
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Real-space parallel density matrix renormalization group
E. M. Stoudenmire and Steven R. White

Phys. Rev. B 87, 155137 — Published 22 April 2013
DOI: 10.1103/PhysRevB.87.155137

http://dx.doi.org/10.1103/PhysRevB.87.155137

Real-Space Parallel Density Matrix Renormalization Group

E. M. Stoudenmire and Steven R. White
Department of Physics and Astronomy, University of California, Irvine, CA 92697

(Dated: April 3, 2013)

We demonstrate how to parallelize the density matrix renormalization group (DMRG) algorithm
in real space through a straightforward modification of serial DMRG. This makes it possible to
apply at least an order of magnitude more computational power to challenging simulations, greatly
accelerating investigations of two-dimensional systems and large parameter spaces. We discuss
details of the algorithm and present benchmark results including a study of valence-bond-solid
order within the square-lattice Q2 model and Néel order within the triangular lattice Heisenberg
model. The parallel DMRG algorithm also motivates an alternative canonical form for matrix
product states.

PACS numbers: 05.10.Cc, 02.70.-c, 05.30.-d

I. INTRODUCTION

The density matrix renormalization group (DMRG) is
a method for computing ground states of one-dimensional
(1d) systems1–3 which has recently proven surprisingly
effective for studying two-dimensional (2d) models, espe-
cially those beyond the reach of quantum Monte Carlo
due to frustratated interactions or mobile fermions.4–14

DMRG is also valuable in quantum chemistry where it
has extended the ability of previous methods to deal with
strong correlation.15–17 But applying DMRG to 2d and
quantum chemical systems is computationally very de-
manding. Even in 1d, DMRG can be costly for systems
having many degrees of freedom.18–20 Finding an efficient
way to divide a single DMRG calculation across multi-
ple processors would make larger calculations tractable,
but a truly parallel DMRG algorithm has remained an
outstanding problem.

Previous DMRG implementations have achieved a lim-
ited form of parallelism by parallelizing over different
terms in the Hamiltonian.21 This is effective in a quan-
tum chemistry context where the number of terms is es-
pecially large. However, since the terms contained en-
tirely within a single spatial region are already combined
as much as possible within DMRG, the efficiency of this
approach is less than ideal. A similar type of limited
parallelism subdivides matrices into quantum number
blocks.22,23 But this approach is restricted by a limited
range of quantum numbers and a large variation in sub-
block size. The least powerful, but simplest form of par-
allelism breaks up dense matrix computations into sub-
blocks and is performed automatically by standard linear
algebra libraries.

Here we present a much more powerful form of paral-
lelism, dividing a single DMRG calculation over separate
regions of the system in real space. Except at the bound-
ary of each region, the algorithm reduces to standard
finite-size DMRG, making it relatively straightfoward to
implement in existing, highly-optimized DMRG codes.
Real-space parallelism can be used independently of the
other types discussed above and becomes increasingly ef-
fective as the system size increases. In practice, we ob-

2 4 6 8 10

Number of Nodes n

2 2

4 4

6 6

8 8

10 10

S
p
ee

d
u
p

Ideal Speedup

Parallel DMRG

FIG. 1. Timing of parallel DMRG ground state calculations
for the spin 1/2 Heisenberg model on the 24×8 square lattice
(cylindrical boundary conditions14). A speedup of S indicates
that the calculation using n nodes was S times faster than
the same calculation using only one node. Each calculation
consisted of 10 sweeps and reached a relative energy accuracy
of 10−5 by keeping m = 2000 states in the final two sweeps.
The speedup is so close to ideal for the two-node case because
the reflection symmetry permits optimal load balancing and
minimizes waiting time at the communication step.

serve close to ideal speedups as shown in Fig. 1.
Note that some extensions of DMRG are already real-

space parallelizable, such as time-dependent DMRG algo-
rithms based on factorizations of the time-evolution op-
erator, as in a Suzuki-Trotter approximation.24,25 These
algorithms can be used to compute ground states through
imaginary time evolution. But imaginary time evo-
lution is much less efficient than the usual DMRG
diagonalization-based method, therefore it is primarily
useful when the standard DMRG ground state approach
is not applicable (for example, when optimizing 2d tensor
networks such as PEPS26–28).

