the quantitative agreement is excellent away from the region ω ∼ q, as is shown in Fig. 2. As expected, the Lorentz

invariant form is a better match at frequencies and momenta greater than the temperature: for e.g., the hydrodynamic

limit clearly deviates from Lorentz invariance, namely ΠT ∼ iw− q2. Nonetheless, we note that the zero temperature

form and the finite-T transverse correlator are exactly equal at all frequencies at zero momentum:3 ΠT (w, 0) = −χ0iw.

Similarly, the agreement between the R-charge correlator Ctt and the T = 0 form is also good except in the region

w ∼ q, where the latter has a square root divergence while the former has a finite peak. The height of the peak grows

with momentum thus approaching the T = 0 form. It should be again noted that it is not only the large w � q region

where the agreement is excellent: when w < q, Ctt decays very rapidly to zero, the more so as q grows.

We have seen that the finite temperature R-current correlators bear a strong imprint from Lorentz invariance. It

is thus not unreasonable to interpret them as “smoothed” versions of the zero temperature relativistic forms. For

example they show very similar behavior under the exchange of w and q, and a similar distribution of spectral weight.

As we will see below, the branch cuts of the T = 0 forms can be argued to transform into the infinite sequence of

poles and zeros present at finite temperature, the QNMs.

C. Dispersing quasinormal modes

A deeper insight into the physics encoded in the current correlators can be gained by examining their behavior

in the complex frequency plane. The finite momentum correlators are meromorphic functions with a discrete set of
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(a) <Ctt/q2 (b) =Ctt/q2

(c) −<Cyy (d) =Cyy

FIG. 1. Frequency and momentum dependence of the longitudinal and transverse R-current correlators, Ctt and Cyy, respec-
tively, normalized by −χ0. Note the reflection property under exchange of w and q, a remnant from the Lorentz invariant
T = 0 form.

2 4 6 8 10
w

1

2

3

4

5 Á @CyyHw,qLD
-Â@CyyHq,wLD

Á -w2 + q2

FIG. 2. Comparison of =Cyy(w, q) with the zero temperature form
√
−w2 + q2. From left to right: q = 0, 2, 4, 6, 8. The plots of

Cyy are in units of −χ0. The plot of −<Cyy(q, w) (note the arguments are interchanged) illustrates the “reflection property”.

poles and zeros in the LHP. These correspond to certain QNMs of the black hole in the dual gravitational description.

To some extent they replace the quasiparticle excitations of weakly interacting theories, which are clearly lacking

for the N = 8 correlated CFT of interest. In the following we discuss how these QNMs disperse as a function of

momentum, and how this can help quantify hydrodynamic-to-relativistic crossovers. The essential features of the

QNM spectrum have been identified in previous works31,32. Our analysis not only corroborates these results but

we make further new observations. This will also serve as a comparison ground for Section IV, where we study

more general holographic actions. We also mention that Refs. 33 (3+1D) and 34, 35 (2+1D) have studied closely

related phenomena in holographic models for doped CFTs at finite temperature, and have made connections between

hydrodynamic-to-collisionless crossovers and transitions in the QNM spectrum.

We recall that the poles and zeros of the transverse correlation function Cyy(w, q) = ΠT determine the entire
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FIG. 3. Poles (crosses) and zeros (circles) in the lower-half complex frequency plane of Ctt = −χ2q2/ΠT (w, q), the R-charge
density correlation function of theN = 8 supersymmetric Yang-Mills CFT. The positions of the poles and zeros are interchanged
for Cyy = ΠT .

meromorphic structure of the current correlators because of the EM duality enforcing ΠL = χ2
0(−w2 + q2)/ΠT . From

Eq. (20), which states that ΠT = −χ0∂uAy(u = 0)/Ay(u = 0), we see that the frequencies and momenta at which

Ay(u = 0) vanishes correspond to the poles of ΠT (w, q). Equivalently, the zeros of ∂uAy(u = 0) give the zeros of ΠT .

EM duality then gives the poles and zeros for Ctt(w, q) ∝ 1/ΠT , as the zeros and poles of ΠT , respectively. The low

lying poles and zeros can be found using a variety of different methods. Most crudely, one can use the direct numerical

solution to the EoM, but this turns out to be unstable as one probes frequencies deeper in the LHP. Alternatively, in

Appendix B we provide a solution for the correlators in terms of the local Heun function and its derivative. As no

closed-form of its series representation is generally known, and many of its properties are still under study, we were

not able to use it to obtain the QNM spectrum. Notwithstanding, its series representation, for which we give the

recursion relation, can be useful to obtain a solution when the direct solution of the ODE fails. We mainly resort to

a method that focuses on the QNM spectrum specifically. It consists in expanding Ay in a Taylor series in the radial

coordinate u, being careful to impose the correct asymptotics at the horizon, and especially at the UV boundary,

u = 0, where we require Ay to vanish. We then transform the EoM into a homogeneous matrix equation and ask for

values of (w, q) at which it has a solution (by finding the points at which one of the eigenvalues vanishes for e.g.).

These are the locations of the QNMs. For further details, see Ref. 4.

The poles and zeros of Ctt(w, q) are shown in the LHP of frequency in Fig. 3 for six different momenta. At zero

momentum, from the exact solution we know that ΠT (w, 0) = −iχ0w, so that Ctt has a single pole at the origin. This

is the so-called hydrodynamic pole. As momentum is turned on, it disperses quadratically, w = −iq2, as we illustrate

in Fig. 5. This is the hallmark of diffusive behavior.36 The coefficient of −iq2 is precisely 1. Indeed, in terms of the

unscaled variables, the dispersion relation reads ω = −iD0k
2, where D0 = 3/4πT is the charge diffusion constant and

(w, q) = (ω, k) × D0. It is the most important QNM of Ctt as long as it remains bound to the imaginary axis, i.e.

when q ≤ qc = 0.5573187, because in that case it is the QNM with the smallest absolute value of the imaginary part,

hence it gives the correlation function its dominant, i.e. largest, decay time-scale: ∼ 1/T |=wQNM|.
Another important phenomenon occurs at q ∼ 0+: pairs of simple poles and zeros nucleate on the imaginary w-axis
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FIG. 4. General mechanism according to which two poles detach from the imaginary axis. A double pole exists at the
intermediate step. The same mechanism applies to zeros.

in the immediate vicinity of the frequencies

wzip
n = −i3n/2 , (22)

where n is a positive integer. For the unscaled frequency, ω = 4πT/3, these correspond to the negative bosonic

Matsubara frequencies, ωzip
n = −2πnT . As discussed in Appendix B, they correspond to known singular points of the

local Heun function, the special function that solves the EoM for Ay. From Fig. 3, we see that, with the exception of

the special hydrodynamic pole, the nucleation ensures that each pole of Ctt comes with a corresponding partner zero,

which is a pole for the transverse response function Cyy. As the momentum is increased from zero, all these QNMs

“unzip” from the imaginary axis as is shown in Fig. 3. The unzipping procedure follows the simple rule: 2 poles/zeros

join on the imaginary axis to make a double pole/zero, and can subsequently detach. This elementary mechanism,

which is illustrated in Fig. 4, is strongly constrained by time-reversal symmetry, which requires the poles and zeros to

be distributed symmetrically about the imaginary axis. A related important property of the zeros and poles is their

ordering (according to their norm): 2 consecutive poles are followed by 2 consecutive zeros, seemingly ad infinitum.

We note that a double pole/zero is a superposition of 2 simple poles/zeros and as such respects the ordering property.

In Appendix A, we substantiate the claim according to which double poles or zeros, and not higher order ones, occur

in the unzipping process. We have observed4 the same “unzipping” phenomenon in the study of the QNMs of the

conductivity in the four-derivative holographic model which we discuss below. In that case, the so-called γ-coupling

plays a role analogous to momentum here. We indeed expect such a phenomenon to be quite general as the poles and

zeros must be created/destroyed in pairs.

