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We propose a new approach to identify and rationalize the contribution of core electron polariza-
tion to dielectric screening, based on ab initio calculations of the dielectric matrix in its eigenpotential
basis. We also present calculations of phonon frequencies, dielectric constants and quasiparticle en-
ergies of several systems, and we discuss the quantitative effect of including core polarization. Our
findings illustrate efficient ways of approximating the spectral decomposition of dielectric matrices
used, e.g. in many body perturbation theory and dielectric constant calculations, with substantial
computational gains for large systems composed of heavy atoms.
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I. INTRODUCTION

Understanding the microscopic origin of dielectric
screening1–4 is central to rationalizing vibrational
and excited state properties of condensed and molec-
ular systems, and ultimately their chemical bonding.
Many calculations of solids, liquids and molecules
appearing in the last several decades were based on
a partitioning of the interacting electrons into core
and valence: the former are assumed to be in the
same configuration as in the constituent atoms, and
the latter participate in the dielectric screening in
the condensed and molecular phases. The extent to
which core polarization affects electronic screening
and thus physical properties such as phonon frequen-
cies, dielectric constants and electronic excitation
spectra was seldom analyzed. Few theoretical stud-
ies addressed core polarization effects on quasipar-
ticle (QP) energies5–8, which were found more im-
portant, both qualitatively and quantitatively, than
previously thought. It is therefore of interest to un-
derstand and analyze the origin of such effects and
establish modeling frameworks to take them into ac-
count in a consistent and accurate manner.
Shirley et al.5,6 pointed out the importance of

including 3d electrons in the valence partition of
certain elemental semiconductors, in order to ob-
tain accurate values of their band gaps within many
body perturbation theory (MBPT) at the non self-
consistent GW9,10 level, and they proposed to use
pseudopotentials (PPs) that explicitly account for
core polarization. Similar results were reported in
Refs. 11–13 for CdS. However, Ku et al.14 later ob-
served that within self-consistent GW15, the inclu-
sion of polarization from 3d electrons does not affect,
e.g. the computed band gap of Ge.
Recently Gómez-Abal et al.7 and Li et al.16 com-

puted the electronic properties of several crystalline
solids and showed that in GW calculations there are

substantial differences in the matrix elements of the
exchange part of the self-energy(Σx) and exchange-
correlation potential (Vxc), depending on the choice
of the core-valence partition. These findings are
consistent with earlier results of Marini et al.8 who
showed that exchange-correlation contributions to
the self-energy arising from the 3s and 3p semi-core
levels of Cu should be taken into account to obtain a
QP band structure in agreement with experiments.
Other studies7,16 also noted that for systems with-
out d electrons, the most substantial differences in
band gaps, between all-electron (AE) and PP calcu-
lations, arose from the correlation part of the self-
energy (Σc), as there is an almost complete cancel-
lation between the matrix elements of Σx and Vxc.
Umari et al.17 analyzed the effect of semi-core states
on the electronic structure of the metal phthalocya-
nine molecule and noted that Zn 3s and 3p states
need to be included in the valence, to accurately de-
scribe photoemission spectra.

In this paper we propose a new approach for
identifying and analyzing the contribution of core
electron polarization to dielectric screening, based
on the spectral decomposition of the dielectric
matrix18,19. We present ab initio calculations of di-
electric band structures (DBS), inverse participation
ratios (IPR), density of states of the dielectric ma-
trix (DOS), phonon frequencies, dielectric constants
and quasi-particle (QP) gaps of several systems, and
we discuss the quantitative effect of including core
polarization.

The rest of the paper is organized as follows. We
describe the method to compute the dielectric spec-
tra for solids and molecules in Sec. II. In Sec. III
we present our results for the DBS and IPR analy-
sis of solids, followed by the discussion of DOS and
IPR of molecules in Sec. IV. Sec. V discusses rela-
tionship between the DBS, phonons, and nonlinear
core corrections, which is followed by results of core-



polarization effects on QP energies (Sec. VI). We
summarize our findings in Sec. VII.

II. THEORETICAL BACKGROUND

In the linear regime, the static dielectric screening
is expressed by the function ǫ(r, r′), which relates the
external potential applied to a system of electrons,
Vext, and the resulting screened potential:

Vscr(r) =

∫
ǫ(r, r′)−1Vext(r

′)dr′. (1)

We will refer to ǫ as the dielectric matrix (DM)
and we restrict our analysis to DMs obtained within
the random phase approximation (RPA)20,21, al-
though the formalism presented here is general and
may be applied to dielectric screening obtained at
higher levels of theory. Within RPA, the DM is de-
fined as

ǫ = 1− υc · χ
0, (2)

where υc is the Coulomb potential and χ0 is the
non-interacting density response function which is
related to the interacting one via the equation:

χ = (1 − χ0 · υc)
−1

· χ0, (3)

where in Eq. 2 and Eq. 3 integrals are implicit.