After introducing the parallel DMRG algorithm in sec-
tion II, we use it to compute the strength of the valence-
bond-solid order in the pure Q2 model on the square

2

(b) Sweep

{ {

{
(d) Optimize

(c) Merge

(a) Distribute

Sweep

FIG. 2. The parallel DMRG algorithm for the simplest case of dividing a single calculation over two machines. Circles represent
lattice sites (or matrix product state site-tensors) and the diamond is the matrix V on the shared bond as in Eq. (4). In step
(a), the local information needed to sweep left is copied to the left machine and similarly for the right. Each machine then
performs a DMRG sweep (b) in parallel over its half of the system. In step (c) the wavefunctions are merged together using the
prescription preceding Eq. (5). Before repeating the algorithm, the merged state is optimized (d) using Lanczos or Davidson
on the shared bond.

lattice (section III A) and the strength of the Neél order
in the Heisenberg model on the triangular lattice (sec-
tion III B). Both applications involve calculations which
would take many weeks using serial DMRG but require
only a few days using our parallel approach. Finally, in
section IV we discuss how real-space parallel DMRG mo-
tivates an alternative canonical gauge for matrix product
states.

II. PARALLEL DMRG ALGORITHM

To describe the algorithm, first consider parallelizing
a single DMRG calculation over just two regions. For
concreteness, take the system to have six sites such that
the center bond connects sites 3 and 4. As a warmup,
first perform a few sweeps of the standard, serial finite-
size DMRG algorithm1–3 keeping only a small number of
states so this non-parallel part takes relatively little time.
Stop when the two exposed sites are at the center bond
as in Fig. 2(a).

At this point the wavefunction within DMRG has the
form

|Ψ〉 =
∑

α2s3s4α4

Ψα2s3s4α4 |α2〉L|s3〉|s4〉|α4〉R (1)

where s3, s4 = 1, . . . , d label the lattice basis on sites 3
and 4, and α2, α4 = 1, . . . ,m label orthonormal many-
body states approximating |Ψ〉 within the left and right
blocks, respectively.

DMRG proceeds in two steps: first, this wavefunction
is optimized using a few Lanczos or Davidson steps with
the Hamiltonian projected into the |α2〉L|s3〉|s4〉|α4〉R

basis.3 Then a renormalization group procedure is carried
out based on the singular value decomposition (SVD) of
the amplitudes Ψ

Ψ(α2s3)(s4α4) =
∑
α3

A(α2s3)
α3

Λα3B(s4α4)
α3

. (2)

(with Ψ temporarily treated as an (md)× (dm) matrix).
Following the SVD, all but the largest m singular values
are truncated.

In the serial DMRG algorithm, one next selects ei-

2 4 6 8 10
Sweep Number

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1
 -

 O
v
er

la
p

FIG. 3. Prediction fidelity 1−〈Ψ′n|Ψn〉 at the center (shared)
bond of a DMRG calculation parallelized across two nodes.
|Ψ′n〉 is the initial merged wavefunction following sweep n as
in Eq. (5). |Ψn〉 is the wavefunction resulting from a fully con-
verging Davidson calculation initialized with |Ψ′n〉. The sys-
tems are, from top to bottom, the 200 site S = 1/2 Heisenberg
chain without warmup sweeps (dashed blue circles); S = 1/2
chain with warmup sweeps (solid blue circles); S = 1 Heisen-
berg chain without (dashed black squares) and with warmup
sweeps (solid black squares). The warmup consisted of 5 se-
rial DMRG sweeps keeping m = 50 states. For the parallel
sweeps, m was increased after every other sweep to a maxi-
mum of 600.

3

ther the transformation matrix B to grow the right
block, in which case the product AΛ is used to com-
pute the wavefunction amplitudes on the bond to the
left, or one chooses the transformation matrix A to grow
the left block and ΛB to form the next wavefunction
amplitudes.29,30 Iterating these steps generates a sweep-
ing procedure which improves the wavefunction at every
bond sequentially.

