

CHORUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Spectral representation analysis of dielectric screening in solids and molecules

Amandeep Kaur, Erik R. Ylvisaker, Deyu Lu, Tuan Anh Pham, Giulia Galli, and Warren E. Pickett

Phys. Rev. B **87**, 155144 — Published 24 April 2013

DOI: [10.1103/PhysRevB.87.155144](http://dx.doi.org/10.1103/PhysRevB.87.155144)

Spectral representation analysis of dielectric screening in solids and molecules

Amandeep Kaur,¹ Erik R. Ylvisaker,¹ Deyu Lu,² Tuan Anh Pham,³ Giulia Galli,^{1,3} and Warren E. Pickett¹

 1 Department of Physics, University of California, Davis, California 95616, USA

²Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA

 3 Department of Chemistry, University of California, Davis, California 95616, USA

(Dated: March 20, 2013)

We propose a new approach to identify and rationalize the contribution of core electron polarization to dielectric screening, based on ab initio calculations of the dielectric matrix in its eigenpotential basis. We also present calculations of phonon frequencies, dielectric constants and quasiparticle energies of several systems, and we discuss the quantitative effect of including core polarization. Our findings illustrate efficient ways of approximating the spectral decomposition of dielectric matrices used, e.g. in many body perturbation theory and dielectric constant calculations, with substantial computational gains for large systems composed of heavy atoms.

PACS numbers: 77.22.Ej, 71.15.Mb, 71.15.Qe, 77.22.Ch

I. INTRODUCTION

Eg. in many body perturbation theory and dieectric constant calculational gains for large systems composed of heavy atoms.

numbers: 77.22.Ej, 71.15.Mb, 71.15.Qe, 77.22.Ch
 I. INTRODUCTION substantial difference

exchan Understanding the microscopic origin of dielectric screening^{1–4} is central to rationalizing vibrational and excited state properties of condensed and molecular systems, and ultimately their chemical bonding. Many calculations of solids, liquids and molecules appearing in the last several decades were based on a partitioning of the interacting electrons into core and valence: the former are assumed to be in the same configuration as in the constituent atoms, and the latter participate in the dielectric screening in the condensed and molecular phases. The extent to which core polarization affects electronic screening and thus physical properties such as phonon frequencies, dielectric constants and electronic excitation spectra was seldom analyzed. Few theoretical studies addressed core polarization effects on quasiparticle (QP) energies^{5–8}, which were found more important, both qualitatively and quantitatively, than previously thought. It is therefore of interest to understand and analyze the origin of such effects and establish modeling frameworks to take them into account in a consistent and accurate manner.

Shirley *et al.*^{5,6} pointed out the importance of including 3d electrons in the valence partition of certain elemental semiconductors, in order to obtain accurate values of their band gaps within many body perturbation theory (MBPT) at the non selfconsistent GW9,10 level, and they proposed to use pseudopotentials (PPs) that explicitly account for core polarization. Similar results were reported in Refs. 11–13 for CdS. However, Ku et $al.^{14}$ later observed that within *self-consistent* GW^{15} , the inclusion of polarization from 3d electrons does not affect, e.g. the computed band gap of Ge.

Recently Gómez-Abal et al.⁷ and Li et al.¹⁶ computed the electronic properties of several crystalline solids and showed that in GW calculations there are

reass one present catenations or promotion constants and engage and unique proposes of the complete constant of the engage and the engage and the spectra of the substantial differences in the matrix elements of the exchange part of the self-energy(Σ_x) and exchangecorrelation potential (V_{xc}) , depending on the choice of the core-valence partition. These findings are consistent with earlier results of Marini $et \ al$ ⁸ who showed that exchange-correlation contributions to the self-energy arising from the $3s$ and $3p$ semi-core levels of Cu should be taken into account to obtain a QP band structure in agreement with experiments. Other studies^{7,16} also noted that for systems without d electrons, the most substantial differences in band gaps, between all-electron (AE) and PP calculations, arose from the correlation part of the selfenergy (Σ_c) , as there is an almost complete cancellation between the matrix elements of Σ_x and V_{xc} . Umari et al ¹⁷ analyzed the effect of semi-core states on the electronic structure of the metal phthalocyanine molecule and noted that Zn 3s and 3p states need to be included in the valence, to accurately describe photoemission spectra.

In this paper we propose a new approach for identifying and analyzing the contribution of core electron polarization to dielectric screening, based on the spectral decomposition of the dielectric matrix^{18,19}. We present ab initio calculations of dielectric band structures (DBS), inverse participation ratios (IPR), density of states of the dielectric matrix (DOS), phonon frequencies, dielectric constants and quasi-particle (QP) gaps of several systems, and we discuss the quantitative effect of including core polarization.

The rest of the paper is organized as follows. We describe the method to compute the dielectric spectra for solids and molecules in Sec. II. In Sec. III we present our results for the DBS and IPR analysis of solids, followed by the discussion of DOS and IPR of molecules in Sec. IV. Sec. V discusses relationship between the DBS, phonons, and nonlinear core corrections, which is followed by results of corepolarization effects on QP energies (Sec. VI). We summarize our findings in Sec. VII.

II. THEORETICAL BACKGROUND

In the linear regime, the static dielectric screening is expressed by the function $\epsilon(\mathbf{r}, \mathbf{r}')$, which relates the external potential applied to a system of electrons, V_{ext} , and the resulting screened potential:

$$
V_{scr}(\mathbf{r}) = \int \epsilon(\mathbf{r}, \mathbf{r}')^{-1} V_{ext}(\mathbf{r}') d\mathbf{r}'. \tag{1}
$$

We will refer to ϵ as the dielectric matrix (DM) and we restrict our analysis to DMs obtained within the random phase approximation $(RPA)^{20,21}$, although the formalism presented here is general and may be applied to dielectric screening obtained at higher levels of theory. Within RPA, the DM is defined as

$$
\epsilon = 1 - \upsilon_c \cdot \chi^0,\tag{2}
$$

where v_c is the Coulomb potential and χ^0 is the non-interacting density response function which is related to the interacting one via the equation:

$$
\chi = \left(1 - \chi^0 \cdot v_c\right)^{-1} \cdot \chi^0,\tag{3}
$$

where in Eq. 2 and Eq. 3 integrals are implicit.