Within a plane wave (PW) representation where
wavefunctions are expressed as linear combination of
PWs(exp(iG · r), G is a reciprocal wave vector), for
doubly filled shells, ǫ is defined as in Eq. 4, where k

and q denote wave vectors, and εv,k, εc,k are energies
of the valence(v) and conduction(c) single particle
states, respectively. In the case of molecules, one
only considers k = 0 and q → 0 and valence and
conduction states correspond to the occupied and
empty (or virtual) states, respectively.

ǫG,G′(q) = δG,G′ −
4πe2

|q+G|2
4

NkΩ

∑
cvk

〈υ,k|e−i(q+G)·r|c,k+ q〉〈c,k+ q|ei(q+G′)·r′ |υ,k〉

ευ,k − εc,k+q

(4)

It is both formally and computationally conve-
nient to introduce the symmetric form of the DM:

ǫ̃G,G′(q) =
|q+G|

|q+G′|
ǫG,G′(q). (5)

The symmetrized ǫ̃−1 can be diagonalized to obtain
the dielectric eigenvalue spectrum λ−1

m (q) and eigen-
potentials ζm(q):

∑
G′

ǫ̃−1
G,G′(q)〈G

′|ζm(q)〉 = λ−1
m (q)〈G|ζm(q)〉. (6)

The DBS1–3 is defined as λ−1
m (q) vs. q, in a manner

analogous to the eigenvalues of the Hamiltonian of
a periodic solid as a function of wave vector, which
defines an electronic band structure.
For each of the solid and molecular systems inves-

tigated in the next sections, we define two different
partitions of the core and valence electrons in our
electronic structure and density functional perturba-
tion theory (DFPT) calculations. We specify core,
semi-core and valence electrons. The core electrons
are the same in both partitions. In one partition we
include semi-core electrons in the valence, i.e. we

consider them as participating in the chemical bond-
ing. We call this partition a semi-core (SC) one and
the corresponding dielectric matrix ǫ̃SC :

(ǫ̃SC)−1 =
∑
i

(λSC
i )−1|ζSC

i 〉〈ζSC
i |. (7)

The other partition includes semi-core electrons in
the core, i.e. we consider the latter frozen and not
participating in the chemical bonding. We call this a
VE partition and the corresponding dielectric matrix
ǫ̃V E :

(ǫ̃V E)−1 =
∑
i

(λV E
i )−1|ζV E

i 〉〈ζV E
i |. (8)

To characterize the localization properties of the
eigenvectors of the DM, or eigenpotentials, we define
the inverse participation ratio (IPR) as:

IPRm =
1
N

∑N
i=1|ζm(ri)|

4

[ 1N
∑N

i=1|ζm(ri)|2]2
, (9)

where N is the number of points in the real space
grid used to represent the eigenpotential ζm. An
IPR value of 1 indicates that the mode is completely



delocalized and the value increases from 1 with the
localization of the eigenpotential.
To analyze the distribution of the dielectric eigen-

values, we calculated the density of states of the DM
(DOS). A useful measure of the difference between
the eigenpotentials of (ǫ̃SC)−1 and those of (ǫ̃V E)−1

is given by the projection (Fm) of the mth eigenpo-
tential of the (ǫ̃SC)−1 (ζSC

m ) on the VE potentials
eigenspace:

Fm = 〈ζSC
m |Iv|ζ

SC
m 〉, Iv =

∑
j

|ζV E
j 〉〈ζV E

j |. (10)

We define DOS as:

gw(λ
−1) = (1− λ−1)

∑
m

wmδ(λ
−1 − λ−1

m ). (11)

The prefactor is included for presentation purposes,
to temper the large values of the density of states
as the eigenvalues of ǫ̃−1 → 1. Here wm = 1 corre-
sponds to the unweighted DOS and wm = Fm cor-
responds to weighting of the DOS according to the
projection of the eigenmodes of (ǫ̃SC)−1 onto the VE
only subspace.
The eigenvalues and eigenvectors of the DM

were computed using an iterative18,19,22,23 proce-
dure built into codes that are post-processing mod-
ules of Quantum Espresso24. We studied DBS and
phonons of alkali hydride crystals, dielectric spectra
and QP gaps of alkali halide molecules, alkali dimers
and alkaline earth oxides. We considered experimen-
tal structures (except where noted) for all systems.
We used the local density approximation (LDA) and
norm-conserving semi-relativistic PPs in the separa-
ble form proposed by Hartwigsen-Goedecker-Hutter
(HGH)25.