Now assume we have two computers able to work in
parallel. Following the SVD, the first machine could
sweep left while the second simultaneously sweeps right.
However this soon leads to a conceptual issue: each
computer will be working with a different wavefunction
globally. One can temporarily ignore this problem, but
when the computers meet again it will be unclear how to
merge their wavefunctions for the purpose of performing
a DMRG step on their shared bond.

To overcome this inconsistency, rewrite Eq. (2) but

insert the identity ΛV = 1, where V
def
= Λ−1:

Ψα2s3s4α4 =
∑
α3

Aα2s3
α3

Λα3Vα3
Λα3Bs4α4

α3
(3)

def
=

∑
α3

ψα2s3α3
3 Vα3

ψα3s4α4
4 . (4)

Again both machines can sweep in parallel, but when
they return to their shared bond—the left with updated
amplitudes ψ′3 and the right with amplitudes ψ′4—there
is a consistent way to merge the two wavefunctions. To
define the merged wavefunction, take the DMRG ba-
sis states |α2〉L for the left from the machine sweeping
over that region; the states |α4〉R for the right from the
other machine; and for the amplitudes at the center bond
choose

Ψ′ = ψ′3 V3 ψ
′
4 , (5)

similarly to Eq. (4), using the original V . Note that
the exact ground state is a fixed point of this procedure.
After merging the two wavefunctions for optimization on
the shared bond, the merged wavefunction can again be
split in two if more parallel sweeps are needed.

Though there is no communication between machines
prior to each merge, in practice we find that Eq. (5) pro-
vides a good initial state for the Lanczos or Davidson
steps on the shared bond, as shown in Fig. 3. How-
ever, because each machine otherwise updates the wave-
function independently, DMRG convergence is typically
slower at the shared bond, especially near the beginning
of a calculation. Although this means parallel DMRG
gives slightly worse results compared to serial DMRG for
the same number of sweeps, the nearly ideal speedup in
calculation time more than compensates for this effect.

Though the discussion above emphasizes the wave-
function, an important part of DMRG is transforming
any projected operators (such as the Hamiltonian) while
sweeping. First, as each machine sweeps away from the
shared bond in parallel, this transformation occurs in

(a)

(b)

(c)

(d)

FIG. 4. Sweeping pattern for one full sweep of the parallel
DMRG algorithm split over four computational nodes. First,
(a) the nodes are positioned in a spatially staggered pattern
and sweep to the other end of their block. When the nodes
reach the end of their block (b) they wait for their neighboring
node to arrive then communicate. Finally the nodes sweep
back (c) to their starting positions and (d) communicate with
their other neighbor.

the usual way. For example, the matrix B from Eq. (2)
transforms the Hamiltonian into the local basis of the
next pair of sites to the left. Later when the two ma-
chines merge their wavefunctions, they merge operators
in an analogous way: operator terms acting in the left
half of the system are approximated by their projection
into the basis states from the left machine and similarly
for the right.

The role of the matrix V in the merge can be under-
stood by observing that DMRG approximately preserves
the reduced density matrix over regions where it does not
sweep. Assuming that the wavefunction does not change
too drastically after each sweep, the matrix V normalizes
ψ′4 on the right such that it approximates the reduced
density matrix eigenstates on the right half of the sys-
tem, and similarly for the left. Note the resemblance of
Eq. (5) to the prediction step in the infinite DMRG al-
gorithm of Ref. 31, which directly motivated the present
work. As explained in Section IV, from a matrix prod-
uct state point of view Eq. (3) is a transformation from
a gauge having only one orthogonality center (a tensor
whose indices all label orthonormal states) to a gauge
with two orthogonality centers.

One concern about introducing a matrix V = Λ−1 at
shared bonds is that the relative errors made in comput-
ing small singular values may be amplified when inverting
them to compute the elements of V , which can be orders
of magnitude larger than one. To address this issue, we
have implemented an accurate SVD algorithm described
in detail in the Appendix. By recursively performing an
SVD on submatrices containing only the smallest singu-
lar values, one can obtain uniform relative accuracy for
all singular values—not just the largest.