Within a plane wave (PW) representation where wavefunctions are expressed as linear combination of $PWs(exp(iG \cdot r), G$ is a reciprocal wave vector), for doubly filled shells, ϵ is defined as in Eq. 4, where ${\bf k}$ and q denote wave vectors, and $\varepsilon_{v,\mathbf{k}}, \varepsilon_{c,\mathbf{k}}$ are energies of the valence(v) and conduction(c) single particle states, respectively. In the case of molecules, one only considers $\mathbf{k} = 0$ and $\mathbf{q} \to 0$ and valence and conduction states correspond to the occupied and empty (or virtual) states, respectively.

$$
\epsilon_{\mathbf{G},\mathbf{G}'}(\mathbf{q}) = \delta_{\mathbf{G},\mathbf{G}'} - \frac{4\pi e^2}{|\mathbf{q} + \mathbf{G}|^2} \frac{4}{N_{\mathbf{k}}\Omega} \sum_{cv\mathbf{k}} \frac{\langle v, \mathbf{k}|e^{-i(\mathbf{q} + \mathbf{G}) \cdot \mathbf{r}}|c, \mathbf{k} + \mathbf{q}\rangle \langle c, \mathbf{k} + \mathbf{q}|e^{i(\mathbf{q} + \mathbf{G}') \cdot \mathbf{r}'}|v, \mathbf{k}\rangle}{\varepsilon_{v,\mathbf{k}} - \varepsilon_{c,\mathbf{k} + \mathbf{q}}}
$$
(4)

It is both formally and computationally convenient to introduce the symmetric form of the DM:

$$
\tilde{\epsilon}_{\mathbf{G},\mathbf{G}'}(\mathbf{q}) = \frac{|\mathbf{q} + \mathbf{G}|}{|\mathbf{q} + \mathbf{G}'|} \epsilon_{\mathbf{G},\mathbf{G}'}(\mathbf{q}). \tag{5}
$$

The symmetrized $\tilde{\epsilon}^{-1}$ can be diagonalized to obtain the dielectric eigenvalue spectrum $\lambda_m^{-1}(\mathbf{q})$ and eigenpotentials $\zeta_m(\mathbf{q})$:

$$
\sum_{\mathbf{G}'} \tilde{\epsilon}_{\mathbf{G},\mathbf{G}'}^{-1}(\mathbf{q}) \langle \mathbf{G}' | \zeta_m(\mathbf{q}) \rangle = \lambda_m^{-1}(\mathbf{q}) \langle \mathbf{G} | \zeta_m(\mathbf{q}) \rangle. \quad (6)
$$

The DBS¹⁻³ is defined as $\lambda_m^{-1}(\mathbf{q})$ vs. \mathbf{q} , in a manner analogous to the eigenvalues of the Hamiltonian of a periodic solid as a function of wave vector, which defines an electronic band structure.

For each of the solid and molecular systems investigated in the next sections, we define two different partitions of the core and valence electrons in our electronic structure and density functional perturbation theory (DFPT) calculations. We specify core, semi-core and valence electrons. The core electrons are the same in both partitions. In one partition we include semi-core electrons in the valence, i.e. we consider them as participating in the chemical bonding. We call this partition a semi-core (SC) one and the corresponding dielectric matrix $\tilde{\epsilon}^{SC}$:

$$
(\tilde{\epsilon}^{SC})^{-1} = \sum_{i} (\lambda_i^{SC})^{-1} |\zeta_i^{SC}\rangle \langle \zeta_i^{SC}|.
$$
 (7)

The other partition includes semi-core electrons in the core, i.e. we consider the latter frozen and not participating in the chemical bonding. We call this a VE partition and the corresponding dielectric matrix $\tilde{\epsilon}^{VE}$:

$$
(\tilde{\epsilon}^{VE})^{-1} = \sum_{i} (\lambda_i^{VE})^{-1} |\zeta_i^{VE}\rangle \langle \zeta_i^{VE}|.
$$
 (8)

To characterize the localization properties of the eigenvectors of the DM, or eigenpotentials, we define the inverse participation ratio (IPR) as:

$$
\text{IPR}_m = \frac{\frac{1}{N} \sum_{i=1}^N |\zeta_m(\mathbf{r}_i)|^4}{[\frac{1}{N} \sum_{i=1}^N |\zeta_m(\mathbf{r}_i)|^2]^2},\tag{9}
$$

where N is the number of points in the real space grid used to represent the eigenpotential ζ_m . An IPR value of 1 indicates that the mode is completely delocalized and the value increases from 1 with the localization of the eigenpotential.

To analyze the distribution of the dielectric eigenvalues, we calculated the density of states of the DM (DOS). A useful measure of the difference between the eigenpotentials of $({\tilde{\epsilon}}^{SC})^{-1}$ and those of $({\tilde{\epsilon}}^{VE})^{-1}$ is given by the projection (F_m) of the m^{th} eigenpotential of the $(\tilde{\epsilon}^{SC})^{-1}$ (ζ_m^{SC}) on the VE potentials eigenspace:

$$
F_m = \langle \zeta_m^{SC} | I_v | \zeta_m^{SC} \rangle, \quad I_v = \sum_j | \zeta_j^{VE} \rangle \langle \zeta_j^{VE} |.
$$
 (10)

We define DOS as:

$$
g_w(\lambda^{-1}) = (1 - \lambda^{-1}) \sum_m w_m \delta(\lambda^{-1} - \lambda^{-1}_m). \quad (11)
$$

The prefactor is included for presentation purposes, to temper the large values of the density of states as the eigenvalues of $\tilde{\epsilon}^{-1} \to 1$. Here $w_m = 1$ corresponds to the unweighted DOS and $w_m = F_m$ corresponds to weighting of the DOS according to the projection of the eigenmodes of $({\tilde{\epsilon}}^{SC})^{-1}$ onto the VE only subspace.

The eigenvalues and eigenvectors of the DM were computed using an iterative^{18,19,22,23} procedure built into codes that are post-processing modules of Quantum $Espresso^{24}$. We studied DBS and phonons of alkali hydride crystals, dielectric spectra and QP gaps of alkali halide molecules, alkali dimers and alkaline earth oxides. We considered experimental structures (except where noted) for all systems. We used the local density approximation (LDA) and norm-conserving semi-relativistic PPs in the separable form proposed by Hartwigsen-Goedecker-Hutter $(HGH)^{25}$.