III. DIELECTRIC BAND STRUCTURE

AND INVERSE PARTICIPATION RATIO

ANALYSIS: CRYSTALLINE NaH

Figure 1 shows the DBS of the simple ionic insu-
lator NaH computed with two different core-valence
partitions. The valence partition includes only the
3s1 electron of Na; the SC partition includes the
(2s22p6)3s1 electrons. The colored dots in Fig. 1(a)
and Fig. 1(b) show the magnitude of the projections
〈ζSC

m (qo)|ζ
V E
j (q)〉 and 〈ζSC

m (qo)|ζ
SC
j (q)〉 of eigen-

potentials of (ǫ̃SC)−1, |ζSC
m (qo)〉 at a qo-point near

q = 0 onto eigenpotentials of (ǫ̃V E)−1 and (ǫ̃SC)−1,
respectively, at all the q points along the [100] di-
rection . There are qualitative differences between
the VE and SC dielectric band structures, despite
the rather strong binding of the 2s (-50 eV) and
2p (-22 eV) levels. From Eq. 4, one might expect
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FIG. 1: (Color online) Lowest 15 bands of the dielec-
tric band structure (DBS) for fcc crystal NaH obtained
by using core valence partitions with 1 valence elec-
trons (VE) (a) and 9 valence electrons (SC) (b) for Na
(see text). The colored dots in panel (a) and panel (b)
show the magnitude of the projections 〈ζSC

m (qo)|ζ
V E
j (q)〉

and 〈ζSC
m (qo)|ζ

SC
j (q)〉 of eigenpotentials of (ǫ̃SC)−1,

|ζSC
m (qo)〉 at a qo-point near q = 0 onto eigenpoten-

tials of (ǫ̃V E)−1 and (ǫ̃SC)−1, respectively. Panel (c)
shows the inverse participation ratio (IPR) of the DM
eigenpotentials of for the SC and VE partitions at the
Γ point. Panel (d) shows the IPR along with the dot
size being the projection (1-Fm) as defined in Eq. 10 for
the SC eigenpotentials at the Γ point. The color code
used for the arrows is the same as the one used for the
eigenpotentials in (a) and (b).

the large energy denominator to lead to fully neg-
ligible contributions of the core states to the eigen-
values of ǫ̃−1. However we observed the appearance
of bands with λ−1

m well below unity (which corre-
sponds to additional screening) when using the SC
partition. For example, a band appears with λ−1

m =
0.45 at Γ; two additional bands appear around 0.7.
In addition there are other bands closer to unity, and
some bands present in the spectrum obtained with
the VE partition are shifted, as SC character of the
eigenpotentials is mixed with VE character.

Fig. 1(c) shows the IPR of the eigenmodes ob-
tained with the SC and VE partitions at the Γ point.



The color code used for the arrows in Fig. 1(c) and
1(d) is the same as the one adopted for the eigen-
potentials, in Fig. 1(a) and Fig. 1(b). Note the log
scale on the abscissa, chosen to better distinguish the
eigenvalues near 1. The eigenmodes obtained with
the VE partition have relatively low IPR values as
compared to the ones computed for the SC parti-
tion. However the 1st SC and VE eigenmodes at Γ
are completely delocalized (IPR ≈ 1). In Fig. 1(c),
the second eigenmode , which has predominantly SC
character (it is not present in the calculation with
the VE partition) has a relatively high value of IPR.
To classify the SC eigenmodes further, Fig. 1(d)

shows the VE fraction of the SC eigenmodes at the Γ
point: each SC eigenpotential is projected onto the
VE potentials eigenspace (Eq. 10), and we represent
(1-Fm) as a dot for each eigenstate. The VE fraction
Fm depicts the character of the eigenmodes obtained
using SC partition: the smaller Fm (larger 1-Fm)
(and larger dot size), the more predominant is the
SC character; the larger Fm (smaller 1-Fm) (and
smaller dot size), the more predominant is the VE
character.

IV. DENSITY OF STATES OF THE

DIELECTRIC MATRIX AND

PARTICIPATION RATIO: MOLECULES

We analyzed the dielectric spectra of several
molecules representative of both ionic and covalent
bonding including alkali dimers (Rb2, K2, Na2, Li2),
alkali halides (KI, KCl, NaCl) and alkaline earth ox-
ides (CaO, SrO) by varying the core-valence parti-
tion of the cation. Similar to the case of the NaH
crystal presented earlier, for Li, K, Rb, Ca and Sr
we considered (1s2)2s1, (3s2, 3p6)4s1, (4s2, 4p6)5s1,
(3s2, 3p6)4s2 and (4s2, 4p6)5s2 configurations, re-
spectively. We studied the distribution of the di-
electric eigenvalues of these molecules by calculating
DOS as defined in Eq. 11.
We consider the dielectric matrices (ǫ̃V E)−1 and

(ǫ̃SC)−1 and we analyze their respective eigenval-
ues, eigenpotential character and eigenpotential lo-
calization properties. We discuss below three main
findings: (i) the inclusion of semicore electrons in
the screening of the Coulomb potential has a global
influence on the eigenvalues of ǫ̃−1, i.e., the set of
eigenvalues of (ǫ̃SC)−1 may not be separated in sub-
sets corresponding to eigenpotentials with a clearly
defined SC or VE character; (ii) the character of
the eigenpotentials depends on the type of bond-
ing in the system, and (iii) the correlation between
the eigenpotentials character and their localization
properties depends again on the bonding properties.
We illustrate finding (i) in Fig. 2(a), 2(b), 2(c)
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FIG. 2: (Color online) Density of the states of dielectric
matrix g(λ−1) =