The two-block algorithm described above can be read-
ily extended to n real-space blocks by first splitting the

4

0 0.05 0.1 0.15 0.2 0.25

1/L

0.06

0.07

0.08

0.09

O
rd

er
 P

ar
am

et
er

 <
D

x
>

 a
t

C
en

te
r QMC Extrap. (0.078)

Parallel DMRG, 2LxL, Strong Pinning

Average of DMRG Values (0.0775)

FIG. 5. Columnar VBS order parameter 〈Dx〉 on open cylin-
ders of the square-lattice Q2 model Eq. (6) with strong-
pinning boundary conditions.14 Each order parameter value
was estimated by increasing the states kept m after every
other sweep and extrapolating in the truncation error. Er-
ror bars are smaller than symbol sizes except for the L = 10
system.

system in two, then further splitting each sub-block until
there are n total. This motivates the sweeping pattern
shown in Fig. 4. Odd numbered nodes start on the left
end of their block and even nodes on the right. This way,
when a node reaches the end of its block the next node
is ready to communicate. If a node reaches the end of its
block before its neighbor arrives, it is better for the node
to wait instead of immediately beginning the next half
sweep. Having an updated environment far outweighs
the loss in efficiency due to a node briefly remaining idle.

III. BENCHMARK APPLICATIONS

A. Pure Q2 Model

To demonstrate that real-space parallel DMRG can
be used to accelerate very challenging two-dimensional
DMRG calculations, we use it to study the S = 1/2,
pure Q2 model on the square lattice. This model has
been proposed as a benchmark for testing the predictive
ability of DMRG for 2d systems.32 Extensive quantum
Monte Carlo (QMC) calculations show the model is in
a phase with weak columnar valence bond solid (VBS)
order.32–34 Because DMRG is limited to much smaller
finite-size systems than QMC, a reasonable concern is
that DMRG could miss such weak order and possibly
mistake the phase for a spin liquid.

The Hamiltonian of the pure Q2 model is defined as

H = −Q2

∑
〈ij;kl〉

(Si · Sj − 1/4)(Sk · Sl − 1/4) (6)

where the sum is over all pairs of bonds (i, j) and (k, l)

on opposite sides of the elementary square plaquettes. To
investigate the columnar VBS order following Ref. 32, we
study finite-size systems of width L in the y direction and
length 2L in the x direction. For each system size, we
measure the order parameter

〈D̂x〉 =
1

L

∑
y

〈Sr ·Sr+x̂〉−
1

2
〈Sr−x̂ ·Sr〉−

1

2
〈Sr+x̂ ·Sr+2x̂〉

(7)
averaged over all r = (L, y) at the central column of the
system.

In the shorter y direction we take periodic boundary
conditions but use open boundary conditions in the x di-
rection for technical reasons. In contrast to Ref. 32, how-
ever, we include extra Hamiltonian terms at the edges to
pin columnar VBS order. Following the strong-pinning
prescription of Ref. 14, we imagine fictitious spins just
beyond the edge of the system locked into an ideal colum-
nar VBS in the x direction. Tracing over these fictitious
spins induces a term

Hpin,r =
Q2

4
(Sr · Sr+ŷ − 1/4) (8)

on each vertical bond along the edges of the real system.
The combination of these terms and a 2 : 1 aspect ratio
helps to control finite-size effects.

We carried out parallel DMRG calculations for cylin-
ders of width L = 4, 6, 8 and 10 and show the result-
ing 〈D̂x〉 order parameter values in Fig. 5. Each cal-
culation was parallelized over four real-space blocks with
each block assigned to a separate 8-core Intel Harpertown
2.66 GHz node. The largest calculation—keeping up to
m = 3000 states for the L = 10 system—took 6 days
and would have taken 18–21 days without paralleliza-
tion. All calculations could easily have been parallelized
further with access to more nodes.