We observe that it is not only the hydrodynamic QNM that disperses quadratically with momentum but all the

zeros and poles do as well, for sufficiently small q. Numerical evidence for this is presented in Fig. 12 in Appendix A.

Here the smallness condition requires the pole-zero pair emanating from a given frequency wzip
n to be bound to the

imaginary axis. The “dispersion relation” for a pair associated with wzip
n>0 is:

w = wzip
n ± iαnq2 , q � 1 , (23)

where αn > 0, and α0 = 1 as stated above. We have found that the dispersion coefficients increase exponentially with

n to good accuracy for n ≥ 2: αn ≈ a1e
a2n, where (a1, a2) ≈ (0.27, 1.7). This leads to the “unzipping” process to

occur exponentially fast as momentum is increased from zero so that the QNMs acquire a finite real part very rapidly,

as can be observed in Fig. 3.

1. Hydrodynamic-to-relativistic crossover

The motion of the QNMs can be used to identify the crossover from hydrodynamic-like behavior to a relativistic

one. (Note that we use the designation “relativistic” instead of “collision-less”, which is sometimes employed, because

the latter could suggest the presence of well-defined quasiparticles interacting with each other whereas such a picture

does not hold for the strongly correlated theories we describe.) Let us examine the charge density correlator Ctt. For

fixed momentum q, −=Ctt/q2 has a peak at a frequency wmax(q), as is illustrated in Fig. 1(b). It was previously
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FIG. 5. Hydrodynamic-to-relativistic crossover. Momentum dispersion of the position of the peak of Ctt(w, q), wmax(q), and
the norm of the diffusive QNM, wqnm(q). A quadratic hydrodynamic scaling is seen at small q (as a guide, the thin blue line
is q2), while a linear relativistic scaling emerges at large q. The vertical lines at q = 0.339 and q = 0.557 signal momenta at
which pairs of QNMs detach from the imaginary axis. The second one is where the diffusive QNM detaches.

observed3 that wmax(q) ∼ q2 at small momentum q � 1, while it scales linearly for q � 1, see Fig. 5. This signals

a crossover from a hydrodynamic behavior at small q to a relativistic one at large q. We observe that this crossover

corresponds to sharp transitions in the QNM configuration. Namely, from Fig. 5 we find that when the momentum

reaches q ≈ 0.33, the location of the peak starts to noticeably deviate in excess from q2. In the LHP, this actually

corresponds to the point where a pair of zero QNMs detaches from the imaginary axis, which occurs at q = 0.339328.

Next, the scaling for wmax(q) has an inflection point near q ≈ 0.6 after which it rapidly becomes linear. Now, this

can be put in correspondence with the momentum at which the diffusive QNM detaches itself from the imaginary

axis, which occurs at q = 0.5573187. We further find that the value of wmax(q) agrees very well with the norm of the

lowest lying QNM away from the transition region, q ≈ 0.557, as Fig. 5 testifies.

Again, just as the diffusive scaling q2 held true for all the QNMs at sufficiently small momentum, so does the linear

scaling for q > 1. Indeed, the absolute value of the real part of the QNMs grows linearly with increasing momentum,

as expected for the low temperature excitations of a CFT. Moreover, the imaginary part of all the modes approaches

zero; we illustrate this for the one closest to the real axis in Fig. 13. In Appendix A, we discuss the rate at which this

happens as a function of q, which for the mode closest to the real axis seems to occur slower than 1/q1/4. Nevertheless,

the lifetime (the inverse of the imaginary part), becomes much less than the excitation energy (real part) at large

momenta, and we can thus interpret the QNMs as quasiparticle-like. We also remark that the distance or spacing

between theses QNMs decreases as q grows. It is thus suggestive that the QNMs evolve towards the formation of

branch cuts, which exist at T = 0 due to the form Ctt ∝ 1/
√
−w2 + q2. It should be noted that the QNM spectrum

has poles closest to the real axis, and these would precisely become the branch poles at zero temperature.

IV. GENERAL RESPONSE: BEYOND EINSTEIN-MAXWELL

We now turn to holographic models which do not possess EM duality, and as such have independent transverse

and longitudinal responses, as is expected for generic CFTs. The role of four-derivative terms in the gravitational

action on the charge response was previously considered9,10 in an effective field theory spirit. The corresponding

terms were considered at finite, non-perturbative coupling, in which case the resulting action cannot be interpreted

as describing a precise deformation of the original N = 8 Yang-Mills gauge theory. One expects that at finite t’Hooft

coupling, λ, corrections to the λ = ∞ limit will include higher-derivative corrections in the gravity side, such as the

one we consider. However, considering finite 4-derivative couplings in that context would also entail the need to look

at higher order terms as well, potentially an infinite tower of them. We adopt an effective approach, considering a

truncated action with phenomenological couplings parametrizing all symmetry-allowed terms with a fixed number of

derivatives. Based on symmetry, and comparisons with calculations on the CFT side4, we expect this approach to
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capture some salient properties of the correlators.

It was found that in order to observe non-trivial effects on the correlation function of a single U(1)-current, the

only37 four-derivative term that needs to be added to the Einstein-Maxwell theory studied in the previous section,

Eq. (15), while preserving time-reversal is

−
∫
d4x
√
−g γL

2

g24
CabcdFabFcd , (24)

where C is the conformal Weyl tensor, the traceless part of the Riemann tensor, and γ a dimensionless coupling that

was argued to be bounded to |γ| ≤ 1/12 (we refer to Ref. 10 and references therein for a detailed discussion/derivation

of the bounds). It was shown that such a term can lead to non-trivial and generic behavior of the conductivity in

contrast to the γ = 0 frequency-independence. In particular, when γ > 0 (< 0) the frequency dependent charge

conductivity is particle-like (vortex-like), with the real part showing a peak (valley) near zero frequency. As the Weyl

tensor vanishes in pure AdS, this term disappears in the T → 0 limit, and will thus not affect the correlators in the

relativistic limit of ω, k � T . For instance, the T = 0 conductivity σ∞ = 1/g24 is independent of γ, taking the same

value as in the γ = 0 theory.

At finite γ, the EM self-duality is absent and an EM duality-transformation leads to a non-trivial action on the

theory, which should manifest itself as S-duality in the boundary CFT. The action on the gravitational theory is as

follows10: one introduces a term 1
2ε
abcdÂa∂bFcd to the Lagrangian, and a functional integral over Âa. εabcd is the

fully antisymmetric tensor. Such an addition leaves the partition function invariant since the gauge field satisfies the

Bianchi identity εabcd∂bFcd = 0. Integrating out the original gauge field yields a new action for Âa, which has field

strength F̂ :

Ŝbulk =

∫
d4x
√
−g
(
− 1

8ĝ24
F̂abX̂

abcdF̂cd

)
, (25)

where the tensor X̂ cd
ab = − 1

4ε
ef

ab (X−1) gh
ef ε cd

gh characterizes the bulk action for the dual gauge field just as X

does for Aa: Xabcd simply gives the original action with the Maxwell term and the additional four-derivative γ-term,

Eq. (24). The conductivity obtained from the EM-dual gravitational description gives rise to a conductivity that is
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the inverse of the original one, σ̂ = 1/σ, where σ is the full complex conductivity. This is analogous to what happens

under particle-vortex duality in the O(2) model for instance. It was shown10 that one can relate the current correlators

of the original and S-dual theories as follows:

ΠL(w, q)Π̂T (w, q) = χ0χ̂0(−w2 + q2) , (26)