∑
m
δ(λ−1 − λ−1

m ) · wm · (1− λ−1) as
a function of the eigenvalue λ for the Rb2 dimer, KCl
molecule, and SrO molecule, where the weight wm is
defined in Eq. 10. The left panels show the density of
states of (ǫ̃SC)−1 (red, see Eq. 7) and (ǫ̃V E)−1 (black, see
Eq. 8) for wm = 1. The right panels show the density of
states of (ǫ̃SC)−1 for wm = 1 (red, the same as reported
on the left panels) and wm = Fm (blue, see Eq. 10).

which show the density of states of (ǫ̃SC)−1 and that
of (ǫ̃V E)−1 for the Rb2, KCl and SrO molecules re-
spectively. These molecules are taken as represen-
tative of each class of molecules considered in our
study. It is apparent from the figures that a clear
separation of eigenvalues in SC-like and VE-like ones
is not possible. The distribution of those that may
be classified as the SC-like and VE-like strongly de-
pends on the type of bonding in the system.

We now turn to discussing the character of eigen-
potentials obtained using SC partition, illustrated
in Fig. 2(d), 2(e), 2(f) where we compare DOS of
(ǫ̃SC)−1 for two cases: wm=1 and wm = Fm (see Eq.
11). It is seen once more that the character of the
eigenpotentials depends on the bonding, e.g. in the
case of SrO one observes small changes for the two
different values of wm, whereas substantial changes
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FIG. 3: (Color online) Inverse participation ratio (IPR)
as a function of the eigenvalues λ of (ǫ̃SC)−1 along with
the dot size being the projection (1-Fm) (see Eq. 10)
for (a) alkali dimers, (b) alkali halides and (c) alkaline
earth oxides. The log scale on the abscissa is chosen
to better distinguish the eigenvalues near 1, where they
would become very dense on a linear scale.

are present in the case of Rb2 and KCl.

This observation about differences in the eigenpo-
tential character, depending on the type of bonds,
is further strengthened by the correlation between
character and localization, shown in Fig. 3 where we
plot the mode IPR as a function of the eigenvalues
for the eigenmodes obtained using SC partition, and
we represent the weight Fm of the eigenmodes by
the symbol size. For oxides (Fig. 3(c)), the highest
localized modes have predominantly VE character,
as indicated by the small values of (1-Fm) ≈ 0-0.2.
This is consistent with our analysis of the DOS of
SrO. For the alkali dimers (Fig. 3(a)) and alkali
halides (Fig. 3(b)) the most localized eigenmodes
have predominantly SC character, similar to the case
of NaH. The density of high IPR modes is more for
alkali dimers as compared to alkali halides. Highly
localized eigenmodes are present in Na2 and more so
in K2 and Rb2 , indicating substantial screening by
semicore electrons, consistent with our findings for
phonons in the next section. A point to note here
is that the dipole polarizability of the Rb atom (319
a.u.) is the highest of all the alkali and alkaline earth

atoms considered in this study, followed by K (291
a.u.) and Sr (186 a.u.).
We conclude, therefore that upon adding semicore

electrons to the VE partition, the dielectric response
varies both by the type of bonding and by the atomic
size of the constituents. Additional screening chan-
nels appear for covalently bonded alkali dimers as
compared to ionic molecules, with no appreciable
change in the screening for alkaline earth oxides. As
expected, the contributions of semicore electrons to
screening is larger for larger alkali atoms.

V. DIELECTRIC BAND STRUCTURE AND

PHONONS

In this section we present results for phonon fre-
quencies and dielectric constants, obtained using dif-
ferent core-valence partitions. We also compared our
findings with results obtained with non-linear core
corrections (NLCC)26,27 often used in the literature
to include the contribution of semicore electrons. We
show below that results obtained with NLCC and
the SC partition differ and we discuss the origin of
these differences.

TABLE I: Zone center phonon frequencies (cm−1) of the
transverse (ωTO) and longitudinal (ωLO) optical modes
of the fcc NaH, KH and RbH crystal, and electronic (ǫ∞)
and static dielectric constant (ǫ0). Two core level parti-
tions were used for Na, K and Rb (9 valence electrons,
9VE, and 1 valence electron, 1VE) and results are also
given for calculation with 1 VE and a non-linear core
correction (NLCC). The results are presented both at
the experimental lattice constant and at the optimized
geometry at the LDA level.