With our choice of aspect ratio and boundary condi-
tions, we found only a weak dependence of the order pa-
rameter on system size for large enough L. By averaging
〈D̂x〉 for the largest three systems, we estimate a value

〈D̂x〉 = 0.078(3) for the thermodynamic limit, in good
agreement35 with the value 0.078 predicted by quantum
Monte Carlo.32 (p. 10)

B. Triangular Heisenberg Antiferromagnet

As a second application of parallel DMRG, we measure
the 120◦ Néel order of the antiferromagnetic S = 1/2
Heisenberg model H = J

∑
〈ij〉 Si · Sj on the triangular

lattice. In contrast to the Q2 model, this system is be-
yond the reach of QMC due to the sign problem. It is
challenging even for DMRG because of the high coordi-
nation number of the lattice.

Reference 4 computed the staggered magnetization
of this system using DMRG on cylinders up to width
Ly = 9, but found somewhat unsatisfactory results for
the largest systems. In particular, it was unclear whether

5

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

Aspect Ratio α

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25
M

ag
n

et
iz

at
io

n

M
z

L
y
 = 3

L
y
 = 6

L
y
 = 9

W&C: L
y
 = 9

FIG. 6. Staggered magnetization Mz of the antiferromagnetic
S = 1/2 Heisenberg model on open cylinders of the triangular
lattice with strong-pinning boundary conditions.4 The aspect
ratio of each cylinder is defined as α = Lx/Ly. Each mag-
netization value was computed by gradually increasing the
number of states kept and extrapolating in the truncation er-
ror. Error bars are smaller than symbol sizes except for the
Ly = 9 systems.

the order parameter develops a crossing point at some
particular aspect ratio.

Here we revisit that calculation using parallel DMRG
to study the width Ly = 9 systems more accurately. Our
procedure, described in more detail in Refs. 4 and 14,
is to study cylinders with Ly sites and periodic bound-
ary conditions in the y direction and Lx sites and open
boundaries in the x direction. We apply a magnetic field
term −J/2 Szi to sites i at the open edges on only one
of the three sublattices in order to pin the magnetization
direction and reduce the bulk entanglement. We then
measure Mz = 〈Sz〉 on the pinned sublattice averaged
over the center column of the cylinder. First, we repro-
duce the results of Ref. 4 for cylinders of width Ly = 3
and Ly = 6. These results are shown in Fig. 6 and agree
with those of Ref. 4 essentially exactly.

For the width 9 systems we chose aspect ratios closer to
the crossing point than Ref. 4. We kept up to m = 5000
states in DMRG and extrapolated Mz in the truncation
error. We also performed a second set of runs increas-
ing the number of states according to a different pattern
to test our extrapolation and found excellent agreement.
The largest runs took about a week each using four nodes,
and therefore would have taken 3-4 weeks without par-
alellization.

As shown in Fig. 6, by keeping more states and choos-
ing aspect ratios closer to the crossing point, we obtain
tighter bounds on the 2d magnetization. By averaging
the two Ly = 9 values in Fig. 6, we find αc ' 1.64 and
estimate Mz = 0.202(2) for the infinite 2d system.

IV. INVERSE CANONICAL MATRIX
PRODUCT STATE GAUGE

An interesting byproduct of the parallel DMRG wave-
function transformation Eqs. (4) and (5) is that it mo-
tivates an alternative gauge for matrix product states
(MPS) similar to the canonical gauge30,36 but with every
site an an orthogonality center rather than every bond.
By orthogonality center (OC) we mean any tensor whose
indices all label orthonormal states.

For example, the only OC of an MPS in the left-
canonical gauge—the gauge naturally occurring at the
end of a full DMRG sweep—is the first site tensor.30 This
MPS gauge is shown in Fig. 7(a) with the first site ten-
sor shaded to indicate it is an OC. The arrow on each
index indicates whether that index transforms as a ket
(vector) or bra (covector). An outgoing arrow indicates
a ket index and an incoming arrow a bra index. In tra-
ditional tensor notation this corresponds to a raised or
lowered index, respectively. Because the physical site in-
dices transform as kets by definition, they always point
out of a ket MPS.