Π̂L(w, q)ΠT (w, q) = χ0χ̂0(−w2 + q2) , (27)

where the hats denote the S-dual correlators, and χ0χ̂0 = (4πT/3g24)(4πT/3ĝ24) = (4πT/3)2 since ĝ4 = 1/g4. The

above two relations relate the transverse response of the original theory to the longitudinal response of the S-dual one

and vice-versa. In particular, the poles and zeros of ΠL,T map to the zeros and poles of Π̂T,L, respectively. Further,

all the information is contained in the two transverse correlators ΠT and Π̂T , which we found the easiest to compute

given the similarity between the EoMs of Ay and its EM dual, Ây. The modified Maxwell equations that we need to

solve are ∇b(XabcdFcd) = ∇b(F ab − 4γL2CabcdFcd) = 0, and ∇b(X̂abcdF̂cd) = 0, and they lead to the following EoMs

for the transverse gauge field and its EM dual10:

A′′y +

(
f ′

f
+
g′

g

)
A′y +

w2 − q2f(1− 8γu3)/g

f2
Ay = 0 , (28)

Â′′y +

(
f ′

f
+
g′

g

)
Â′y +

w2 − q2fg/(1− 8γu3)

f2
Ây = 0 , (29)

where g(u) = 1 + 4γu3. They both reduce to Eq. (21) when γ = 0, in agreement with self-duality.

2. Sign of γ and EM/S-duality

From the observations made above we can draw a connection between the sign of γ and the action of EM duality

on the bulk action, and the corresponding S-duality on the boundary. It was previously noted4,10 that for |γ| � 1,

the action of the EM duality described above is tantamount to changing the sign of γ. (We note that the inversion

of the bulk gauge coupling g4 → g−14 is of little importance to our discussion.) This agrees with the particle- and

vortex-like conductivities at γ > 0 and γ < 0, respectively. For general |γ| ≤ 1/12, this correspondence qualitatively

holds although the quantitative agreement deteriorates with increasing |γ|. Notwithstanding, the conductivity will

invariably have a purely imaginary pole for γ > 0 and a zero when γ’s sign is reversed. We designate these as D-

QNMs due to their purely damped nature as well as their formal relation to the standard Drude form for the optical

conductivity.

A. Finite γ QNMs

Let us first examine the QNMs of Cyy = ΠT (w, q) in the particle-like theory at γ = 1/12, as shown in Fig. 6. At

q = 0, this is precisely the meromorphic structure of the conductivity σ(w) = iD0ΠT (w, 0)/w, with the addition of

the hydrodynamic zero at the origin, which is annihilated by the factor of 1/w in the expression for the conductivity.

An important difference with the γ = 0 case discussed above (Fig. 3) is that even at q = 0, ΠT already has a sequence

of poles and zeros lying away from the imaginary axis. Another important difference is the presence of a pole directly

on the imaginary axis at wD(q = 0) = −i0.821075, this is the D-pole of the conductivity discussed previously4,22.

Such a pole is absent in the γ = 0 self-dual theory and alters the QNM spectrum in an essential way. In particular, it

can lead to a different kind of crossover in the spectrum compared with the γ = 0 theory. However, before discussing

the intermediate crossover regime, q ∼ 1, let us examine what happens at small momenta q � 1.
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B. Hydrodynamic zero and S-dual diffusion constant

As the momentum q is increased from 0, both the hydrodynamic zero and the D-pole will move down the imaginary

axis. Already at q = 2, they are almost on top of each other (Fig. 6), and as momentum is increased they further

move down as a tightly bound pair. At small momentum, the hydrodynamic zero disperses as w = −i0.625q2 while

the D-pole as w = wD(q = 0)− i0.2264q2. It is interesting to note that since the hydrodynamic zero disperses faster

than the D-pole, they will eventually fuse (at which point they momentarily disappear) and then move through each

other. This happens when q ≈ 2.1215, and the crossing or fusing frequency is found to be precisely the first zipping

point wzip
1 = −i3/2. We now take a closer look into the small momentum dispersion of the hydrodynamic zero.

We recall Eq. (10), which says that at small frequencies and momenta, the transverse correlator becomes

Cyy(ω, k) = −σdc(iω − D̂k2) , (30)

where D̂ is the charge diffusion constant of the S-dual theory; σdc = (1 + 4γ)g−24 is the d.c. conductivity10. The

appearance of the S-dual diffusion constant and not D can be seen to arise from Eq. (27), which relates the transverse

response to the inverse longitudinal response of the S-dual theory. As mentioned above, the dispersion of the zero has

yielded D̂/D0 ≈ 0.625, which is close but not equal to D0/D(γ = 1/12) = 0.579, so that D̂ 6= 1/D and the relation

between the diffusion constants (and hence the susceptibilities) is not as simple as that between the d.c. conductivities.

As matter of fact, D̂ is closer to D(γ = −1/12) = 0.585D0.

We can use the extension38,39 of the membrane paradigm40 adapted to our gravitational action to determine the

actual diffusion constant of the S-dual theory. The general idea is to consider a stretched horizon located at rs,

with rs > r0. One then combines the stretching-direction 4-vector nµ = (0, 0, 0, g
1/2
rr rs) with the field strength to

form a conserved current, jµ = nνF
µν . The conservation law for the latter can be recast as a diffusion equation,

∂tj
0 = D̂∂i∂ij

0, where D̂ is the charge diffusion constant we seek. Adapting the expression10 for the diffusion constant

to the dual theory we get

D̂ = D0

√
−g
√
−X̂xtxtX̂xuxu

∣∣∣
u=1

∫ 1

0

du
√
−gX̂tutu

, (31)

where the tensor X̂ describes the action for the dual gauge field, as introduced in Eq. (25). From Ref. 10 we have

X̂ tx
tx = X̂ xu

xu = 1/(1 + 4γu3) and X̂ tu
tu = 1/(1 − 8γu3). Finally, using our AdS-Schwarzchild metric Eq. (18) we

obtain

D̂

D0
=

1− 2γ

1 + 4γ
. (32)

Evaluating this expression at γ = 1/12, we find D̂/D0 = 5/8 = 0.625, in exact agreement with our above numerical

result for the dispersion relation of the hydrodynamic zero of ΠT . We note that the dual diffusion constant takes a

simpler form than in the direct theory, where it reads10

D

D0
=

1 + 4γ

12γ1/3

[
π
√

3− 2
√

3 tan−1
(

1 + γ1/3√
3γ1/3

)
+ ln

(
1− 8γ

(1− 2γ1/3)3

)]
. (33)

One can also apply an Ohm’s law to the stretched horizon9 to recover the S-dual d.c. conductivity:

σ̂dc =
1

ĝ24

√
−g
√
−X̂xtxtX̂xuxu

∣∣∣
u=1

(34)

=
g24

1 + 4γ
. (35)

This agrees with the action of S-duality on the conductivity: σ̂ = 1/σ, valid at all frequencies. Finally, using the
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applies to the correlator under study in panels a, b & c. Case 1 applies to Ctt(γ > 0) for example.

Einstein relation for the S-dual theory, D̂χ̂ = σ̂0, we get a simple expression for the S-dual charge susceptibility:

χ̂ =
4πTg24

3

1

1− 2γ
(36)

C. Hydrodynamic-to-relativistic crossover

If we examine the behavior of the QNMs away from the real axis, we find that the absolute value of their real

part grows with q, where for sufficiently large q, the increase is linear with momentum, just as we found for the

γ = 0 theory. At the same time, the imaginary part of these propagating QNMs tends to zero. We thus recover
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relativistic quasiparticle-like QNMs, and the spectrum evolves towards the asymptotic formation of a pair of branch

cuts emanating from the points w = ±q, characteristic of the T = 0 form
√
−w2 + q2. These phenomena can be

observed in Fig. 6. At large momenta, γ becomes less important and it is not surprising to recover behavior similar

to the γ = 0 case. We now explain how the diffusive behavior discussed above crosses-over to this relativistic regime.