ωTO ωLO ǫ∞ ǫ0

NaH @Experimental Geometry
1 VE 330 801 3.27 19.3
9 VE 432 832 3.35 12.4

1VE+NLCC 438 837 3.2 11.7
@Optimized Geometry

1 VE 540 934 3.31 9.9
9 VE 561 917 3.36 9.0

1VE+NLCC 568 925 3.2 8.5
KH @Experimental Geometry

9 VE 405 726 2.9 9.3
1 VE+NLCC 376 708 2.5 8.7

@Optimized Geometry
9 VE 519 808 2.9 7.2

1 VE+NLCC 613 876 2.4 4.9
RbH @Experimental Geometry

9 VE 371 678 3.0 10.0
1 VE+NLCC 340 663 2.4 9.0

@Optimized Geometry
9 VE 481 759 3.1 7.8

1 VE+NLCC 604 859 2.4 4.9



The dynamical matrix of a solid is given by the
sum of an unscreened ionic part (I) and a screening
part (E)

D
αβ
ss′ (q) = (Dαβ

ss′ (q))
I + (Dαβ

ss′ (q))
E , (12)

where α,β are cartesian components and s, s′ label

the atoms in the unit cell. The first term (Dαβ
ss′ (q))

I

contains the direct Coulomb interaction between the
ion cores in the crystal. The term (Dαβ

ss′ (q))
E is

given by:

(Dαβ
ss′ (q))

E =
1

(MsM ′

s)
1/2

(Cαβ
ss′ (q)−δss′

∑
s”

C
αβ
ss”(0)).

(13)
The force constants C are defined as:

C
αβ
ss′ (q) =

Ω

4πe2

∑
GG′

(q+G)αVs(q+G)

×eiG·Rs |q+G|2[ǫ−1
GG′(q)− δGG′ ](q+G′)β

×V ′

s (q+G′)e−iG′
·R′

s , (14)

where Ms is the nuclear mass of the sth atom in the
unit cell,Ω is the unit cell volume, Rs is the position
vector of the ion cores, Vs is the bare ion pseudopo-
tential. Depending on the choice of the core-valence
partition in the calculations of ǫ in Eq. 14, one ex-
pects to obtain different results for phonon frequen-
cies.
The results for 9 valence electrons (corresponding

to the SC partition) for solids containing, Na, K and
Rb at optimized geometries are comparable with the
previous phonon calculations28,29, with differences,
wrt Refs. 28,29 of less than 4% in the phonon fre-
quencies. There are important differences between
SC and VE results and they become increasingly
important for the heavier alkali hydrides, reflecting
strong contributions from semicore states. In the
case of NaH, for example, the transverse optical fre-
quencies ωTO and the dielectric constant (Table I)
evaluated using 1 valence electron for Na differ from
SC calculations by 23% and 56%, respectively, when
the experimental volume is used. The difference be-
comes larger for KH and RbH (Table I). This re-
sult is not unexpected, since it is known26,28,30 that
when using pseudopotentials to describe materials
containing alkali atoms, semicore electronic states
must be included in the calculation.
It was previously reported that the use of

NLCC31,32, which accounts for the rigid shift of the
semicore density as the nucleus moves, provides in
many cases a good description of the phonons. We
computed the DBS of LiH (not shown) and NaH us-
ing NLCC; the results differed by less than 2% from
those obtained by VE calculations. Hence the use of
NLCC does not account for the appearance of the

additional eigenmodes observed in SC calculations.
This correction is different from the full SC treat-
ment, because in the latter the semicore electrons (1)
respond self-consistently to changes in the potential
not due to nuclear motion, and (2) they respond non-
rigidly to the nuclear motion. However the NLCC
is useful when there is strong spatial overlap of the
semicore and valence wavefunctions, such as in the
alkali atoms. As shown in Table I for NaH, NLCC
account for most of the difference between SC and
VE phonon frequencies, although additional differ-
ences of a few percent remain (4-5% in the value of
ǫ0). For the heavier alkali hydrides, the use of NLCC
is progressively less accurate. For RbH, the remain-
ing error is around 10% for ǫ0 and reflects the effect
of core polarization rather than simple rigid displace-
ment of the core charge. We note that the error
becomes worse if the volume is optimized including
NLCC, instead of considering the experimental vol-
ume: the error is more than 37% for ǫ0 and 25% for
ωTO. Evidently SC screening becomes more impor-
tant as the volume decreases.

VI. CORE POLARIZATION EFFECTS ON

QUASI-PARTICLE ENERGIES FOR

MOLECULES

We carried out GW calculations for molecules us-
ing the method of Nguyen et al.45 and obtained QP

energies (EQP
i ):

E
QP
i = εi + 〈ψi|[Σc(E

QP
i ) + Σx − Vxc]|ψi〉. (15)

Here ψi and εi are the eigenvectors and eigenvalues
of the Kohn-Sham (KS) Hamiltonian. The correla-
tion contribution to the self-energy is given by:

Σc(ω) =
i

2π

∫
G(r, r′;ω+ω′)W c(r, r′;ω′)dω′, (16)

whereW c =W −vc and W is the screened Coulomb
potential given by:

W = ǫ−1 · vc = vc + vc · χ · vc. (17)

The full self-energy is Σ = Σx + Σc where the ex-
change contribution is given by:

Σx = −

occ∑
i

ψi(r)vc(r, r
′)ψ∗

i (r
′). (18)

Vxc is the exchange-correlation potential entering
the Kohn-Sham Hamiltonian.
We compared QP energies obtained by performing

three types of calculations that we denote as follows:
(i) GSCWSC , (ii) GSCWV E , and (iii) GV EWV E ,



where as in previous sections VE and SC denote dif-
ferent core valence partitions. In (i), both the G
and the dielectric matrix (hence W) are computed
including semicore electrons, which corresponds to
the most complete and accurate representation of
the electronic screening. Calculations (ii) differ from
(i) in the treatment of W: in (ii) ǫV E instead of ǫSC

is used; in (iii) both G and W are computed using
only the VE partition. The hybrid calculation (ii) is
presented for analysis purposes, to identify the con-
tribution of the semicore electrons to the screened
Coulomb potential.