III. DIELECTRIC BAND STRUCTURE AND INVERSE PARTICIPATION RATIO ANALYSIS: CRYSTALLINE NaH

Figure 1 shows the DBS of the simple ionic insulator NaH computed with two different core-valence partitions. The valence partition includes only the $3s¹$ electron of Na; the SC partition includes the $(2s²2p⁶)3s¹$ electrons. The colored dots in Fig. 1(a) and Fig. 1(b) show the magnitude of the projections $\langle \zeta_m^{SC}(\mathbf{q_o}) | \zeta_j^{VE}(\mathbf{q}) \rangle$ and $\langle \zeta_m^{SC}(\mathbf{q_o}) | \zeta_j^{SC}(\mathbf{q}) \rangle$ of eigenpotentials of $({\tilde{\epsilon}}^{SC})^{-1}$, $|\zeta_m^{SC}({\bf q_o})\rangle$ at a ${\bf q_o}$ -point near $\mathbf{q} = 0$ onto eigenpotentials of $(\tilde{\epsilon}^{VE})^{-1}$ and $(\tilde{\epsilon}^{SC})^{-1}$, respectively, at all the q points along the [100] direction . There are qualitative differences between the VE and SC dielectric band structures, despite the rather strong binding of the $2s$ (-50 eV) and $2p$ (-22 eV) levels. From Eq. 4, one might expect

FIG. 1: (Color online) Lowest 15 bands of the dielectric band structure (DBS) for fcc crystal NaH obtained by using core valence partitions with 1 valence electrons (VE) (a) and 9 valence electrons (SC) (b) for Na (see text). The colored dots in panel (a) and panel (b) show the magnitude of the projections $\langle \zeta_m^{SC}({\bf q_o})|\zeta_j^{VE}({\bf q})\rangle$ and $\langle \zeta_m^{SC}(\mathbf{q}_0) | \zeta_j^{SC}(\mathbf{q}) \rangle$ of eigenpotentials of $(\tilde{\epsilon}^{SC})^{-1}$, $|\zeta_m^{SC}(\mathbf{q_o})\rangle$ at a $\mathbf{q_o}$ -point near $\mathbf{q} = 0$ onto eigenpotentials of $({\tilde{\epsilon}}^{VE})^{-1}$ and $({\tilde{\epsilon}}^{SC})^{-1}$, respectively. Panel (c) shows the inverse participation ratio (IPR) of the DM eigenpotentials of for the SC and VE partitions at the Γ point. Panel (d) shows the IPR along with the dot size being the projection $(1-F_m)$ as defined in Eq. 10 for the SC eigenpotentials at the Γ point. The color code used for the arrows is the same as the one used for the eigenpotentials in (a) and (b).

the large energy denominator to lead to fully negligible contributions of the core states to the eigenvalues of $\tilde{\epsilon}^{-1}$. However we observed the appearance of bands with λ_m^{-1} well below unity (which corresponds to additional screening) when using the SC partition. For example, a band appears with $\lambda_m^{-1} =$ 0.45 at Γ; two additional bands appear around 0.7. In addition there are other bands closer to unity, and some bands present in the spectrum obtained with the VE partition are shifted, as SC character of the eigenpotentials is mixed with VE character.

Fig. 1(c) shows the IPR of the eigenmodes obtained with the SC and VE partitions at the Γ point. The color code used for the arrows in Fig. 1(c) and 1(d) is the same as the one adopted for the eigenpotentials, in Fig. 1(a) and Fig. 1(b). Note the log scale on the abscissa, chosen to better distinguish the eigenvalues near 1. The eigenmodes obtained with the VE partition have relatively low IPR values as compared to the ones computed for the SC partition. However the 1^{st} SC and VE eigenmodes at Γ are completely delocalized (IPR \approx 1). In Fig. 1(c), the second eigenmode , which has predominantly SC character (it is not present in the calculation with the VE partition) has a relatively high value of IPR.

To classify the SC eigenmodes further, Fig. 1(d) shows the VE fraction of the SC eigenmodes at the Γ point: each SC eigenpotential is projected onto the VE potentials eigenspace (Eq. 10), and we represent $(1-F_m)$ as a dot for each eigenstate. The VE fraction F_m depicts the character of the eigenmodes obtained using SC partition: the smaller F_m (larger 1- F_m) (and larger dot size), the more predominant is the SC character; the larger F_m (smaller 1- F_m) (and smaller dot size), the more predominant is the VE character.

IV. DENSITY OF STATES OF THE DIELECTRIC MATRIX AND PARTICIPATION RATIO: MOLECULES

We analyzed the dielectric spectra of several molecules representative of both ionic and covalent bonding including alkali dimers $(Rb₂, K₂, Na₂, Li₂),$ alkali halides (KI, KCl, NaCl) and alkaline earth oxides (CaO, SrO) by varying the core-valence partition of the cation. Similar to the case of the NaH crystal presented earlier, for Li, K, Rb, Ca and Sr we considered $(1s^2)2s^1$, $(3s^2, 3p^6)4s^1$, $(4s^2, 4p^6)5s^1$, $(3s^2, 3p^6)4s^2$ and $(4s^2, 4p^6)5s^2$ configurations, respectively. We studied the distribution of the dielectric eigenvalues of these molecules by calculating DOS as defined in Eq. 11.

We consider the dielectric matrices $(\tilde{\epsilon}^{VE})^{-1}$ and $({\tilde{\epsilon}}^{SC})^{-1}$ and we analyze their respective eigenvalues, eigenpotential character and eigenpotential localization properties. We discuss below three main findings: (i) the inclusion of semicore electrons in the screening of the Coulomb potential has a global influence on the eigenvalues of $\tilde{\epsilon}^{-1}$, i.e., the set of eigenvalues of $({\tilde{\epsilon}}^{SC})^{-1}$ may not be separated in subsets corresponding to eigenpotentials with a clearly defined SC or VE character; (ii) the character of the eigenpotentials depends on the type of bonding in the system, and (iii) the correlation between the eigenpotentials character and their localization properties depends again on the bonding properties.

We illustrate finding (i) in Fig. $2(a)$, $2(b)$, $2(c)$

FIG. 2: (Color online) Density of the states of dielectric matrix $g(\lambda^{-1}) = \sum_{m} \delta(\lambda^{-1} - \lambda^{-1}) \cdot w_m \cdot (1 - \lambda^{-1})$ as a function of the eigenvalue λ for the Rb₂ dimer, KCl molecule, and SrO molecule, where the weight w_m is defined in Eq. 10. The left panels show the density of states of $({\tilde{\epsilon}}^{SC})^{-1}$ (red, see Eq. 7) and $({\tilde{\epsilon}}^{VE})^{-1}$ (black, see Eq. 8) for $w_m = 1$. The right panels show the density of states of $({\tilde{\epsilon}}^{SC})^{-1}$ for $w_m \equiv 1$ (red, the same as reported on the left panels) and $w_m = F_m$ (blue, see Eq. 10).

which show the density of states of $({\tilde{\epsilon}}^{SC})^{-1}$ and that of $({\tilde{\epsilon}}^{VE})^{-1}$ for the Rb₂, KCl and SrO molecules respectively. These molecules are taken as representative of each class of molecules considered in our study. It is apparent from the figures that a clear separation of eigenvalues in SC-like and VE-like ones is not possible. The distribution of those that may be classified as the SC-like and VE-like strongly depends on the type of bonding in the system.