One of the main results of this section is that the presence of a purely damped zero, a D-QNM, at finite γ can lead

to a transition in the QNM spectrum that is distinct from the γ = 0 case presented above. We make our point using

the longitudinal correlator of the S-dual theory: Ĉtt(w, q) ∝ 1/ΠT (w, q) at γ = 1/12. We can thus make a connection

with the QNM spectrum of ΠT given in Fig. 6. We see that the D-pole of ΠT becomes a D-zero of Ĉtt. We plot the

corresponding spectral function for four different momenta in Fig. 8(a). The location of the peak scales quadratically

with momentum for q . 1, while the scaling becomes linear in the opposite limit. This can be seen more clearly in

Fig. 8(b). We also show a sketch of the evolution of the key QNMs of Ĉtt ∝ 1/ΠT in Fig. 8(c), focusing only on

the the QNMs nearest the real axis as they dominate the small frequency response. Contrary to the γ = 0 case,

unzipping cannot occur because a pole and zero cannot conspire to detach from the imaginary axis. In principle, they

could annihilate but it turns out this does not occur. Instead, we see that the linear or relativistic behavior begins

at qc1 ≈ 0.88 where the purely imaginary zero (the D-pole of ΠT ) acquires the same imaginary part as the off-axis

pole, see the dashed oval in Fig. 8(c). A secondary crossover occurs at qc2 ≈ 1.12, where the hydrodynamic pole loses

its role of dominance (smallest norm of the imaginary part) to the off-axis pole. The latter keeps approaching the

real axis while its real part scales linearly with momentum while the purely damped QNMs propagate towards −i∞.

We thus roughly see the general principle at play: the hydrodynamic-to-relativistic crossover occurs when the off-axis

QNM acquires a greater “lifetime”, 1/|=w|, than the hydrodynamic diffusive mode. The presence of the D-mode leads

to an intermediate regime, q1c < q < q2c, where the hydrodynamic QNM dominates yet a linear scaling of wmax(q)

can be seen. In this transitory regime, the response shows a broader peak signaling the competition of two poles as

can be seen in Fig. 8(a). We note that it is only for momenta in excess of q2c that an inflection point for =Ctt appears

at small frequencies, allowing for the strong suppression of spectral weight at w < q as momentum increases.

The example above does not cover all possibilities at finite γ, as there are in fact two cases depending on whether

the D-QNM is a pole or zero, as is illustrated in Fig. 8(d). Case 2 was the subject of the preceding paragraph since

the D-QNM of Ĉtt(γ > 0) is a zero. Generally, case 2 applies to Ctt(γ < 0) and Ĉtt(γ > 0). To see this it suffices to

remember that σ(w) ∝ iwCtt(w, 0)/q2, so that D-QNM of the charge correlator arises from the one of the conductivity,

and that S-duality changes a D-pole into a D-zero and vice-versa. Case 1, on the other hand, agrees with the γ = 0

theory, with the difference that in the latter situation no D-pole exists but a pole nonetheless appears at q > 0 and

plays the same role as the D-one in the crossover. More generally, case 1 applies to Ctt(γ > 0) and Ĉtt(γ < 0). An

important difference outlined in the above discussion is that in case 1 the poles actually detach from the imaginary

axis at some momentum, whereas in case 2 they do not. An additional and related difference is that the two QNMs

move toward each other in case 1, whereas they move in the same direction in case 2. This will actually cause the

crossover to occur earlier, viz. at a smaller momentum, in case 1 versus 2 for a fixed value of γ. For instance, the two

poles of Ctt(γ = 1/12) collide and detach when q = 0.3280, which corresponds to the point at which the quadratic

scaling of the peak, wmax ∼ q2, starts crossing-over to a linear one. Note that this is almost three times less than the

value of the critical momentum of Ĉtt(γ = 1/12) discussed above (case 1), where we it was found that qc ≈ 0.9. The

same conclusion can be drawn for Ĉtt(γ = −1/12), where the unzipping of the hydrodynamic and D-poles occurs at

q = 0.3045.

V. SUM RULES AND CAUSALITY

We discuss certain integral relations involving the current correlators for any momentum; these include the con-

ductivity sum rules discussed previously4,20 as special cases. As is generally the case when one deals with retarded
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correlation functions, the sum rules rely on Kramers-Kronig relations, such as

=ψ(w′) =
1

π
P
∫ ∞
−∞

dw
<ψ(w)

w − w′
w′→0−−−−→ =ψ(0) =

1

π
P
∫ ∞
−∞

dw
<ψ(w)

w
(37)

where ψ is analytic in the UHP and decays sufficiently fast at infinity. The arrow indicates the zero-frequency limit

w′ → 0 of this Hilbert transform relation, which will be our main tool below. One subtlety arises because CFTs have

an abundance of excitations at all energy scales, namely the appearance of UV singularities. These can be dealt with

using the appropriate simple subtractions4,20.

The first relation is ∫ ∞
0

dw
<[iΠT (w, q)− χ0w]

w
= −π

2
ΠT (0, q) , (38)

q → 0 :

∫ ∞
0

dw[<σ(w)− σ∞] = 0 . (39)

We have omitted the principal value in the first equation because the integrand is finite at w = 0 since Π(0, q) is

real; further, the extra factor of 1/2 on the r.h.s. appears because the integral is over the non-negative frequencies

only. The static correlator on the r.h.s. of the first equation is not only real but also positive for q > 0. It vanishes

identically at zero momentum, ΠT (0, 0) = 0, yielding the conductivity sum rule, Eq. (39). The convergence of the

integral in the l.h.s. of Eq. (38) is guaranteed by the fact that the function <[iΠT (w, q)− χ0w]/w decays sufficiently

fast as w → ∞ and q remains finite, namely as 1/w2. Note that this is the slowest integer-power decay compatible

with the odd nature of =ΠT . This can be understood by referring to the zero temperature form −=
√
−w2 + q2, to

which the finite temperature correlator tends in the w � q limit. Its asymptotic expansion is −w+ q2/2w+O(w−3),

in accordance with our above claim for the decay of the integrand. We have numerically verified that the coefficient

of the subleading term, q2/2, matches the behavior of the full solution. It should be noted that the scaling for q = 0

is generically different. When γ = 0 for instance, the spectral function does not have subleading terms as it scales

exactly linearly. For finite γ, we have numerically found that the subleading term decays faster than w−2, although

we cannot at this time soundly establish the precise power.

We now discuss the basic physics underlying the conductivity sum rule Eq. (39). As we just saw, the reasons

underlying the Kramers-Kronig relation, Eq. (38), are 1) the causal structure of the correlation function (analyticity in

the UHP of frequency) and 2) the sufficiently fast decay of the integrand at large frequencies essentially due to Lorentz

invariance. It remains to understand why does the r.h.s. of Eq. (38), ∝ ΠT (0, q), vanish at zero momentum, leading the

conductivity sum rule. One way to see this is to recall that the conductivity σ(w) = iΠ(w, 0)D0/w of the CFT is finite

in the d.c. limit due to the particle-hole or charge-conjugation symmetry. As such, ΠT (w, 0) ∝ −iw, i.e. it must vanish

at zero frequency. Now, can we also make an argument that relies purely on the holographic bulk? We argue to the

positive: the sum rule is a manifestation of gauge invariance of the bulk gauge field. In the rest of the paragraph, we

explain the argument connecting bulk gauge invariance with the vanishing of the transverse correlator at zero frequency

and momentum, ΠT (0, 0) = 0. We first recall the AdS/CFT relation ΠT (w, q) = −χ0A
′
y(0;w, q)/Ay(0;w, q), where

primes denote u-derivatives. So that ΠT (0, 0) = 0 is equivalent to A′y(0; 0, 0) = 0, where we have used the fact that

Ay remains finite in the limit under consideration. This follows from the existence of a well-behaved hydrodynamic

limit for ΠT . Further, A′y vanishes in the near-horizon region in the limit of vanishing frequency and momentum as is

shown at the end of the paragraph. The EoM for Ay reads A′′y + p1(u)A′y + p2(u)Ay = 0, where crucially p2 = 0 when

w = q = 0 since by gauge invariance terms without derivatives must vanish (a mass is not allowed). The resulting

EoM without p2Ay then simply propagates the property A′y|w=q=0 = 0 all the way to the UV boundary at u = 0, and

this proves that A′y(0; 0, 0) = ΠT (0, 0) = 0. Gauge invariance of the bulk gauge field was essential in the argument.