In Table II we report the computed ionization en-
ergies, electron affinities, and gaps for calculations
(i), (ii) and (iii) along with the LDA KS values, for
three classes of diatomic molecules: alkali halides,
alkali dimers, and alkaline earth oxides. While there
are regularities within each class, there are impor-
tant differences between classes.

In contrast to previous evidence that the inclusion
of semi-core states results in reduced band gaps46,47,
for the molecules considered in our study we found
reductions or increases in the band gaps, depending
on the system. Alkali halides and alkali dimers ex-
hibit larger band gaps for the GSCWSC type cal-
culation when compared to their VE counterpart
(GV EWV E), however alkaline earth oxides show the
opposite trend. Gomez-Abal et al.7 also observed
similar findings for solids, e.g. GaAs and CaSe gaps
obtained with PP were smaller than their AE coun-
terparts.

For several semiconductors and insulators, it was
found that non self-consistent GW PP calculations
with VE partitions were successful in reproducing
band gaps of most semiconductors and insulators,
and that often all-electron (AE) non-self consistent
GW results were worse than the corresponding PP
GW ones7, when compared to experiments. This is
possibly due to compensating approximations in the
GW PP formulation such as core valence partition-
ing and use of pseudo wavefunctions16. Our results
for molecules confirm this finding for gaps for two
classes of systems (alkali halides and alkaline earth
oxides), but for alkali dimers the SC results are in
better agreement with experiments than the VE re-
sults. Below we summarize our findings for each
class of molecules considered here.

Alkali halide molecules. The HOMO energy level
from GW calculations compares well with the mea-
sured ionization potential (IP). The agreement of
the LUMO energy with the electron affinity(EA)
and of the computed QP gap with the measured one
is worse (the gap is larger) for the SC calculation.
For example, for KI and KCl the difference between
computed and measured QP gaps is 5% and 11% re-
spectively, for SC, compared to 2% and 8% for VE

calculations. By isolating the effect of core polariza-
tion we observed that the difference in the computed
QP band gaps is of the order of 0.1 eV. The agree-
ment with the experiment worsens for the ’hybrid’
calculations compared to the SC calculation, by 1%
and 2% for KCl and KI, respectively.

Alkaline earth oxides. Similar to the case of alka-
line halides, the HOMO energy is in worse agreement
with the measured IP for the SC partition. For SrO
for example, the difference between the HOMO en-
ergy and IP is 9% for the GSCWSC calculation as
compared to ≈ 2% for the GV EWV E calculation.
Isolating the core polarization effects hardly affects
the difference between the HOMO and IP (0.3% in-
crease). The core-polarization effect is negligible for
the band gap in these oxides, consistent with the
more moderate SC screening that can be discerned
from DOS (Fig. 2(f)) and the IPR analysis (Fig.
3(c)).

Alkali dimers. The trend noticed above where SC
results are in worse agreement with the experiment
as compared to the VE results is reversed for alkali
dimers, which are covalently bonded, as opposed to
the other molecules where there is (partial) charge
transfer between anions and cations. The SC results
for QP gaps and LUMO energies are in better agree-
ment with experiment than are the VE results. Tak-
ing the K2 and Rb2 molecules as examples, the QP
gaps are within 1.4% and 1% of the experiment for
SC, versus 4.5% and 7% for VE, respectively. Core
polarization affects the QP band gap by up to 0.15
eV for K2 and ≈ 0.1 eV for Rb2. The hybrid cal-
culation worsens the agreement with the experiment
when compared to GSCWSC : 1.6% and 4% for K2

and Rb2. The SC results are in better agreement
than VE with experimental gaps for all the alkali
dimers, unlike for the alkali halide molecules.

Overall we find that if accuracies of the order of
100-200 meV in calculated QP eigenvalues are de-
sired, the inclusion of SC states is necessary not only
in the calculation of wave functions and thus of Σx

and Vxc, but also in the evaluation of Σc. We thus
confirm previous work, indicating that the inclusion
of even fairly strongly bound semicore states that
might be thought to be inert, based on a large de-
nominator in Eq. 4, can substantially contribute to
HOMO and LUMO QP energies. For example, in
the case of Rb2 (containing the alkali atom with the
largest polarizability), the contribution of semicore
polarization to the LUMO state and the gap is about
100 meV. For K2, the contributions to the HOMO,
LUMO and the gap are about 200, 100 and 150 meV,
respectively. For alkali halides such as KCl and KI,
the contribution of semicore polarization to the com-
puted gap and LUMO energy is of the order of 100
meV. However if errors of the orders of 100-200 meV



may be tolerated, e.g. in analyzing trends of QP
gaps within certain classes of systems, one may use
an approximate dielectric screening computed with
the VE partition , with substantial computational
savings.