In our convention, the arrows of the virtual or link in-
dices within an MPS do not flow according to a rigid pat-
tern, such as left to right, but rather out of the OC (or out
of each OC if there are more than one). To motivate this
convention, perform a gauge transformation of the MPS
7(a). Contract the first two site tensors over their shared
link index, then compute an SVD as shown in Fig. 7(b),
and multiply the diagonal singular-value matrix into the
second site tensor. The resulting MPS Fig. 7(c) has its
OC at the second site since the first site tensor is formed
from a unitary matrix. As expected, the arrows now flow
out of the second site tensor.

(a)

(b)

(c)

=

FIG. 7. Matrix product state in (a) the left-canonical gauge
where the OC is the first site. Combining (b) the first two
site tensors, computing a singular-value decomposition, then
multiplying the singular value matrix (shaded diamond) into
the second site tensor transforms the MPS into (c) a mixed-
canonical gauge with the second site as the OC.30

6

(a)

(b)

(c)

=

FIG. 8. Matrix product state in (a) the left-canonical gauge
with the first site an OC. In panel (b) combine the first two
site tensors and compute a singular-value decomposition but
now with two copies of the singular value matrix Λ (shaded
diamond) and its inverse V (white circle). Multiplying each
singular value matrix Λ into the neighboring site tensor trans-
forms the MPS into (c) a new gauge having two OCs.

Within the parallel DMRG algorithm, when comput-
ing an SVD at the shared bond between two nodes, one
duplicates the singular value matrix Λ by also inserting

the matrix V
def
= Λ−1 on that bond. Multiplying each

copy of Λ into its neighboring site tensor creates an MPS
gauge with an additional OC. If we repeat the example of
the previous paragraph, but now use this modified SVD
scheme as shown in Fig. 8(b), the result is a gauge in
which the first two sites are OCs and a matrix V appears
on the first bond. Repeating this procedure at every
bond results in the gauge shown in Fig. 9. This gauge
resembles the canonical gauge but has diagonal matrices
containg inverse Schmidt coefficients on each bond. For
this reason we refer to it as the inverse canonical gauge.

A key advantage of working in this gauge is that ev-
ery site tensor is simultaneously an OC. This makes op-
erations such as computing expectation values of local
operators very simple since only site tensors on which
an operator acts non-trivially need to be included in the
computation (all other site tensors cancel by construction
since they are external to an OC and therefore represent
orthonormal states). In fact, such local expectation val-
ues can be computed in parallel in this gauge. By con-
trast, a mixed-canonical MPS such as Fig. 7(c) must be
re-gauged unless the OC is already included in the sup-
port of the operator to be measured.

Finally, we note that when conserving abelian quan-

 1 V1 V2 V3 V4 V5 2 3 4 5 6

FIG. 9. Inverse canonical matrix product state gauge. Each
site tensor ψ is an OC. This gauge is similar to the canonical
gauge (Γ-Λ form)30,36 where each bond tensor Λ is an OC and
is a diagonal matrix containing the Schmidt decomposition
weights at that bond. Here each bond tensor V = Λ−1 is a
diagonal matrix containing the inverse Schmidt weights. One
can directly map between the two gauges via Vj = Λ−1

j and
ψj = Λj−1ΓjΛj .

tum numbers it is natural to use the same arrow conven-
tion described above to denote quantum number flux.
In this convention, OCs act as quantum number sources
having non-zero flux whereas in a mixed-canonical gauge
like that of Fig. 7(c), for example, all other tensors have
zero flux since they enact unitary basis transformations.

V. CONCLUSION

We have presented a straightforward modification of
the standard DMRG algorithm which allows it to be par-
allelized across real-space blocks, providing a nearly ideal
speedup. The algorithm differs from serial DMRG only
at block boundaries and can readily be combined with
other approaches for parallelizing DMRG. This algorithm
should be especially useful for DMRG studies of 2d lat-
tice models, quantum chemical systems, and very large
or otherwise difficult 1d models.