We now turn to discussing the character of eigenpotentials obtained using SC partition, illustrated in Fig. 2(d), 2(e), 2(f) where we compare DOS of $(\tilde{\epsilon}^{SC})^{-1}$ for two cases: $w_m=1$ and $w_m = F_m$ (see Eq. 11). It is seen once more that the character of the eigenpotentials depends on the bonding, e.g. in the case of SrO one observes small changes for the two different values of w_m , whereas substantial changes

FIG. 3: (Color online) Inverse participation ratio (IPR) as a function of the eigenvalues λ of $(\tilde{\epsilon}^{SC})^{-1}$ along with the dot size being the projection $(1-F_m)$ (see Eq. 10) for (a) alkali dimers, (b) alkali halides and (c) alkaline earth oxides. The log scale on the abscissa is chosen to better distinguish the eigenvalues near 1, where they would become very dense on a linear scale.

are present in the case of $Rb₂$ and KCl.

This observation about differences in the eigenpotential character, depending on the type of bonds, is further strengthened by the correlation between character and localization, shown in Fig. 3 where we plot the mode IPR as a function of the eigenvalues for the eigenmodes obtained using SC partition, and we represent the weight F_m of the eigenmodes by the symbol size. For oxides (Fig. $3(c)$), the highest localized modes have predominantly VE character, as indicated by the small values of $(1-F_m) \approx 0.02$. This is consistent with our analysis of the DOS of SrO. For the alkali dimers (Fig. 3(a)) and alkali halides (Fig. 3(b)) the most localized eigenmodes have predominantly SC character, similar to the case of NaH. The density of high IPR modes is more for alkali dimers as compared to alkali halides. Highly localized eigenmodes are present in Na₂ and more so in K_2 and Rb_2 , indicating substantial screening by semicore electrons, consistent with our findings for phonons in the next section. A point to note here is that the dipole polarizability of the Rb atom (319 a.u.) is the highest of all the alkali and alkaline earth atoms considered in this study, followed by K (291 a.u.) and Sr (186 a.u.).

We conclude, therefore that upon adding semicore electrons to the VE partition, the dielectric response varies both by the type of bonding and by the atomic size of the constituents. Additional screening channels appear for covalently bonded alkali dimers as compared to ionic molecules, with no appreciable change in the screening for alkaline earth oxides. As expected, the contributions of semicore electrons to screening is larger for larger alkali atoms.

V. DIELECTRIC BAND STRUCTURE AND PHONONS

In this section we present results for phonon frequencies and dielectric constants, obtained using different core-valence partitions. We also compared our findings with results obtained with non-linear core corrections $(NLCC)^{26,27}$ often used in the literature to include the contribution of semicore electrons. We show below that results obtained with NLCC and the SC partition differ and we discuss the origin of these differences.

TABLE I: Zone center phonon frequencies $(cm⁻¹)$ of the transverse (ω_{TO}) and longitudinal (ω_{LO}) optical modes of the fcc NaH, KH and RbH crystal, and electronic (ϵ^{∞}) and static dielectric constant (e^0) . Two core level partitions were used for Na, K and Rb (9 valence electrons, 9VE, and 1 valence electron, 1VE) and results are also given for calculation with 1 VE and a non-linear core correction (NLCC). The results are presented both at the experimental lattice constant and at the optimized geometry at the LDA level.

		ω_{TO} ω_{LO}	$\epsilon^{\overline{\infty}}$	ϵ^0
NaH @Experimental Geometry				
1 VE	330	801		3.27 19.3
9 VE	432	832	3.35	12.4
$1VE+NLCC$	438	837	3.2	11.7
@Optimized Geometry				
1 VE	540		934 3.31	9.9
9 VE	561	917	3.36	9.0
$1VE + NLCC$	568	925	3.2	8.5
@Experimental Geometry ΚH				
9 VE	405	726	2.9	9.3
1 VE+NLCC	376	708	2.5	8.7
@Optimized Geometry				
9 VE	519	808	2.9	7.2
$1 VE + NLCC$	613	876	2.4	4.9
RbH @Experimental Geometry				
9 VE	371	678	3.0	10.0
1 VE+NLCC	340	663	2.4	9.0
@Optimized Geometry				
9 VE	481	759	3.1	7.8
1 VE+NLCC	604	859	2.4	4.9

The dynamical matrix of a solid is given by the sum of an unscreened ionic part (I) and a screening part (E)

$$
D_{ss'}^{\alpha\beta}(\mathbf{q}) = (D_{ss'}^{\alpha\beta}(\mathbf{q}))^{I} + (D_{ss'}^{\alpha\beta}(\mathbf{q}))^{E}, \qquad (12)
$$

where α, β are cartesian components and s, s' label the atoms in the unit cell. The first term $(D_{ss'}^{\alpha\beta}(\mathbf{q}))^I$ contains the direct Coulomb interaction between the ion cores in the crystal. The term $(D_{ss'}^{\alpha\beta}(\mathbf{q}))^E$ is given by:

$$
(D_{ss'}^{\alpha\beta}(\mathbf{q}))^E = \frac{1}{(M_s M'_s)^{1/2}} (C_{ss'}^{\alpha\beta}(\mathbf{q}) - \delta_{ss'} \sum_{s''} C_{ss''}^{\alpha\beta}(0)).
$$
\n(13)

The force constants C are defined as:

$$
C_{ss'}^{\alpha\beta}(\mathbf{q}) = \frac{\Omega}{4\pi e^2} \sum_{\mathbf{G}\mathbf{G'}} (\mathbf{q} + \mathbf{G})_{\alpha} V_s(\mathbf{q} + \mathbf{G})
$$

$$
\times e^{i\mathbf{G} \cdot \mathbf{R_s}} |\mathbf{q} + \mathbf{G}|^2 [\epsilon_{\mathbf{G}\mathbf{G'}}^{-1}(\mathbf{q}) - \delta_{\mathbf{G}\mathbf{G'}}] (\mathbf{q} + \mathbf{G'})_{\beta}
$$

$$
\times V'_s(\mathbf{q} + \mathbf{G'}) e^{-i\mathbf{G'} \cdot \mathbf{R'_s}}, \quad (14)
$$

where M_s is the nuclear mass of the sth atom in the unit cell, Ω is the unit cell volume, \mathbf{R}_s is the position vector of the ion cores, V_s is the bare ion pseudopotential. Depending on the choice of the core-valence partition in the calculations of ϵ in Eq. 14, one expects to obtain different results for phonon frequencies.

The results for 9 valence electrons (corresponding to the SC partition) for solids containing, Na, K and Rb at optimized geometries are comparable with the previous phonon calculations^{28,29}, with differences, wrt Refs. 28,29 of less than 4% in the phonon frequencies. There are important differences between SC and VE results and they become increasingly important for the heavier alkali hydrides, reflecting strong contributions from semicore states. In the case of NaH, for example, the transverse optical frequencies ω_{TO} and the dielectric constant (Table I) evaluated using 1 valence electron for Na differ from SC calculations by 23% and 56%, respectively, when the experimental volume is used. The difference becomes larger for KH and RbH (Table I). This result is not unexpected, since it is known^{26,28,30} that when using pseudopotentials to describe materials containing alkali atoms, semicore electronic states must be included in the calculation.

