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We examine dissipation effects in a multichannel quantum RC circuit, comprising a cavity or
single-electron box capacitively coupled to a gate and connected to a reservoir lead via several
conducting channels. Depending on the engineering details of the quantum RC circuit, the number
of channels contributing to transport varies, as does the form of the interchannel couplings. For
low-frequency AC transport, the charge-relaxation resistance (R4) is a nontrivial function of the
parameters of the system. However, in the vicinity of the charge degeneracy points and for weak
tunneling, we find as a result of cross-mode mixing or channel asymmetry that R, becomes universal
for a metallic cavity at low temperatures, and equals the unit of quantum resistance. To prove this
universality we map the system to an effective one-channel Kondo model, and construct an analogy
with the Coulomb gas. Next, we probe the opposite regime of near-perfect transmission using a
bosonization approach. Focussing on the two-channel case, we study the effect of backscattering at
the lead-dot interface, more specifically, the role of an asymmetry in the backscattering amplitudes,
and make a connection with the weak tunneling regime near the charge degeneracy points.

PACS numbers: 73.63.Kv,72.15.Qm,71.10.Ay

I. INTRODUCTION

The manipulation of mesoscopic systems to engineer quantum circuits has immense potential for future applications.
These unique systems exhibit a spectrum of novel phenomena which necessitates a better understanding of their
dynamics. Technological advances have provided the means to couple these systems to capacitive gates, thereby
enabling detailed exploration of electronic transport at the nanoscale.

In particular, the phenomenon of Coulomb blockade offers an excellent tool for the observation of interaction effects
at the nanoscale! ® and has become one of the cornerstones of modern condensed-matter physics. One of the simplest
mesoscopic systems exhibiting Coulomb blockade is the single-electron box (quantum dot), and almost two decades
have elapsed since the first experimental evidence of macroscopic charge quantization*. Quantum coherence and
interaction effects drastically affect the properties of these systems. In fact, dissipation and resistance in single-
electron boxes have recently sparked a growing attention in several parametric regimes both theoretically® '7 and
experimentally'® 2!, Specifically, the linear charge response to a gate voltage oscillation for single-electron devices
has gained considerable attention.

In this paper, we investigate a multichannel version of the quantum Resistance-Capacitance (RC) circuit. A possible
realization of this system involves a Coulomb-blockaded quantum dot coupled via a quantum point contact to a two-
dimensional electron gas, which is in turn capacitively connected to a back gate (see Fig. 1). By tuning the opening of
the quantum point contact??27 through an auxiliary gate voltage, one can suitably control the number of conduction
channels transmitted through the cavity. Here, we examine the low frequency behavior of the charge relaxation
resistance in the cavity, in the limit of low temperatures such that quantum coherence is preserved®®. For a small
box, the role of coherence in charge quantization for a box consisting of noninteracting electrons has been studied?®.
In this work we investigate the role of Coulomb interactions in the charge quantization of the multichannel quantum
RC circuit in the opposite regime of a large dot. For a single conducting channel (mode), the relaxation of the charge
on the dot when subject to an AC drive voltage has been studied by Biittiker et. al.>7. The authors were the first to
predict the universality of the charge relaxation resistance (R,) in the context of a small (coherent) cavity, where the
Coulomb interactions have been treated within the Hartree-Fock approximation. The quantum RC circuit has been
realized experimentally in a two-dimensional electron gas, and the predicted charge relaxation resistance R, = h/(2¢?)
has been confirmed!®19-21,

Recently, the robustness of this value of quantized resistance in the presence of interactions in the cavity has been
rigorously proved!®!!. It has been shown that there is a mesoscopic crossover of the charge relaxation resistance from
R, = h/(2¢%) to R, = h/e? as the size of the quantum dot is increased'?. The value R, = h/e? for a large (metallic)
cavity in the vicinity of a charge degeneracy point has been obtained via an analogy with the Kondo model?%:39
and is a consequence of the emergent Fermi liquid ground state!33!733, In this regime, an electron entering into the