We now prove our claim according to which A′y vanishes in the near-boundary region when w, q → 0. Near the horizon

u = 1 one needs to apply an in-falling boundary condition to solve for the retarded ΠT : Ay(u;w, q) = (1−u)−iw/3F (u)

as u → 1, where F is analytic in the vicinity of the horizon and we have the freedom to set F (1) = 1. Taking a

derivative of Ay gives: A′y(1 + ε;w, 0) = −iw3 (ε−1 + e1)(−ε)−iw/3, with ε = 0+ so that u = 1 + ε is just outside of the
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FIG. 9. Verification of sum rule Eq. (38) for γ = 1/12. The dots correspond to the absolute value of the integral on the l.h.s.
of Eq. (38), while the two lines (which cannot be distinguished here) to the static correlator on the r.h.s. of Eq. (38) and its
almost exact analytical form.

horizon; e1 is a finite number coming from F ′(1). We have used the fact that F ′(1) vanishes linearly with w when

q = 0, which is readily seen to rely on the vanishing of p2 at w = q = 0 as guaranteed by gauge invariance41. Finally

taking the limit w → 0 leads to the desired property. We note that at finite momentum, both F ′(1) and the term

p2(u)Ay remain finite as w → 0. This will lead to ΠT (0, q) being finite for q > 0, and we now turn to study that

function in more detail.

We have found that the static correlator obeys the following form to excellent accuracy at all momenta:

ΠT (0, q) = χ0q tanh

(
χ̂0

χ̂
q

)
(40)

where χ̂/χ̂0 = 1/(1− 2γ) is the normalized S-dual charge susceptibility. Not only is the asymptotic behavior exactly

captured by that function, the agreement in the crossover region is also excellent, as is shown in Fig. 9. We note that

at small momenta the correlator vanishes quadratically, ΠT (0, q) = (χ0χ̂0/χ̂)q2 = χDD̂k2, in agreement with the

hydrodynamic form Eq. (30), which also guarantees the conductivity sum rule since ΠT (0, 0) = 0. At momenta greater

than the temperature, the behavior crosses-over rapidly to a linear scaling independent of the S-dual susceptibility.

We note that precisely the same form arises for the IR fixed point of the vector O(N) model in the N →∞ limit, as

will be discussed in the next section (Fig. 11 and Eq. (47)).

The second relation is obtained by taking the S-dual of Eq. (38), with the replacement ΠT (w, q)→ Π̂T (w, q):∫ ∞
0

dw
<[iΠ̂T (w, q)− χ̂0w]

w
= −π

2
Π̂T (0, q) , (41)

q → 0 :

∫ ∞
0

dw[<σ̂(w)− σ̂∞] = 0 . (42)

In the limit of zero momentum, the S-dual relation Eq. (41) yields the sum rule for the dual conductivity4, σ̂(w) =

1/σ(w). The same physical arguments for the sum rule given above apply here as well. Also, we again find an almost

exact expression for the static correlator appearing in the r.h.s. of the integral relation: Π̂T (0, q) ≈ χ̂0q tanh
(
χ0

χ q
)

.

This is the S-dual analog of Eq. (40).

One can also examine another relation that is related to the sum rule for the S-dual conductivity:∫ ∞
0

dw

{
<
[

w

iΠT (w, q)

]
− 1

χ0

}
= 0 (43)

Its proof again follows from the Kramers-Kronig relation Eq. (37) with ψ(w) = [w2/iΠT (w, q)]−w/χ0, which vanishes

at zero frequency for all momenta, ψ(0) = 0, yielding a momentum independent r.h.s to the above equation, contrary
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FIG. 10. Quantum critical current correlators of the vector O(N) model in the N →∞ limit. They have been normalized by
Tσ∞, with σ∞ = 1/16. From left to right: q = 1.5 (solid), 3 (dashed), 6 (dotted).

to Eq. (38) and Eq. (41). The integrand of Eq. (43) again vanishes as 1/w2 as can be easily seen using the asymptotic

expansion given above: =ΠT ∝ −w+ q2/2w+O(w−3). The real part decays faster and can be safely neglected here.

Note that Eq. (43) reduces to the sum rule for the S-dual conductivity, Eq. (42) in the q → 0 limit. Again, the S-dual

version also holds and we can use it to establish a sum rule for the spectral density of the charge correlator:∫ ∞
0

dw

{
−=

[
wD2

0Ctt(w, q)

q2

]
− 1

χ̂0

}
= 0 (44)

Finally, we note that although we focused on the zero frequency limit of the Kramers-Kronig relations, they can be

used to determine the real part of all the retarded correlators for all frequencies and momenta using the imaginary

part, and vice-versa.

VI. COMPARISON WITH THE O(N) MODEL

In this section, we compare the current correlators of the vector O(N) NLσM in 2+1D obtained in the large-N limit

with the holographic results. It is important to note that we do not claim that such a model has a well-defined classical

(super)gravity description as is the case for the N = 8 gauge theory discussed above. This is indeed probably not the

case. Rather, we point out that the holographic results capture some essential properties of the current correlators

and provide a useful platform to compare with generic CFTs.

The Lagrangian for the vector O(N) NLσM is

L =
1

2
∂µϕ

a(x)∂µϕa(x) , (45)

with the constraint ϕaϕa = N/g, a = 1, . . . , N and g is the bare coupling. At large but finite N , the model has

a well-known weakly interacting conformal IR fixed point (for a review and references, see Ref. 1), equivalent to

the Wilson-Fisher fixed point accessed by perturbative RG. We study the two-point functions of the conserved
(
N
2

)
currents near the fixed point, mainly in the N →∞ limit. Just as in the case of the SO(8) R-currents, the correlators

are flavor-diagonal and we can focus on a single flavor. In the N → ∞ limit, the fixed point is free, yet shows

non-trivial dynamics at finite temperature, see Fig. 10 and the discussion below. The spatial current correlators can

be computed using the one-loop polarization functions in the N →∞ limit (normalized such that σ∞ = 1/16):

Cij(ω,k) =

∫
d2p

(2π)2
pipj

4εpεp+k

{
1 + n(εp) + n(εp+k)

−εp+k − εp + ω + i0+
− 1 + n(εp) + n(εp+k)

εp+k + εp + ω + i0+

+
n(εp+k)− n(εp)

εp+k − εp + ω + i0+
+

n(εp)− n(εp+k)

εp − εp+k + ω + i0+
−<(k → 0)

}
, (46)
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where εk =
√
k2 +m2 and n(z) = 1/(ez/T − 1) is the Bose-Einstein distribution. The “mass” parameter is m = ΘT

with Θ = 2 ln[(1 +
√

5)/2] ≈ 0.96; it corresponds to the temperature-generated mass of the quasiparticles11. It is

simply the inverse correlation length, and must vanish at the QC point. The subtraction in Eq. (46) is necessary to

regulate the UV divergence of the real part. In this section, we use the rescaling (w, q) = (ω, k)/T , without the factor

of 3/4π appearing in the holographic analysis. Just as in the rest of the paper, the momentum is assumed to lie along

the x-direction.