VII. SUMMARY

We presented a new approach for calculating and
analyzing the effect of electronic semi-core polariza-
tion on dielectric, vibrational, and electronic excita-
tion properties of molecules and solids, based on the
spectral decomposition of the dielectric matrix. In-
cluding semicore electrons leads to additional eigen-
modes in the dielectric band structure with eigen-
values substantially different from unity. Even if the
eigenmodes are localized, as it often happens, they
contribute to screening. Polarization arising from
semicore electrons may contribute ∼10% to both the
dielectric constants and transverse optical phonon
modes, with effects being greater for systems con-
stituting the larger and therefore more polarizable
atoms. The distribution of dielectric eigenvalues and
the inverse participation ratio analysis for molecules
show that there is no clear distinction between eigen-
modes due to semicore response versus those from
valence electrons; there is a continuum, with the
mixing being more widespread for molecules with
larger atoms. The effects of the core polarization,
e.g. on computed quasi particle gaps, are found to
be different for molecules with covalent and ionic
bonds. The GW predictions of quasiparticle ener-
gies and of the gap, have been quantified and trends
within classes of diatomic molecules have been iden-
tified. If precision of ∼200 meV in these energies is
needed, semicore electrons must be included in the
calculations. Otherwise they may be discarded, with
substantial saving in the calculations.
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Appendix A: Quasi-particle energies

We provide the matrix elements of the self en-
ergy (exchange: Σx, and correlation: Σc terms), ex-
change correlation potential Vxc, LDA KS energies
and computed QP energies for the HOMO, LUMO
and the gap of a representative molecule from each
class of molecules considered in this study. The re-
sults are shown for 3 different types of calculations as
decribed in the Sec. VI (i) GSCWSC , (ii) GSCWV E ,
and (iii) GV EWV E .
Comparison with the literature. For the sp-bonded

solids considered in Refs. 7,16 the authors found
that even though there is a large difference in the
PP (VE) and all-electron (AE) matrix elements of
Σx and Vxc, the sum (Σx - Vxc) is similar in the two
cases. The way the latter sum is computed gave neg-
ligible differences in the computed Egap, with major
differences coming instead from the Σc matrix ele-
ments. However, while for the sp bonded molecules
(alkali dimers), we found a similar trend as in Refs.
7,16, such trend did not hold for alkali halides and
alkaline earth oxides(Table-III).
For example, for K2, the difference between (

〈Σx〉 − 〈Vxc〉) obtained with VE and SC partitions
is negligible. The remaining difference between the
VE and SC band gaps comes from the underestima-
tion of Σc in the VE calculations(≈ 0.2 eV). Instead
in the case of alkali halides, such as KI, the differ-
ence in the gap between the VE and SC calculations
arises from the difference both the matrix elements
of Σx and Vxc (of the order of 0.7 eV and 1.7 eV,
respectively). The cancellation is incomplete and it
contributes to the difference between the SC and VE
band gaps, together with the difference in the ma-
trix elements of Σc. There is an overestimation in
the correlation energy in VE calculations (≈ 0.5 eV)
which tends to reduce the effect of incomplete can-
cellation between the matrix elements of Σx and Vxc.
Similarly, in the case of alkaline earth oxides such
as SrO, the cancellation is incomplete (〈Σx〉 − 〈Vxc〉
≈ 0.3 eV) which along with the overestimation of
the KS band gap (≈ 0.4 eV) by VE only calcula-
tions and the difference in the correlation term (≈
0.2 eV), lead to a difference between the SC and VE
computed band gaps.



TABLE II: Energies of the highest occupied (HOMO) and lowest unoccupied (LUMO) energy levels in eV of several
diatomic molecules, obtained using density functional theory calculations within the LDA (ESC , EV E) using two
different core-valence partitions, semi-core (SC) and valence only (VE), within non-self consistent GW calculations.
The experimental ionization potential (IP) and electron affinity (EA) are given for the corresponding HOMO and
LUMO levels.