FIG. 1: Schematic of a multichannel quantum RC circuit with M = 3 and N = 2, where M denotes the number of channels
in the lead and A denotes the number of channels in the dot. All the possible lead-dot couplings are depicted by black lines.
The AC drive is capacitively coupled to the single-electron box. The geometric capacitance Cy, is to be distinguished from the
mesoscopic capacitance Cy of the quantum RC circuit.

cavity is disentangled from an electron escaping the cavity. This unit of resistance can be viewed as two Sharvin-Imry
contact resistances in series. The charge relaxation resistance effectively captures interaction effects in a variety of
exotic systems, such as fractional quantum Hall edge states'®11:34, the Anderson impurity model**"'3 and topological
insulator edge states®®, all of which can be used to construct a quantum RC setup. The dynamical charge response
in the case of a Majorana Coulomb box has also been analyzed36:37.

For a metallic cavity increasing the number of conducting channels through the constriction causes the transport
away from the charge degeneracy points to deviate from h/e?, and the value of R, is very sensitive to the engineering
details of the system. The central message of this paper is that close to the charge degeneracy points however, when
the tunneling couplings are weak, the charge relaxation resistance becomes universal and is in fact independent of
the number of channels. To prove this result we project out states apart from those in the immediate vicinity of the
charge-degeneracy point and reformulate the problem in terms of a pseudospin®® 42, and show via an analogy with
the Coulomb gas?3%4 that the system can be mapped to the single-channel anisotropic Kondo model.

The dynamics of the system in the opposite regime of perfect or near perfect transmission, i.e. strong tunneling, can
be studied using bosonization techniques. Adopting a generalization of well-known bosonization methods!?:3%:40,45-47
to NV channels, we show that R, is non-universal. For reflectionless channels with equal tunneling amplitudes R, =
h/ (N 62). We focus on the special case N' = 2, and study the effect of backscattering, in particular asymmetry in
the reflection amplitudes, on the value of R,. For the Coulomb blockaded dot, the charge on the dot is pinned. We
analyze the effect of charge fluctuations in the dot on the value of R, for weak backscattering at the dot-lead interface.
We show that a second order calculation in the backscattering amplitudes, valid at high temperatures and frequencies,
does not correct this value of R,. However, based on renormalization group arguments we conclude that the value
h/e? of R, reemerges at low-energies, where the system flows to strong backscattering, in agreement with the weak
tunneling analysis. More precisely, the system can be mapped onto an anisotropic two-channel Kondo model at the
Emery-Kivelson line*®. An asymmetry in the backscattering amplitudes near the charge-degeneracy point causes the
system to flow to a one-channel Kondo model at low-energies, since the channel with a stronger (bare) backscattering
amplitude is eventually perfectly reflected and pinched off“C.

In a different context, the variation of R, of a Coulomb box for a Landau-Zener sweep of the gate voltage has been
studied by mapping the system to a dissipative particle confined to a ring'*'®. For this out-of-equilibrium situation
it has been shown that when a quantum of magnetic flux is passed through the ring, the average of the relaxation
resistance R, = h/e>.



The remainder of the paper is organized as follows. In Sec. II, we present our results away from the charge
degeneracy points via a perturbative expansion in the tunneling Hamiltonian following Ref. 10. In Sec. III, we
discuss the underlying Kondo physics in the vicinity of a charge degeneracy point and formulate an analogy with the
Coulomb gas?®%4. In Sec. IV, we briefly address the situation at and close to perfect transmission. Appendices are
devoted to technical details and mathematical derivations.

II. WEAK TUNNELING ANALYSIS AWAY FROM THE CHARGE DEGENERACY POINTS

The Hamiltonian of the system is given by

H = Z €k dzadka + ZEP Clﬁcpﬂ + EC(N - N0)2
ko pB

+ 3 tag (diacpﬂ + cjoﬁd,m) . (1)
kpaS

Here, the subscripts a(=1,...,N) and 3(=1,..., M) denote the channel index in the dot and lead respectively. At
a general level, the channel (mode) index can also account for spin degrees of freedom keeping in mind that in the
absence of spin-flip mechanisms, tunneling between different spin projections is inadmissible. The relative tunneling
strengths of the spin channels can however be varied by applying an in-plane magnetic field*°. Hereafter, we consider
the limit of large metallic cavity with a dense spectrum of energy levels. The single electron eigenfunctions of the
two-dimensional system and the quantum dot are labeled by the index p and k respectively. The charging energy of
the dot is expressed in terms of the charge operator

Q —eN=c¢ Z dLad;m (2)

ko

on the dot and Ny = C,;V, /e is imposed by the gate voltage (see Ref. 10). We allow for a variety of inter-channel and
intra-channel tunneling amplitudes (¢,4), depending on how the system is engineered. Note that in the following, we
work at very low temperatures (T — 0) in order to preserve quantum coherence.