Let us first examine the transverse correlator Cyy. It can be numerically evaluated and the result for the imaginary

part is shown in Fig. 10(a). The behavior of Cyy(w, q) = ΠT qualitatively resembles what has been obtained holo-

graphically, the more so in the large-w, q limit where both the vector O(N) and holographic results approach the zero

temperature form
√
−w2 + q2. However, one important “pathology” of the N =∞ limit is the non-meromorphicity

of the finite-temperature correlators, which occurs even at finite momentum. Indeed, =Cyy vanishes identically for

k ≤ |ω| ≤
√

4m2 + k2. The lack of spectral weight in this region is of kinematical origin: the relativistic quasiparticles

can absorb/emit energy ω and momentum k as long as ω ≤ k, or they can be created in pairs when ω >
√

(2m)2 + k2,

the latter being the minimal energy for two quasiparticles of mass m carrying total momentum k. Such constraints

become irrelevant as interactions appear at O(1/N) and the spectral weight will thus become finite throughout when

N <∞, smoothing out the non-analytic behavior present at N =∞. Although not shown here, the real part of Cyy
remains finite in the region k ≤ |ω| ≤

√
4m2 + k2, although non-analytic dependence appears at the upper boundary

of that region. In fact, we find that there is a logarithmic branch cut that appears at ω? =
√

(2m)2 + k2, and at −ω?.
We have previously identified4,22 its zero-momentum manifestation in the conductivity, where in addition ω? = 2m

becomes a zero of σ = iΠT (ω, 0)/ω. At finite but small momentum, k � T , the branch point disperses quadratically

away from its k = 0 position, ω? − 2m = k2/(4m), and eventually acquires a relativistic dispersion ω? = k, when

k � T . In terms of the real-frequency behavior, both the field theory and holography yield the same small- and

large-w asymptotics: =Cyy ∝ ω in both limits, in agreement with the oddness requirement and dimension of Cµν .

As momentum tends to zero, the slope of the linear part at small frequencies increases yielding a peak of increasing

height for =Cyy/w: this is the formation of the delta function peak of the conductivity obtained in the q = 0 limit.

We have indeed verified that at sufficiently small q, the peak rapidly saturates the weight of the q = 0 delta function.

Such behavior is naturally absent in the holographic analysis, where the conductivity of the interacting boundary

CFT remains finite in the d.c. limit.

We now examine the spectral density of the charge density auto-correlator, =Ctt, which is plotted in Fig. 10(b). Just

as =Cyy, it vanishes in the kinematically forbidden region, but now shows a jump discontinuity at the pair-production

threshold, ±ω? = ±
√

(2m)2 + k2. This leads to a logarithmic divergence of the real part at ±ω?. The function

=Ctt(w, q) is of course w-odd, but instead of vanishing linearly at small frequencies as required by hydrodynamics, it

diverges as 1/w (in the limit of q = 0, a double instead of a single pole emerges at the origin so that the real part

of the conductivity acquires a delta function). The finite-momentum pole at w = 0 arises because when N = ∞,

diffusion does not take place as the theory is free of interactions: the conserved charge must propagate ballistically at

all times. At order 1/N , interactions between the quasiparticles appear and as a consequence so does charge diffusion.

The precise value of the large-N diffusion constant, D = 0.249N/T , was deduced1 from the Einstein relation and

knowledge of the charge susceptibility1 and d.c. conductivity22, which are respectively (to leading order in 1/N):

χ =
√

5ΘT/2π and σdc = 0.085N . The divergence of the diffusion constant in the N →∞ limit is in agreement with

its interpretation as a scattering time between the critical quasiparticles. In the relativistic limit at large momentum,

the spectral function =Ctt gains resemblance with the T = 0 form, 1/
√
−w2 + q2, having essentially no weight in the

region w < q (except for the w = 0 pole) and develops a sharp peak at w ∼ q.

We have seen that at N =∞, the current correlators show branch cuts in the LHP due to the absence of interactions.

At finite N , we expect the branch points to disappear from the real axis and the spectral weight to spread over all

frequencies in line with general expectations, and with the holographic results. One possibility is that the branch

cuts split into a discrete sequence of poles and zeros, in analogy with the QNMs that have been discussed above. One

such QNM was already found4,22 at O(1/N), the D-pole of the transverse correlator, which leads to a pole in the

small-frequency conductivity. Another possibility is that the branch cuts move away from the real axis in the LHP.
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FIG. 11. Verification of sum rule Eq. (38) for the quantum critical vector O(N) model in the N → ∞ limit. Note the
resemblance with the holographic result, Fig. 9.

A. Sum rule

The N = ∞ theory satisfies the sum rule Eq. (38), where the static correlator on the r.h.s., ΠT (0, q), can be

numerically computed and has precisely the same form as what was found for the holographic models:

ΠT (0, q) = Tσ∞q tanh(αq) , (47)

where α ≈ 0.466, as we show in Fig. 11. The simplified expression used to calculated the static correlator can be

found in Appendix C of Ref. 4. We note that α differs by less than one percent from T/(2πχ), where χ =
√

5ΘT/2π

as given above. The q = 0 version, Eq. (39), i.e. the sum rule for the conductivity was shown to hold previously by

us4. Just as in the holographic case, we find that −(=ΠT /w) − σ∞ decays as 1/w2 at large frequencies in line with

the asymptotic Lorentz invariant form.

VII. CONCLUSIONS

This paper has described details of the current correlators of CFT3s represented holographically by the Einstein-

Maxwell action in Eq. (15), augmented by the Weyl term in Eq. (24). Such an approach has been argued10 to be the

most general representation of the two-point correlator unto 4 derivatives in the holographic theory. In our previous

paper4 we demonstrated that the poles and zeros of the response function identified the quasinormal modes of the

holographic theory, and led to a simple and complete description of the frequency-dependent conductivity. These

quasinormal modes replace the quasiparticle excitations of a traditional Boltzmann analysis of quantum transport.

The present paper has extended such an analysis to spatially modulated response functions, which is linked to the

dispersion of the quasinormal modes as a function of momentum.

We refer the reader back to Section I A for a more detailed summary of our results, and focus on the main points

here. We have found that the thermal current correlators obtained holographically bear a strong imprint of the T = 0

Lorentz invariance, as one can see from the asymptotics and the behavior under exchange of momentum and frequency.

Crucially, their QNM spectra were seen to be a useful tool in understanding the nature of the excitation modes of

the CFT. For instance, sharp transitions in the QNM distribution were found to correspond to hydrodynamic-to-

relativistic crossovers in the real-frequency response functions. In this respect, it was found that the presence of

the four-derivative Weyl term can lead to distinct behavior. The two possible cases for the crossover mechanism are

epitomized in Fig. 8(d), where in case 1 the hydrodynamic pole and the special purely damped D-pole of the charge

correlator, Ctt, eventually detach from the imaginary axis (Fig. 4), while in case 2, the hydrodynamic pole and D-zero

cannot detach and instead move down the axis. Case 2 applies to γ < 0, while case 1 to γ ≥ 0, which includes the

pure two-derivative theory describing the R-currents, where although the D-QNM is missing at zero momentum, a
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substitute appears for q > 0. It was further shown that S-duality, realized as electric-magnetic duality in the bulk, is

an integral part of the physics, even for the direct theory. We have finally discussed a number of sum rules generalizing

to finite momentum those for conductivity4,20, some of them in excellent agreement with equivalent statements in the

large-N vector O(N) model. A natural connection between the sum rules and gauge invariance in the holographic

bulk was made. It would be interesting to see if such a connection generalizes to other holographic sum rules such as

those derived in Ref. 20.