HOMO LUMO Gap

NaCl ESC -5.36 -1.99 3.37
EV E -5.3 -1.71 3.59

GSCWSC -9.19 -0.29 8.9
GSCWV E -9.19 -0.27 8.92
GV EWV E -9.18 -0.53 8.65

Exp. 9.233 0.76934 8.43

KCl ESC -4.97 -1.55 3.42
EV E -4.88 -1.24 3.64

GSCWSC -8.68 -0.06 8.62
GSCWV E -8.69 0.025 8.72
GV EWV E -8.68 -0.32 8.36

Exp. 8.335 0.582±0.0136 7.72

KI ESC -4.59 -1.71 2.88
EV E -4.53 -1.41 3.12

GSCWSC -7.56 -0.22 7.34
GSCWV E -7.56 -0.14 7.42
GV EWV E -7.56 -0.44 7.12

Exp. 7.5±0.437 0.5±0.138 7.0

Li2 ESC -3.18 -1.76 1.42
EV E -3.17 -1.73 1.44

GSCWSC -4.91 -0.71 4.2
GSCWV E -4.95 -0.71 4.24
GV EWV E -4.94 -0.74 4.20

Exp. 5.112±0.000339

Na2 ESC -3.14 -1.79 1.35
EV E -3.16 -1.8 1.36

GSCWSC -5.19 -0.78 4.41
GSCWV E -5.21 -0.79 4.42
GV EWV E -4.96 -0.69 4.27

Exp. 4.8951±0.000240 0.43±0.01541 4.47

K2 ESC -2.54 -1.58 0.96
EV E -2.6 -1.65 0.95

GSCWSC -4.22 -0.60 3.62
GSCWV E -4.03 -0.52 3.51
GV EWV E -4.18 -0.78 3.4

Exp. 4.0637±0.000240 0.497±0.01242 3.57

Rb2 ESC -2.43 -1.52 0.91
EV E -2.52 -1.6 0.92

GSCWSC -3.88 -0.51 3.37
GSCWV E -3.88 -0.62 3.26
GV EWV E -3.9 -0.74 3.17

Exp. 3.9±0.141 0.498±0.01543 3.402

CaO ESC -3.904 -2.33 1.574
EV E -4.04 -1.92 2.06

GSCWSC -6.46 -0.55 5.91
GSCWV E -6.41 -0.51 5.9
GV EWV E -6.88 -0.55 6.33

Exp. 6.66±0.1844

SrO ESC -3.67 -2.21 1.46
EV E -3.86 -1.97 1.89

GSCWSC -6.01 -0.39 5.62
GSCWV E -5.99 -0.36 5.63
GV EWV E -6.45 -0.52 5.93

Exp. 6.6±0.1844



TABLE III: The matrix elements of the self energy (in eV) for the exchange Σx, correlation Σc and the exchange
correlation potential Vxc for KI, K2 and SrO along with the Kohn-Sham energies (EKS) and QP energies (in eV) of
the highest occupied (HOMO), lowest unoccupied (LUMO) energy levels and the Gap for (i) GSCWSC , (ii) GSCWV E

and (iii) GV EWV E calculations.

EKS 〈Σx〉 〈Vxc〉 〈Σx〉 − 〈Vxc〉 〈Σc〉 EQP

KI HOMO GSCWSC -4.59 -13.56 -10.17 -3.39 0.42 -7.56
GSCWV E -4.59 -13.56 -10.17 -3.39 0.42 -7.56
GV EWV E -4.54 -13.51 -10.1 -3.41 0.39 -7.56

LUMO GSCWSC -1.71 -1.11 -3.43 2.32 -0.83 -0.22
GSCWV E -1.71 -1.11 -3.43 2.32 -0.75 -0.14
GV EWV E -1.41 -0.39 -1.71 1.32 -0.35 -0.44

Gap GSCWSC 2.88 12.45 6.74 5.71 -1.25 7.34
GSCWV E 2.88 12.45 6.74 5.71 -1.17 7.42
GV EWV E 3.13 13.12 8.39 4.73 -0.74 7.12

K2 HOMO GSCWSC -2.54 -5.38 -4.65 -0.73 -0.95 -4.22
GSCWV E -2.54 -5.38 -4.65 -0.73 -0.76 -4.03
GV EWV E -2.6 -4.69 -3.56 -1.13 -0.45 -4.18

LUMO GSCWSC -1.58 -1.49 -3.76 2.27 -1.29 -0.6
GSCWV E -1.58 -1.49 -3.76 2.27 -1.21 -0.52
GV EWV E -1.65 -0.91 -2.77 1.86 -0.99 -0.78

Gap GSCWSC 0.96 3.89 0.89 3.0 -0.34 3.62
GSCWV E 0.96 3.89 0.89 3.0 -0.45 3.51
GV EWV E 0.95 3.78 0.79 2.99 -0.54 3.4

SrO HOMO GSCWSC -3.67 -21.53 -17.01 -4.52 2.18 -6.01
GSCWV E -3.67 -21.53 -17.01 -4.52 2.21 -5.98
GV EWV E -3.87 -20.69 -15.75 -4.94 2.36 -6.45

LUMO GSCWSC -2.21 -1.89 -4.68 2.79 -0.97 -0.39
GSCWV E -2.21 -1.89 -4.68 2.79 -0.93 -0.35
GV EWV E -1.97 -1.08 -3.13 2.05 -0.6 -0.52

Gap GSCWSC 1.46 19.64 12.33 7.31 -3.15 5.62
GSCWV E 1.46 19.64 12.33 7.31 -3.14 5.63
GV EWV E 1.9 19.61 12.62 6.99 -2.96 5.93
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