We have also presented a set of best practices for par-
allel DMRG simulations, such as the sweeping pattern
suggested in Fig. 4, but there remains considerable free-
dom in implementing the algorithm. For example, in
our benchmark applications we typically divided the sys-
tem into real-space blocks of about 8-20 sites, but in
principle the blocks could be as small as two sites, of-
fering maximum parallelization. It is interesting to note
that fully converging a parallel DMRG calculation in this
limit would automatically produce an MPS in the inverse
canonical gauge.

Looking ahead, we expect to see real-space paral-
lelism become a standard tool for accelerating challenging
DMRG calculations since it can be implemented in ex-
isting codes. We also hope this work encourages authors
of DMRG-related papers to identify parallel aspects of
their methods even more prominently.

ACKNOWLEDGMENTS

This paper is dedicated to Ernie Compton, a gifted sci-
ence teacher and inspiring role model. We thank Thomas
Barthel, Bela Bauer, Bryan Clark, Stefan Depenbrock,

7

Adrian Feiguin, Hong-Chen Jiang, Salvatore Manmana,
Ian McCulloch, Ulrich Schollwöck, Guifré Vidal, and
Zhenyue Zhu for helpful discussions. This work is sup-
ported by NSF grant DMR-1161348.

APPENDIX: ACCURATE SINGULAR VALUE
DECOMPOSITION ALGORITHM

When implementing the parallel DMRG algorithm or
working with inverse canonical matrix product states it
is essential to compute singular value decompositions
(SVD) to high accuracy. This is because of the pres-
ence of the matrix V having the inverse singular values
along its diagonal. Typical vendor-provided SVD algo-
rithms (such as SGESVD within LAPACK) may provide
poor relative accuracy for the smallest singular values λα,
which then translates into very large errors upon comput-
ing λ−1α >> 1.

To overcome this problem while maintaining efficiency,
we have implemented the following SVD algorithm.
Though it calls itself recursively, its asymptotic cost re-
mains ∼ mn2 for an n×m rectangular matrix M (assum-
ing n < m without loss of generality) since each recursive
call only involves a smaller submatrix.

The algorithm proceeds as follows:

1. Compute the SVD of M = AΛB using a standard
algorithm such as SGESVD or through the eigen-

value decomposition of ρ
def
= MM† = AΛ2A† (then

computing B by orthogonalizing the columns of
A†M).

2. Denote the diagonal elements of Λ (the singular val-
ues) as {λα|α = 1 . . . n}. For some predetermined
threshold ε > 0, find the smallest integer p such
that λp/λ1 < ε. We have found ε = 10−4 to be a
good choice.

3. If no such p exists, the algorithm has converged.
Return the matrices A, Λ, and B from step 1.

4. If the algorithm has not converged, compute
X = A†MB†, but only the last n − p rows and
columns such that X is an (n−p)× (n−p) matrix.
If the SVD of step 1 could be computed exactly,
X would be diagonal and contain the last (n − p)
singular values. In practice, X will only be approx-
imately diagonal due to numerical errors.

5. Recursively repeat the algorithm starting again at
step 1 but with M replaced by X. Denote the re-
sulting SVD matrices Ã, Λ̃, and B̃.

6. Update A, B, and Λ as follows:

Aiα =

n∑
k=p

AikÃkα α = p . . . n (9)

Bαj =

n∑
k=p

B̃αkBkj α = p . . . n (10)

λα = λ̃α α = p . . . n (11)

where λα are the diagonal elements of Λ.

7. Return the updated SVD matrices A, Λ, and B.

Because the SVD method used in step 1 of the algo-
rithm is typically accurate for all but the smallest sin-
gular values (as defined by the threshold ε), by calling
the method recursively on a submatrix containing only
these smallest singular values the algorithm finds all the
singular values accurately.