It was previously reported that the use of $\text{NLCC}^{31,32},$ which accounts for the rigid shift of the semicore density as the nucleus moves, provides in many cases a good description of the phonons. We computed the DBS of LiH (not shown) and NaH using NLCC; the results differed by less than 2% from those obtained by VE calculations. Hence the use of NLCC does not account for the appearance of the additional eigenmodes observed in SC calculations. This correction is different from the full SC treatment, because in the latter the semicore electrons (1) respond self-consistently to changes in the potential not due to nuclear motion, and (2) they respond nonrigidly to the nuclear motion. However the NLCC is useful when there is strong spatial overlap of the semicore and valence wavefunctions, such as in the alkali atoms. As shown in Table I for NaH, NLCC account for most of the difference between SC and VE phonon frequencies, although additional differences of a few percent remain (4-5% in the value of ϵ^0). For the heavier alkali hydrides, the use of NLCC is progressively less accurate. For RbH, the remaining error is around 10% for ϵ^0 and reflects the effect of core polarization rather than simple rigid displacement of the core charge. We note that the error becomes worse if the volume is optimized including NLCC, instead of considering the experimental volume: the error is more than 37% for ϵ^0 and 25% for ω_{TO} . Evidently SC screening becomes more important as the volume decreases.

VI. CORE POLARIZATION EFFECTS ON QUASI-PARTICLE ENERGIES FOR MOLECULES

We carried out GW calculations for molecules using the method of Nguyen *et al.*⁴⁵ and obtained QP energies (E_i^{QP}) :

$$
E_i^{QP} = \varepsilon_i + \langle \psi_i | [\Sigma_c(E_i^{QP}) + \Sigma_x - V_{xc}] | \psi_i \rangle. \tag{15}
$$

Here ψ_i and ε_i are the eigenvectors and eigenvalues of the Kohn-Sham (KS) Hamiltonian. The correlation contribution to the self-energy is given by:

$$
\Sigma_c(\omega) = \frac{i}{2\pi} \int G(\mathbf{r}, \mathbf{r}'; \omega + \omega') W^c(\mathbf{r}, \mathbf{r}'; \omega') d\omega', \tag{16}
$$

where $W^c = W - v_c$ and W is the screened Coulomb potential given by:

$$
W = \epsilon^{-1} \cdot v_c = v_c + v_c \cdot \chi \cdot v_c. \tag{17}
$$

The full self-energy is $\Sigma = \Sigma_x + \Sigma_c$ where the exchange contribution is given by:

$$
\Sigma_x = -\sum_i^{occ} \psi_i(\mathbf{r}) v_c(\mathbf{r}, \mathbf{r}') \psi_i^*(\mathbf{r}'). \tag{18}
$$

 V_{xc} is the exchange-correlation potential entering the Kohn-Sham Hamiltonian.

We compared QP energies obtained by performing three types of calculations that we denote as follows: (i) $G^{SC}W^{SC}$, (ii) $G^{SC}W^{VE}$, and (iii) $G^{VE}W^{VE}$, where as in previous sections VE and SC denote different core valence partitions. In (i), both the G and the dielectric matrix (hence W) are computed including semicore electrons, which corresponds to the most complete and accurate representation of the electronic screening. Calculations (ii) differ from (i) in the treatment of W: in (ii) ϵ^{VE} instead of ϵ^{SC} is used; in (iii) both G and W are computed using only the VE partition. The hybrid calculation (ii) is presented for analysis purposes, to identify the contribution of the semicore electrons to the screened Coulomb potential.

In Table II we report the computed ionization energies, electron affinities, and gaps for calculations (i), (ii) and (iii) along with the LDA KS values, for three classes of diatomic molecules: alkali halides, alkali dimers, and alkaline earth oxides. While there are regularities within each class, there are important differences between classes.

In contrast to previous evidence that the inclusion of semi-core states results in reduced band gaps^{46,47}, for the molecules considered in our study we found reductions or increases in the band gaps, depending on the system. Alkali halides and alkali dimers exhibit larger band gaps for the $G^{SC}W^{SC}$ type calculation when compared to their VE counterpart $(G^{VE}W^{VE})$, however alkaline earth oxides show the opposite trend. Gomez-Abal $et\ al.^7$ also observed similar findings for solids, e.g. GaAs and CaSe gaps obtained with PP were smaller than their AE counterparts.

For several semiconductors and insulators, it was found that non self-consistent GW PP calculations with VE partitions were successful in reproducing band gaps of most semiconductors and insulators, and that often all-electron (AE) non-self consistent GW results were worse than the corresponding PP GW ones⁷, when compared to experiments. This is possibly due to compensating approximations in the GW PP formulation such as core valence partitioning and use of pseudo wavefunctions¹⁶. Our results for molecules confirm this finding for gaps for two classes of systems (alkali halides and alkaline earth oxides), but for alkali dimers the SC results are in better agreement with experiments than the VE results. Below we summarize our findings for each class of molecules considered here.

Alkali halide molecules. The HOMO energy level from GW calculations compares well with the measured ionization potential (IP). The agreement of the LUMO energy with the electron affinity(EA) and of the computed QP gap with the measured one is worse (the gap is larger) for the SC calculation. For example, for KI and KCl the difference between computed and measured QP gaps is 5% and 11% respectively, for SC, compared to 2% and 8% for VE calculations. By isolating the effect of core polarization we observed that the difference in the computed QP band gaps is of the order of 0.1 eV. The agreement with the experiment worsens for the 'hybrid' calculations compared to the SC calculation, by 1% and 2% for KCl and KI, respectively.

Alkaline earth oxides. Similar to the case of alkaline halides, the HOMO energy is in worse agreement with the measured IP for the SC partition. For SrO for example, the difference between the HOMO energy and IP is 9% for the $G^{SC}W^{SC}$ calculation as compared to $\approx 2\%$ for the G^{VE}W^{VE} calculation. Isolating the core polarization effects hardly affects the difference between the HOMO and IP (0.3% increase). The core-polarization effect is negligible for the band gap in these oxides, consistent with the more moderate SC screening that can be discerned from DOS (Fig. $2(f)$) and the IPR analysis (Fig. $3(c)$.