We conclude our discussion by comparing the holographic description of the quantum-critical conductivity to

quantum Monte Carlo results on the O(2) critical point obtained some time ago.42 The O(2) model has42,43 σ∞ ≈
0.33Q2/h in the ω/T → ∞ limit, where Q is the charge of the bosons. The analytic continuation of imaginary time

Monte Carlo data gave the estimate for the d.c. conductivity at non-zero temperature of42 σ(0) ≈ 0.45Q2/h, which

yields the ratio σ(0)/σ∞ ≈ 1.36. The holographic prediction of the four-derivative theory is10 σ(0)/σ∞ = 1 + 4γ,

along with the bound |γ| ≤ 1/12. Interestingly, the maximum possible holographic value at γ = 1/12 of 1.33 is very

close to the current quantum Monte Carlo estimate. This value of γ is also consistent with considerations30 from

T = 0 multipoint correlators of the CFT3, when computed in a vector large-N expansion of the S-dual conformal

gauge theory. In future work, it would be interesting to obtain additional Monte Carlo data which allow comparison

with the frequency and momentum dependence predicted by the holographic theory.
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Appendix A: Properties of QNMs

In this appendix we discuss various properties of the momentum-dependence of the QNMs of the γ = 0 theory in

more detail.
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FIG. 12. Momentum dispersion of the first 9 members of the tower of purely damped QNMs that propagate towards w = 0.
Their real part vanishes, and we plot the imaginary part relative to the zipping point out of which they emerge at q = 0:
wn−wzip

n = iαnq
2. From bottom to top: n = 1 to 9. The dashed lines are quadratic dispersions with the coefficients satisfying

αn ≈ a1ea2n, (a1, a2) = (0.27, 1.71).
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1. Quadratic dispersion

At γ = 0 and for infinitesimal momentum q, all the QNMs of the current correlators appear on the imaginary axis

at the special zipping frequencies wzip
n = −i3n/2, where n ≥ 0 is an integer. The diffusive pole of Ctt is already

present even at q = 0. Just as the diffusive pole, all the QNMs, i.e. both poles and zeros of Ctt, disperse quadratically

with momentum away from their respective zipping point. This is shown in Fig. 12, where we only show the QNMs

propagating towards zero, wn = wzip
n + iαnq

2, with αn > 0, with 1 ≤ n ≤ 9. The n = 1 upward propagating mode is

a pole of Ctt, n = 2 is a zero, and so forth. The partner QNMs propagating toward −i∞ disperse as wzip
n − iαnq2 and

are thus not shown for clarity. As discussed in the main body, the dispersion coefficients grow exponentially with n.

This can be seen form the dashed lines in Fig. 12. In particular, this exponential growth of the dispersion coefficients

implies that the unzipping process will occur exponentially fast as q is tuned from zero to 0.557, at which point the

last QNMs detach from the imaginary axis.

2. Double poles and zeros

In the main body, we described the generic unzipping process that occurs as a function of momentum. It also

occurs at zero momentum as a function of γ at zero momentum as noted previously4. Here we substantiate the claim

by plotting the charge density spectral function −=Ctt(w, q) as a function of momentum. As q changes from q < qc
to q > qc, a double pole appears directly at qc = 0.5573187. As we are plotting the imaginary part of Ctt not the

norm, the phase structure shows very clearly that we have a double pole at qc, with four lobes, in contrast to single

poles that have only two lobes.

3. Lifetimes

Still at γ = 0, we now take a closer look at the rate at which the imaginary part of the QNM closest to the real axis

approaches zero. We track the imaginary part of the QNM after it detaches from the imaginary axis at momentum qc
as described in the previous subsection. The result is shown in Fig. 13, where we see that the imaginary part vanishes

relatively slowly, slower than 1/q1/4 in the regime we have investigated. We recall that the absolute value of the

imaginary part should correspond to the inverse lifetime of that mode or quasiparticle, while the real part describes

its excitation energy. In contrast, the real part scales linearly with momentum.

Appendix B: Analysis of differential equations

We discuss the underlying structure of the ODEs appearing in the main body, namely those for the transverse

gauge field Ay, and its EM-dual, Ây. This sheds some light on the physics and provides an additional mathematical
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FIG. 14. Formation of a double pole for Ctt(w, q) as a function of q at the intermediate step of the unzipping process. Plots of
−=Ctt are in the LHP w-plane. Left to right: q = 0.5, 0.557, 0.6. Red represents positive values while blue negative ones.

u

(a) γ > 0

u

(b) γ < 0

FIG. 15. Regular singular points (RSPs), excluding the one at ∞, of the EoM of the transverse gauge mode Ay in the complex
u-plane. The 3 on the inner circle correspond to the horizon, and its 2 complex partners. The outer radius (dashed) has radius

1/(4|γ|)1/3. When γ = 0, the outer-radius RSPs disappear and only 3 finite RSPs remain.

handle on the problem.

1. γ = 0: Heun’s equation

Let us first discuss the γ = 0 EoM for Ay(u),

A′′y +
f ′

f
A′y +

w2 − q2f
f2

Ay = 0 , f(u) = 1− u3 . (B1)

It is a Fuchsian ODE, namely it is a linear and homogeneous differential equation with a finite number of singular

points on the Riemann sphere CP 1 = C ∪ {∞}, all of them regular. We are thus including the point at infinity in

our treatment. In terms of the coordinate u = 1/r, this point corresponds to the black hole singularity at r = 0. The

above ODE has 4 regular singular points (RSPs): 1, ζ, ζ2 = ζ∗ and ∞, where ζ = e−i2π/3 so that the first 3 RSPs

are the cubic roots of unity, the zeros of f = 1 − u3, they are shown on the solid circle of Fig. 15. In the same way

that all second order Fuchsian ODEs with 3 RSPs can be mapped to the hypergeometric equation, all the ones with

4 RSPs can be mapped to the so-called Heun equation44,45:

d2H

ds2
+

(
δ1
s

+
δ2
s− 1

+
δ3

s− a

)
dH

ds
+

αβs−Q
s(s− 1)(s− a)

H = 0 (B2)

where δ3 = α+ β − δ1 − δ2 + 1. This equation has RSPs at 0, 1, a,∞. Our original equation can be mapped to this

one via the following simple canonical transformations. First, we perform the linear change of variables:

u = (ζ − 1)s+ 1 . (B3)
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This maps the RSPs as follows: 1→ 0, ζ → 1, ζ2 → −ζ2 =: a and preserves the one at ∞. Second, we define:

Ay = sb1(s− 1)b2(s− a)b3H(s) , (B4)

where the exponents b1, b2, b3 are chosen to remove the terms proportional to 1/s2, 1/(s − 1)2 and 1/(s − a)2,

respectively, that appear in the transformed equation. The algebraic equations for the bi are readily found to be:

b2i +
w2

9
ui = 0 , i = 1, 2, 3 , (B5)

where (u1, u2, u3) = (1, ζ, ζ2) are the RSPs excluding∞. These are precisely the indicial equations of the corresponding

RSPs of the original ODE Eq. (B1); their solutions yield the 2 characteristic exponents associated with each RSP.

This is not so surprising as the indicial equation at ui can be obtained by substituting the power law solution (u−ui)bi
in the ODE Eq. (B1) and solving for bi in the limit where u→ ui. The solutions of Eq. (B5) are bi = ±iwui/3. We

note that Eq. (B5) is not the indicial equation in the new variable s, as the latter equation is transformed and the

corresponding characteristic exponents differ. The transformation Eq. (B4) shifts both characteristic exponents at

each RSP ui by −bi, and the ones associated with the RSP at ∞ by b1 + b2 + b3 = 0.

Fixing the bi as we have just described yields the desired form; it only remains to read off the Heun parameters.