In this Section, we derive the dependence of the relaxation resistance R, on the number of channels (M, N) in
the limit of weak tunneling amplitudes away from the charge degeneracy points of the dot, as given by Eq. (1). We
assume that the charging energy E. is the most dominant energy scale, which implies the Coulomb blockade limit3.
The computation is a generalization of the scheme presented in Ref. [10]. In this regime it is useful to group the terms
in the Hamiltonian as follows,

H=H+ Hr, (3a)
where we have defined
H = erdf dra+ Y _cpchgeps + E(N — No)? (3b)
ka po
Hrp = Z tap (dlacp,@ + C;Lgdkoz) , (3¢)
kpaS
and treat the tunneling term Hrt as a perturbation. The channels of the dot are denoted by a(=1,...,N'), whereas

for the lead it is given by 8(=1,..., M). We study the AC response of the circuit using linear response theory. The
gate voltage can be separated into its AC and DC components

Vg (t) = Vgo + Vql(t)- (4)

In the presence of a small time-dependent perturbation of the gate voltage, the charge on the dot @ = e¢(N) obeys,

Qw) = K (w)Vy(w), ()

where the retarded response function, following standard linear response theory

K(t—t) =it — ) (IN(@), N()]) (6)



measures the charge fluctuation induced by the AC component of the gate voltage. In the absence of electron tunneling,
the cavity charge in the ground state is (N) = N* and does not fluctuate, hence K = 0. We are at freedom to set
N* = 0. Assuming weak tunneling, the charge fluctuations on the cavity are determined using perturbation theory
in Hy. At T = 0 the retarded and the time-ordered Green’s function have a simple relation in frequency domain, so
we instead compute

K(t—t)=i <Tt[]\7(t)]\7(t’)]> . (7)
We use the perturbative expansion in the interaction picture
K(t) = i{T,[N{(t) N1 (0 )])

:Z<¢GS|Tt[NI() 1(0)Ur (00, —00)]|¢as) (8)
(pcs|Ti[Ur (00, —00)]|pcs) '

Since the unperturbed Hamiltonian H’ is not quadratic, Wick’s theorem is not applicable. We therefore expand the

evolution operator
o0 o0 tl
U](OO, —OO) = Z (—’L)n/ dtl / dtg ce
n=0 -0 —oo

/t dty Ho(ty) Hr(ts) . . . Hr(t), 9)

in powers of Hp(t) = et Hp(0)e~*H't. In the ground state N|pgs)—0. Thus, the zeroth and first order contribution
to K (w) vanish. The leading order contribution arises at second order. Using equations of motion the time-evolved
electron annihilation operators can be expressed as

cpp(t) = e “rleyg, (10)
dya(t) = e—i(ek+Ec(2N—2N0+1))tdka' (11)

The charge relaxation resistance at low frequency is given by the expression:
Qw)
Vy(w)

the details of which are given in Appendix A. The mesoscopic capacitance Cy, which is distinct from the geometrical
capacitance Cy, in the weak-tunneling limit gives

V()Vl
t 1
Co = e NQZQB? (13)

where 1y and v represent the density of states in the lead and in the metallic cavity, respectively. Here we have retained
terms to second-order in Hr. A fourth-order computation Hr allows us to extract the leading-order dissipative (purely
imaginary) contribution to the function K (w) in Eq. (5). Thus, we obtain

= Co(1 +iwCoR,) + O(w?), (12)

orh E z;g; tal,@l tszBl taz@ztalﬁz

= 2 (Eaﬁt ﬁ)2

e
This illustrates that in general, away from the charge degeneracy points, i.e., for Ny # 1/2, the charge relaxation
resistance R, is not universal as it depends on the engineering details of the system. For the case of diagonal couplings
tag = tadap (N = M), R, reduces to the non-universal result

Ry= 1 l%] . (15)
e’ L (Cata)

It should be noted that in the case of (almost) isotropic diagonal couplings, i.e., t, = t, the quantum RC circuit be-
comes dissipationless in the limit N' — oo as R, = h/(e2N). This value demonstrates the violation of Kirchhoff’s law,
which in contrast predicts that R, would be inversely proportional to the sum of the transmission probabilities'®1?,
and is a direct consequence of the quantum (phase) coherence.