Alkali dimers. The trend noticed above where SC results are in worse agreement with the experiment as compared to the VE results is reversed for alkali dimers, which are covalently bonded, as opposed to the other molecules where there is (partial) charge transfer between anions and cations. The SC results for QP gaps and LUMO energies are in better agreement with experiment than are the VE results. Taking the K_2 and Rb_2 molecules as examples, the QP gaps are within 1.4% and 1% of the experiment for SC, versus 4.5% and 7% for VE, respectively. Core polarization affects the QP band gap by up to 0.15 eV for K_2 and ≈ 0.1 eV for Rb_2 . The hybrid calculation worsens the agreement with the experiment when compared to $G^{\tilde{S}C}W^{SC}$: 1.6% and 4% for K_2 and Rb2. The SC results are in better agreement than VE with experimental gaps for all the alkali dimers, unlike for the alkali halide molecules.

Overall we find that if accuracies of the order of 100-200 meV in calculated QP eigenvalues are desired, the inclusion of SC states is necessary not only in the calculation of wave functions and thus of Σ_x and V_{xc} , but also in the evaluation of Σ_c . We thus confirm previous work, indicating that the inclusion of even fairly strongly bound semicore states that might be thought to be inert, based on a large denominator in Eq. 4, can substantially contribute to HOMO and LUMO QP energies. For example, in the case of $Rb₂$ (containing the alkali atom with the largest polarizability), the contribution of semicore polarization to the LUMO state and the gap is about 100 meV. For K_2 , the contributions to the HOMO, LUMO and the gap are about 200, 100 and 150 meV, respectively. For alkali halides such as KCl and KI, the contribution of semicore polarization to the computed gap and LUMO energy is of the order of 100 meV. However if errors of the orders of 100-200 meV may be tolerated, e.g. in analyzing trends of QP gaps within certain classes of systems, one may use an approximate dielectric screening computed with the VE partition , with substantial computational savings.

VII. SUMMARY

We presented a new approach for calculating and analyzing the effect of electronic semi-core polarization on dielectric, vibrational, and electronic excitation properties of molecules and solids, based on the spectral decomposition of the dielectric matrix. Including semicore electrons leads to additional eigenmodes in the dielectric band structure with eigenvalues substantially different from unity. Even if the eigenmodes are localized, as it often happens, they contribute to screening. Polarization arising from semicore electrons may contribute ∼10% to both the dielectric constants and transverse optical phonon modes, with effects being greater for systems constituting the larger and therefore more polarizable atoms. The distribution of dielectric eigenvalues and the inverse participation ratio analysis for molecules show that there is no clear distinction between eigenmodes due to semicore response versus those from valence electrons; there is a continuum, with the mixing being more widespread for molecules with larger atoms. The effects of the core polarization, e.g. on computed quasi particle gaps, are found to be different for molecules with covalent and ionic bonds. The GW predictions of quasiparticle energies and of the gap, have been quantified and trends within classes of diatomic molecules have been identified. If precision of ∼200 meV in these energies is needed, semicore electrons must be included in the calculations. Otherwise they may be discarded, with substantial saving in the calculations.

VIII. ACKNOWLEDGEMENTS

We thank Y. Ping, Y. Li, H.-V. Nguyen and D. Rocca for useful discussions. This work was supported by DOE/SciDAC-e grant DE-FC02-06ER25777, DOE/SciDac grant DE-FC02-06ER25794 and DOE/BES grant DE-FG02- 06ER46262 (GG and TAP). We used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575, and the NERSC facility at LBNL. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886D. A. Kaur was supported by the Guru Gobind Singh Fellowship.

Appendix A: Quasi-particle energies

We provide the matrix elements of the self energy (exchange: Σ_x , and correlation: Σ_c terms), exchange correlation potential V_{xc} , LDA KS energies and computed QP energies for the HOMO, LUMO and the gap of a representative molecule from each class of molecules considered in this study. The results are shown for 3 different types of calculations as decribed in the Sec. VI (i) $G^{S\tilde{C}}\tilde{W}^{SC}$, (ii) $G^{SC}W^{VE}$, and (iii) $G^{VE}W^{VE}$.

Comparison with the literature. For the sp-bonded solids considered in Refs. 7,16 the authors found that even though there is a large difference in the PP (VE) and all-electron (AE) matrix elements of Σ_x and V_{xc} , the sum $(\Sigma_x - V_{xc})$ is similar in the two cases. The way the latter sum is computed gave negligible differences in the computed E_{qap} , with major differences coming instead from the Σ_c matrix elements. However, while for the sp bonded molecules (alkali dimers), we found a similar trend as in Refs. 7,16, such trend did not hold for alkali halides and alkaline earth oxides(Table-III).

For example, for K_2 , the difference between ($\langle \Sigma_x \rangle - \langle V_{xc} \rangle$ obtained with VE and SC partitions is negligible. The remaining difference between the VE and SC band gaps comes from the underestimation of Σ_c in the VE calculations(≈ 0.2 eV). Instead in the case of alkali halides, such as KI, the difference in the gap between the VE and SC calculations arises from the difference both the matrix elements of Σ_x and V_{xc} (of the order of 0.7 eV and 1.7 eV, respectively). The cancellation is incomplete and it contributes to the difference between the SC and VE band gaps, together with the difference in the matrix elements of Σ_c . There is an overestimation in the correlation energy in VE calculations (≈ 0.5 eV) which tends to reduce the effect of incomplete cancellation between the matrix elements of Σ_x and V_{xc} . Similarly, in the case of alkaline earth oxides such as SrO, the cancellation is incomplete $(\langle \Sigma_x \rangle - \langle V_{xc} \rangle)$ ≈ 0.3 eV) which along with the overestimation of the KS band gap (≈ 0.4 eV) by VE only calculations and the difference in the correlation term (\approx 0.2 eV), lead to a difference between the SC and VE computed band gaps.

TABLE II: Energies of the highest occupied (HOMO) and lowest unoccupied (LUMO) energy levels in eV of several diatomic molecules, obtained using density functional theory calculations within the LDA (E^{SC} , E^{VE}) using two different core-valence partitions, semi-core (SC) and valence only (VE), within non-self consistent GW calculations. The experimental ionization potential (IP) and electron affinity (EA) are given for the corresponding HOMO and LUMO levels.