The resulting Heun ODE (and its solutions) are determined by the so-called Riemann P-symbol and the accessory

parameter Q44:

P


0 1 a ∞
0 0 0 α ; s

1− δ1 1− δ2 1− δ3 β

 = P


0 1 −ζ2 ∞
0 0 0 0 ; s

2iw3 2iw3 ζ 2iw3 ζ
2 2

 (B6)

Q = iq2ζ/
√

3 , (B7)

where ζ = e−i2π/3 as defined above. The first row of the Riemann P-symbol contains the RSPs and the other 2 rows

the corresponding characteristic exponents. Since the bi’s determine the characteristic exponents: δi = 1 + 2bi =

1 + 2(±iwui/3), we have the freedom to choose the sign of each bi. We opt for the solutions bi = −iwui/3, motivating

our choice by the in-falling boundary condition at the horizon used in the main body, which requires Ay ∼ (1 − u)b

near u = 1 with b = −iw/3. Thus the choice b1 = b.

We see that the frequency w is the “central” parameter, since it determines 3 of the 4 non-zero characteristic

exponents, the exception being the one at ∞. The momentum q enters only via the accessory parameter Q.

a. Solution

There are 8 = 2 × 4 local solutions to the Heun equation44,45: 2 per RSP. The one corresponding to the RSP

s = 0 and the characteristic exponent 0 is called the local Heun function and denoted by H`(a,Q;α, β, δ1, δ2; s). It is

normalized to 1 at s = 0. Incidentally, amongst the 8 local solutions, this is the one that is relevant for us since the

s = 0 RSP corresponds to the black hole horizon at u = 1, and this is precisely where we apply the in-falling boundary

condition. Interestingly, it is known that when δ1 is a non-positive integer, H` is ill-defined44. Since δ1 = 1− 2iw/3,

this actually occurs at the special zipping frequencies identified in the bulk, wzip
n = −i3n/2, n ∈ Z+. As we discuss



27

below, these correspond to poles of H`. The solution of Eq. (B1) can thus be expressed using H`:

Ay = (1− ζ)−iw/3s−iw/3(1− s)−iwζ/3(1− s/a)−iwζ
2/3

×H`
(
−ζ2, i q

2

√
3

; 0, 2, 1− 2i
w

3
, 1− 2i

wζ

3
; s

)
(B8)

s =
u− 1

ζ − 1
(B9)

where at the horizon, s = 0 = u− 1, F = Ay/(1−u)−iw/3 is normalized to unity. Note the appearance of the variable

u in the normalization condition instead of s.

The local Heun function has a Fuchs-Frobenius series expansion in the disk |s| < 1,

H`(a,Q;α, β, δ1, δ2; s) =
∑∞
j=0 cjs

j , with the coefficients satisfying45

c0 = 1 , c1aδ1 − c0Q = 0 (B10)

Rjcj+1 − (Qj +Q)cj + Pjcj−1 = 0 (B11)

The parameters Pj , Qj , Rj used in the recursion relations are defined as

Pj = (j − 1 + α)(j − 1 + β) (B12)

Qj = j[(j − 1 + δ1)(1 + a) + aδ2 + δ3] (B13)

Rj = a(j + 1)(j + δ1) (B14)

Contrary to its simpler hypergeometric cousins, no closed-form solution for the cj is known in general. Nonetheless,

it can be efficiently implemented and we have explicitly verified that the series solution matches the one obtained by

numerically solving the initial-value problem.

Using Eq. (20), the solution for the transverse correlator Cyy(w, q) = ΠT (w, q) can be thus expressed as

ΠT (w, q)

−χ0
= iw +

ei5π/6√
3

∂sH`(−ζ2, i q
2

√
3
; 0, 2, 1− 2iw3 , 1− 2iwζ3 ; s0)

H`(−ζ2, i q2√
3
; 0, 2, 1− 2iw3 , 1− 2iwζ3 ; s0)

(B15)

where s0 = 1/(1− ζ) = −ei5π/6/
√

3 is the value of s at u = 0.

In special cases, the Heun function can be simplified. For instance, when αβ = Q = 0, the Heun equation looses

its RSP at s = ∞ and is said to be trivial. In our case, this happens when the momentum vanishes, q = 0. It

was previously found3 that the q = 0 EoM for Ay can be analytically solved: Ay = eiwz/3, where the so-called

tortoise coordinate reads z(u) = − ln(1− u)− ζ ln(1− u/ζ)− ζ2 ln(1− u/ζ2) (see Ref. 4 for instance). Equivalently,

Ay = (1− u)b1(1− u/ζ)b2(1− u/ζ2)b3 and the Heun function H` is simply a constant, as can be seen from Eq. (B8),

or directly from the recursion relation given above. In that case, using Eq. (B15) we recover ΠT (w, q) = −iχ0w since

∂sH` = 0. In some other cases, the Heun equation also looses a singularity and can be mapped to the hypergeometric

equation44, for e.g. when δ3 = 0, Q = αβa or when Q = δ1 = 0. For our ODE, this always implies q = 0 and is thus

of no interest.

We make a remark regarding the QNMs of ΠT = −χ0A
′
y(0)/Ay(0). As remarked above, H` in Eq. (B15) has poles

directly at the zipping frequencies wzip
n = −i3n/2, n ≥ 1. These correspond to poles of Ay(0) but not to zeros of ΠT

since they are canceled by the poles of A′y(0), which are given by the poles of the derivative of H`. Thus, only the

zeros of A′y(0), i.e. those of H`, give the QNM poles of ΠT .
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2. γ 6= 0: more singular points

We now consider the Ay-EoM including the 4-derivative term with coupling γ:

A′′y +

(
f ′

f
+
g′

g

)
A′y +

w2 − q2f(1− 8γu3)/g

f2
Ay = 0 , f(u) = 1− u3 . (B16)

The main difference with the γ = 0 equation is the appearance of the term g′/g, where g = 1 + 4γu3. The equation

is again Fuchsian, but when γ is finite and satisfies |γ| < 1/12, it has 3 additional RSPs compared with Eq. (B1), for

a total of 7 RSPs. The new RSPs are the zeros of g(u):

− sgn(γ)

(4|γ|)1/3
(1, ζ, ζ2) =: (v1, v2, v3) (B17)

Thus, they differ from the 3 at γ = 0 by a factor of − sgn(γ)/|γ|1/3. The RSP at ∞ remains. The 6 finite RSPs,

{ui, vi}, are shown in Fig. 15 for both signs of γ.

The additional 3 RSP found at finite γ, however, play a different role from the original 3 finite ones, {ui}3i=1 =

{1, ζ, ζ2}. This is expected on physical grounds: the latter are the horizons of the black hole (u = 1 is the real horizon,

while the other are the “complex horizons”) and as such lead to singularities in the metric. The new ones gained at

finite γ have nothing to do with the metric (the gauge field is in the probe limit) and they only affect the EoM of

the gauge field. This can be seen more mathematically as well: the characteristic exponents of the vi RSPs vanish

identically. Moreover, their presence does not affect those of the ui, which were found to be ±iwui/3. One of the

characteristic exponents of the RSP at∞ changes however from 2 to 5, as must be the case because of Fuch’s relation:∑
α(ρ1(α) + ρ2(α)− 1) = −2, where α sums over all RSPs and the ρi are the 2 exponents associated with each point.

Finally, we note that the EoM for the S-dual gauge field Ây, Eq. (29), has 3 additional RSPs, for a total of 10

RSPs. The new ones are the zeros of 1 − 8γu3: (v̂1, v̂2, v̂3) = sgn(γ)
(8|γ|)1/3 (u1, u2, u3). Just like the vi, these also have

frequency and momentum independent characteristic exponents, in this case {0, 1} instead of {0, 0} for the vi. From

Fuch’s relation (mentioned in the previous paragraph), we see that the presence of these RSPs does not alter the

characteristic exponents of the RSP at ∞, making them even more innocuous than the vi. Indeed, we note that they

have the same characteristic exponents as a regular point.
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