We remark that for the special case when the transmission prabability of a single channel dominates ,i.e. ¢; >
{ta,...,tx} one recovers the value R, = h/e?.

(14)



IIT. KONDO MODEL AND COULOMB GAS NEAR THE CHARGE DEGENERACY POINTS

The weak-tunneling analysis of Section II leads to the surprising conclusion that for the case of large inter-channel
mixing R, = h/e?, i.e. a reemergence of the unit of resistance. This follows directly from Eq. (14) if we take the
amplitudes of the tunneling matrix to be approximately of equal strength, i.e. to3 ~ t. It is possible to reformulate
the quasiparticles of the dot and lead (individually) in terms of the totally symmetric combination of the modes and
additionally construct N'— 1 and M — 1 mutually orthonormal modes respectively. In this new formulation t,p = ¢
is the condition for perfect reflection of the additional N’ — 1 and M — 1 modes respectively, and effectively only a
single channel (the totally symmetric mode) is transmitted. The value R, = h/e? is a consequence of this emergent
one-channel quantum RC circuit.

Due to the strong Coulomb blockade in the vicinity of a charge degeneracy point No = n + 1/2 (n € Z), we can
project out all charge states other than those corresponding to n and n + 1, which then mimic a spin-1/2 particle38.
We show that this gives rise to an emergent one-channel Kondo model and also arrive at this result by mapping the
system to the Coulomb gas*344.

A. Mapping on a Kondo model

For the Coulomb blockaded dot near the charge degeneracy points Ny = n + 1/2, the effective Hamiltonian of the
system can be written as38

H=> ed] dra+ Y epchscps — hSs
ka B

+ 3 tag (dzacpﬂs— + cjoﬁd,mﬁ) . (16)
kpaS

The effective magnetic field h, = e [Ny — (n + 1/2)] /C, denotes the deviation from the charge degeneracy points®®
and is assumed to be small compared to E. = €?/2C,. Let us consider purely diagonal couplings, i.e., for tog = tadas
(N =M). Tt is straightforward to see from Eq. (16) that one recovers the anisotropic A/-channel Kondo model

H = kadkadka + Z&‘p 3CpB — h.S,

+Zt ( kanaS —i—cT d;mSJ“). (17)

kpa

Introducing a pseudospin index (o =7,|) which denotes the position of a particle in the system, reservoir lead (1)
versus cavity({). Furthermore, defining dio = agte and cpo = akjo We can rewrite the Hamiltonian of the system as

Hdiag = Z Ekaalgaakaa - thz

kao

+ Zta (aLTaaklaS7 + aziaakTQSJr) , (18)
kpo

which is precisely a A/-channel Kondo model with J, o = to and Jjj, = 0°°%°. Here, we assume that Eyy = e = Ej.
A small deviation from the resonance condition plays the role of a magnetic field, leading to a Zeeman term in the
Kondo model.

This equivalence with the N -channel Kondo model leads to the value R, = h/(Ne?) and corroborates the prediction
of Eq. (15) in the weak-tunneling limit away from the charge-degeneracy points. The two-channel situation has been
studied in detail by two of us6