8

1 S. R. White, Phys. Rev. Lett., 69, 2863 (1992); S. White,
Phys. Rev. B, 48, 10345 (1993).

2 U. Schollwöck, Rev. Mod. Phys., 77, 259 (2005).
3 R. M. Noack and S. R. Manmana, AIP Conference Pro-

ceedings, 789, 93 (2005).
4 S. R. White and A. Chernyshev, Phys. Rev. Lett., 99,

127004 (2007).
5 H.-C. Jiang, Z.-C. Gu, X.-L. Qi, and S. Trebst, Phys. Rev.

B, 83, 245104 (2011).
6 S. Yan, D. A. Huse, and S. R. White, Science, 332, 1173

(2011).
7 P. Corboz, S. R. White, G. Vidal, and M. Troyer, Phys.

Rev. B, 84, 041108 (2011).
8 H.-C. Jiang, H. Yao, and L. Balents, Phys. Rev. B, 86,

024424 (2012).
9 B. Bauer, P. Corboz, A. M. Läuchli, L. Messio, K. Penc,

M. Troyer, and F. Mila, Phys. Rev. B, 85, 125116 (2012).
10 S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys.

Rev. Lett., 109, 067201 (2012).
11 L. Cincio and G. Vidal, Phys. Rev. Lett., 110, 067208

(2013).
12 Z. Zhu, D. A. Huse, and S. R. White, Phys. Rev. Lett.,

110, 127205 (2013).
13 R. Ganesh, J. van den Brink, and S. Nishimoto, Phys.

Rev. Lett., 110, 127203 (2013).
14 E.M. Stoudenmire and S. R. White, Annual Review of

Condensed Matter Physics, 3, 111 (2012).
15 Y. Kurashige and T. Yanai, J. Chem. Phys., 135, 094104

(2011).
16 G. K.-L. Chan and S. Sharma, Annual Review of Physical

Chemistry, 62, 465 (2011).
17 S. Sharma and G. K.-L. Chan, J. Chem. Phys., 136, 124121

(2012).

18 J. Hachmann, W. Cardoen, and G. K.-L. Chan, The Jour-
nal of Chemical Physics, 125, 144101 (2006).

19 M. Dolfi, B. Bauer, M. Troyer, and Z. Ristivojevic, Phys.
Rev. Lett., 109, 020604 (2012).

20 E. M. Stoudenmire, L. O. Wagner, S. R. White, and
K. Burke, Phys. Rev. Lett., 109, 056402 (2012).

21 G. K.-L. Chan, J. Chem. Phys., 120, 3172 (2004).
22 G. Hager, E. Jeckelmann, H. Fehske, and G. Wellein, Jour-

nal of Computational Physics, 194, 795 (2004).
23 Y. Kurashige and T. Yanai, The Journal of Chemical

Physics, 130, 234114 (2009).
24 A. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.

Mech., 04, 005 (2004).
25 S. R. White and A. E. Feiguin, Phys. Rev. Lett., 93, 076401

(2004).
26 Z. Y. Xie, H. C. Jiang, Q. N. Chen, Z. Y. Weng, and

T. Xiang, Phys. Rev. Lett., 103, 160601 (2009).
27 I. Pižorn, L. Wang, and F. Verstraete, Phys. Rev. A, 83,

052321 (2011).
28 P. Czarnik, L. Cincio, and J. Dziarmaga, Phys. Rev. B,

86, 245101 (2012).
29 S. R. White, Phys. Rev. Lett., 77, 3633 (1996).
30 U. Schollwöck, Annals of Physics, 326, 96 (2011).
31 I. P. McCulloch, arxiv:0804.2509 (2008).
32 A. W. Sandvik, Phys. Rev. B, 85, 134407 (2012).
33 A. W. Sandvik, Phys. Rev. Lett., 98, 227202 (2007).
34 A. W. Sandvik, Phys. Rev. Lett., 104, 177201 (2010).
35 Our calculations only agree up to a factor of precisely two.

Up to this factor, we have successfully reproduced the re-
sults (not shown) of Ref. 32 when omitting the edge pin-
ning terms. We therefore report twice the value stated in
Ref. 32 (p. 10) as the QMC estimate of the 2d order pa-
rameter.

36 G. Vidal, Phys. Rev. Lett., 91, 147902 (2003).