		HOMO	LUMO	Gap
$\overline{\text{NaCl}}$	E^{SC}	-5.36	-1.99	3.37
	\mathbf{E}^{VE}	-5.3	-1.71	3.59
	$\mathbf{G}^{SC}\mathbf{W}^{SC}$	-9.19	-0.29	8.9
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-9.19	-0.27	8.92
	$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-9.18	-0.53	8.65
	Exp.	9.2^{33}	0.769^{34}	8.43
KCI	E^{SC}	-4.97	-1.55	3.42
	\mathbf{E}^{VE}	-4.88	-1.24	3.64
	$\mathbf{G}^{SC}\mathbf{W}^{SC}$	-8.68	-0.06	8.62
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-8.69	0.025	8.72
	$\mathrm{G}^{VE}\mathrm{W}^{VE}$	-8.68	-0.32	8.36
	Exp.	$8.3^{35}\,$	$0.582{\pm0.01}^{36}$	7.72
KI	\mathbf{E}^{SC}	-4.59	-1.71	2.88
	${\rm E}^{VE}$	-4.53	-1.41	3.12
	$G^{SC}W^{SC}$	-7.56	-0.22	7.34
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-7.56	-0.14	7.42
	$\mathrm{G}^{VE}\mathrm{W}^{VE}$	-7.56	-0.44	7.12
	Exp.	7.5 ± 0.4^{37}	0.5 ± 0.1^{38}	7.0
Li ₂	E^{SC}	-3.18	-1.76	1.42
	\mathbf{E}^{VE}	-3.17	-1.73	1.44
	$\mathbf{G}^{SC}\mathbf{W}^{SC}$	-4.91	-0.71	4.2
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-4.95	-0.71	4.24
	$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-4.94	-0.74	4.20
	Exp.	5.112 ± 0.0003^{39}		
Na ₂	E^{SC} \mathbf{E}^{VE}	-3.14	-1.79	1.35
	$\mathbf{G}^{SC}\mathbf{W}^{SC}$	-3.16	-1.8	1.36 4.41
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-5.19	-0.78	4.42
	$\mathrm{G}^{VE}\mathrm{W}^{VE}$	-5.21 -4.96	-0.79 -0.69	4.27
		4.8951 ± 0.0002^{40}	0.43 ± 0.015^{41}	4.47
$\overline{K_2}$	Exp. E^{SC}	-2.54	-1.58	0.96
	\mathbf{E}^{VE}	-2.6	-1.65	0.95
	$\mathbf{G}^{SC}\mathbf{W}^{SC}$	-4.22	-0.60	3.62
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-4.03	-0.52	3.51
	$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-4.18	-0.78	3.4
	Exp.	$4.0637{\pm}0.0002^{40}$	0.497 ± 0.012^{42}	3.57
$\overline{\mathrm{Rb}}_2$	E^{SC}	-2.43	-1.52	0.91
	\mathbf{E}^{VE}	-2.52	-1.6	0.92
	$\mathrm{G}^{SC}\mathrm{W}^{SC}$	-3.88	-0.51	3.37
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-3.88	-0.62	3.26
	$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-3.9	-0.74	3.17
	Exp.	3.9 ± 0.1^{41}	$0.498{\pm0.015}^{43}$	3.402
CaO	\mathbf{E}^{SC}	-3.904	-2.33	1.574
	\mathbf{E}^{VE}	-4.04	-1.92	2.06
	$G^{SC}W^{SC}$	-6.46	-0.55	5.91
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-6.41	-0.51	$5.9\,$
	$G^{VE}W^{VE}$	-6.88	-0.55	6.33
	Exp.	$6.66 {\pm} 0.18^{44}$		
SrO	\mathbf{E}^{SC}	-3.67	-2.21	1.46
	\mathbf{E}^{VE}	-3.86	-1.97	1.89
	$G^{SC}W^{SC}$	-6.01	-0.39	5.62
	$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-5.99	-0.36	5.63
	$\mathrm{G}^{VE}\mathrm{W}^{VE}$	-6.45	-0.52	5.93
	Exp.	6.6 ± 0.18^{44}		

TABLE III: The matrix elements of the self energy (in eV) for the exchange Σ_x , correlation Σ_c and the exchange correlation potential V_{xc} for KI, K_2 and SrO along with the Kohn-Sham energies (E^{KS}) and QP energies (in eV) of the highest occupied (HOMO), lowest unoccupied (LUMO) energy levels and the Gap for (i) $G^{SC}W^{SC}$, (ii) $G^{SC}W^{VE}$ and (iii) $G^{VE}W^{VE}$ calculations.

			\overline{E}^{KS}	$\langle \Sigma_x \rangle$	$\langle V_{xc} \rangle$	$\langle \Sigma_x \rangle$ $\langle V_{xc} \rangle$	$\langle\Sigma_c\rangle$	E^{QP}
KI	HOMO	$\mathrm{G}^{SC}\mathrm{W}^{SC}$	-4.59	-13.56	-10.17	-3.39	0.42	-7.56
		$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-4.59	-13.56	-10.17	-3.39	0.42	-7.56
		$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-4.54	-13.51	-10.1	-3.41	0.39	-7.56
	LUMO	$\mathrm{G}^{SC}\mathrm{W}^{SC}$	-1.71	-1.11	-3.43	2.32	-0.83	-0.22
		$\mathrm{G}^{SC}\mathrm{W}^{VE}$	-1.71	-1.11	-3.43	2.32	-0.75	-0.14
		$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-1.41	-0.39	-1.71	1.32	-0.35	-0.44
	Gap	$\mathrm{G}^{SC}\mathrm{W}^{SC}$	2.88	12.45	6.74	5.71	-1.25	7.34
		$\mathrm{G}^{SC}\mathrm{W}^{VE}$	2.88	12.45	6.74	5.71	-1.17	7.42
		$\mathbf{G}^{VE}\mathbf{W}^{VE}$	$3.13\,$	13.12	8.39	4.73	-0.74	7.12
K_2	HOMO	$\overline{\mathrm{G}^{SC} \mathrm{W}^{SC}}$	-2.54	-5.38	-4.65	-0.73	-0.95	-4.22
		$\mathrm{G}^{SC}\mathrm{W}^{VE}$	-2.54	-5.38	-4.65	-0.73	-0.76	-4.03
		$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-2.6	-4.69	-3.56	-1.13	-0.45	-4.18
	LUMO	$\mathrm{G}^{SC}\mathrm{W}^{SC}$	-1.58	-1.49	-3.76	2.27	-1.29	-0.6
		$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-1.58	-1.49	-3.76	2.27	-1.21	-0.52
		$\mathbf{G}^{VE} \mathbf{W}^{VE}$	-1.65	-0.91	-2.77	1.86	-0.99	-0.78
	Gap	$\mathrm{G}^{SC}\mathrm{W}^{SC}$	0.96	3.89	0.89	3.0	-0.34	3.62
		$\mathrm{G}^{SC}\mathrm{W}^{VE}$	0.96	3.89	0.89	3.0	-0.45	3.51
		$\mathbf{G}^{VE}\mathbf{W}^{VE}$	0.95	3.78	0.79	2.99	-0.54	3.4
SrO	HOMO	$\mathbf{G}^{SC}\mathbf{W}^{SC}$	-3.67	-21.53	-17.01	-4.52	2.18	-6.01
		$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-3.67	-21.53	-17.01	-4.52	2.21	-5.98
		$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-3.87	-20.69	-15.75	-4.94	2.36	-6.45
	LUMO	$\mathrm{G}^{SC}\mathrm{W}^{SC}$	-2.21	-1.89	-4.68	2.79	-0.97	-0.39
		$\mathbf{G}^{SC}\mathbf{W}^{VE}$	-2.21	-1.89	-4.68	2.79	-0.93	-0.35
		$\mathbf{G}^{VE}\mathbf{W}^{VE}$	-1.97	-1.08	-3.13	2.05	-0.6	-0.52
	Gap	$\mathrm{G}^{SC}\mathrm{W}^{SC}$	1.46	19.64	12.33	7.31	-3.15	5.62
		$\mathbf{G}^{SC}\mathbf{W}^{VE}$	1.46	19.64	12.33	7.31	-3.14	5.63
		$\mathbf{G}^{VE}\mathbf{W}^{VE}$	1.9	19.61	12.62	6.99	-2.96	5.93

- ¹ A. Baldereschi and E. Tosatti, Solid State Communications 29, 131 (1979).
- ² R. Car, E. Tosatti, S. Baroni, and S. Leelaprute, Phys. Rev. B 24, 985 (1981).
- ³ M. S. Hybertsen and S. G. Louie, Phys. Rev. B 35, 5585 (1987).
- ⁴ P. B. Allen, M. L. Cohen, and D. R. Penn, Phys. Rev. B 38, 2513 (1988).
- ⁵ E. L. Shirley, X. Zhu, and S. G. Louie, Phys. Rev. Lett. 69, 2955 (1992).
- ⁶ E. L. Shirley, X. Zhu, and S. G. Louie, Phys. Rev. B 56, 6648 (1997).

7 R. Gómez-Abal,
- X. Li, M. Scheffler, and C. Ambrosch-Draxl, Phys. Rev. Lett. 101, 106404 (2008).
- ⁸ A. Marini, G. Onida, and R. Del Sole, Phys. Rev. Lett. 88, 016403 (2001).
- ⁹ M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418 (1985).
- ¹⁰ M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
- 11 M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. Lett. 75, 3489 (1995).
- ¹² M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 57, 6485 (1998).
- ¹³ M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 56, R7065 (1997).
- ¹⁴ W. Ku and A. G. Eguiluz, Phys. Rev. Lett. 89, 126401 (2002).
- ¹⁵ L. Hedin, Phys. Rev. 139, A796 (1965).
- 16 X.-Z. Li, R. Gómez-Abal, H. Jiang, C. Ambrosch-Draxl, and M. Scheffler, New Journal of Physics 14, 023006 (2012).
- ¹⁷ P. Umari and S. Fabris, J. Chem. Phys. 136, 174310 (2012).
- ¹⁸ H. F. Wilson, F. Gygi, and G. Galli, Phys. Rev. B 78, 113303 (2008).
- ¹⁹ H. F. Wilson, D. Lu, F. Gygi, and G. Galli, Phys. Rev. B 79, 245106 (2009).
- ²⁰ J. A. Van Vechten and R. M. Martin, Phys. Rev. Lett. 28, 446 (1972).
- ²¹ S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, Phys. Rev. Lett. 34, 155 (1975).
- 22 H.-V. Nguyen and S. de Gironcoli, Phys. Rev. B 79, 205114 (2009).
- 23 H.-V. Nguyen and S. de Gironcoli, Phys. Rev. B $\bf 79,$ 115105 (2009).
- ²⁴ P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., Journal of Physics: Condensed Matter 21, 395502 (2009).
- ²⁵ C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).
- 26 D. Porezag, M. R. Pederson, and A. Y. Liu, Phys. Rev. B 60, 14132 (1999).
- ²⁷ S. G. Louie, S. Froyen, and M. L. Cohen, Phys. Rev. B 26, 1738 (1982).
- ²⁸ W. Yu, C. Jin, and A. Kohlmeyer, Journal of Physics: Condensed Matter 19, 086209 (2007).
- ²⁹ V. I. Zinenko and A. S. Fedorov, Sov. Phys.- Solid State 36, 742 (1994).
- ³⁰ J. Zhang, L. Zhang, T. Cui, Y. Li, Z. He, Y. Ma, and G. Zou, Phys. Rev. B 75, 104115 (2007).
- ³¹ G. Roma, C. M. Bertoni, and S. Baroni, Solid State Communications 98, 203 (1996), ISSN 0038-1098, URL http://www.sciencedirect.com/ science/article/pii/0038109896000671.
- ³² J. Y. Zhang, L. J. Zhang, T. Cui, Y. L. Niu, Y. M. Ma, Z. He, and G. T. Zou, J. Phys.: Condens. Matter 19, 425218 (2007).
- ³³ D. J. Williams, Aust. J. Chem 35, 1531 (1982).
- ³⁴ C. De Vreugd, R. Wijnaendts Van Resandt, J. Los, B. Smith, and R. L. Champion, Chemical Physics 42, 305 (1979).
- ³⁵ H. Bloom and D. J. Williams, Journal of Chemical Physics 75, 4636 (1981).
- ³⁶ T. M. Miller, D. G. Leopold, K. K. Murray, and W. C. Lineberger, Journal of Chemical Physics 85, 2368 (1986).
- ³⁷ H.-H. Emons, W. Horlbeck, and D. Kiessling, Z. Anorg. Allg. Chem. 488, 212 (1982).
- ³⁸ Y. A. Yang, L. A. Bloomfield, C. Jin, L. Wang, and R. E. Smalley, J. Chem. Phys. 96, 2453 (1992).
- ³⁹ M. W. McGeoch and R. E. Schlier, Chemical Physics Letters 99, 347 (1983).
- ⁴⁰ M. M. Kappes, P. Radi, M. Schar, and E. Schumacher, Chemical Physics Letters 113, 243 (1985).
- ⁴¹ K. M. McHugh, J. G. Eaton, G. H. Lee, H. W. Sarkas, L. H. Kidder, J. T. Snodgrass, M. R. Manaa, and K. H. Bowen, J. Chem. Phys. 91, 3792 (1989).
- ⁴² J. G. Eaton, H. W. Sarkas, S. T. Arnold, K. M. McHugh, and K. H. Bowen, Chemical Physics Letters 193, 141 (1992).
- ⁴³ M. M. Kappes and E. Schumacher, Surface Science 156, Part 1, 1 (1985).
- ⁴⁴ N. F. Dalleska and P. B. Armentrout, International Journal of Mass Spectrometry and Ion Processes 134, 203 (1994).
- ⁴⁵ H.-V. Nguyen, T. A. Pham, D. Rocca, and G. Galli, Phys. Rev. B 85, 081101(R) (2012).
- ⁴⁶ M. L. Tiago, S. Ismail-Beigi, and S. G. Louie, Phys. Rev. B 69, 125212 (2004).
- ⁴⁷ M. van Schilfgaarde, T. Kotani, and S. V. Faleev, Phys. Rev. B 74, 245125 (2006), URL http://link. aps.org/doi/10.1103/PhysRevB.74.245125.