As emphasized in Ref. 41, the general situation in the single-electron box is fairly intricate. In particular, cross-
mode (channel) tunneling is a relevant perturbation which leads the system ultimately to a one-channel Kondo fixed
point in the case of spin-polarized electrons. This follows from the low-temperature effective Hamiltonian given by Eq.
(16), which predicts the emergence of a unique effective tunneling mode in the lead and the electron box. The other
modes are perfectly back-scattered when the inter and intra-channel couplings are identical. Deviations from this
condition causes partial transmission of these other M — 1 and A — 1 channels respectively, and leads to corrections
of R,. However, renormalization group analyses show that these perturbations are irrelevant, and for low energies
the value of R, is stable*!. The energy scale A* which determines the crossover from N -channel to 1-channel regime,
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FIG. 2: Renormalization of the DC conductance for a multichannel quantum RC circuit (M = A = 5) with decreasing temper-
ature, at the charge-degeneracy point. We consider randomly generated couplings (unrestricted) and eliminate progressively the
interchannel-couplings, starting with the farthest channels (4-channel mixing) till all the inter-channel couplings are removed
(no channel mixing). The random couplings are normalized according to the degree of channel mixing, such that ¢g(0) = 0.5.
The dotted curve corresponds to the unitary limit of the Kondo model.

depends on the precise form of the tunneling amplitudes. When the off-diagonal elements are small and/or sparse,
the onset of the effective one-channel behavior is further delayed, i.e., one has to go to lower temperatures to measure

R, =h/é?.
In Fig. 2 we show the variation of the DC conductivity of the multichannel quantum RC circuit, as a function of
temperature. The conductivity G(T') = 4”262 g, where g (In(E./T)) is a dimensionless parameter, has been numerically

obtained using the scaling equations in Ref. 41. We fix the number of channels ' = M = 5 in Fig. 2, and consider
a randomly generated set of tunnel couplings (magenta curve). Using this matrix of tunneling amplitudes, we then
restrict ourselves to only the diagonal values (blue curve), setting all the off-diagonal entries to zero. The tunneling
amplitudes are globally scaled such that g(0) = 0.5, corresponding to T' = E.. Following this procedure, we then
allow off-diagonal diagonal elements representing mixing of adjacent channels (green curve). We then include the
elements corresponding to mixing of adjacent and next-to-adjacent channels (red curve), and ultimately additionally
include the terms represented cross-mode tunneling of next-to-next-to-adjacent channels (gray curve). From Fig. 2 it
can be seen that the system behaves identically to an effective one-channel quantum RC circuit, at low temperatures.
Asymmetry in tunneling amplitudes and/or inter-channel mixing are the factors responsible for this emergent one-
channel behavior. As apparent from the curves, introducing greater inter-mode couplings, increases the energy scale
A* (given by the minima of the curves) at which the system crosses over to the one-channel regime. The (black)
dotted lines correspond to the unitary limit of the 1-channel Kondo model. The effective Kondo temperature T3¢ |
is the point at which the curve converges to the unitary limit. For purely diagonal and equal couplings, the system
is equivalent to the N -channel Kondo result. The crossover energy scale A* as a function of the number of channels,
has been studied*!, and shown to be suppressed as the number of channels is increased.

The one-channel Kondo fixed point is stable whereas the A/-channel is unstable, and a deviation from the condition
tap = tdap causes the system to flow away from the A'-channel fixed point. This implies that the quantized resistance
unit R, = h/e? may be observable in a multichannel quantum RC circuit, if it is possible to access the energy regime



below A* experimentally.

Deviations from the charge-degeneracy point, i.e. an effective magnetic field in the pseudospin language, may inhibit
the onset of the effective one-channel behavior. It is a relevant perturbation and the renormalization flow needs to be
stopped when the cutoff (temperature) equals the effective magnetic field, a condition determined self-consistently*!.
If this happens before the crossover to the one-channel regime, then the universality of R, is killed. The variation
of R, for the case of an infinitesimal field, such that the energy scale lies between Tk and A*, has been studied
perturbatively and the one-channel result has been confirmed®”. However, the value of R, precisely at the step, i.e.
below Tk, remains an open question.

B. Connection with the Anderson-Yuval expansion

In the previous Subsection we showed that below the energy scale A*, the multichannel quantum RC circuit near
a charge-degeneracy point is equivalent to a one-channel Kondo model.

Here, we provide a transparent way to better understand the connection of the quantum RC circuit with the one-
channel Kondo model, based on an analogy with the Coulomb gas*>**. We assume that a strong Coulomb blockade
exists in the quantum dot, and for the sake of simplicity restrict ourselves to the charge-degeneracy point. Deviations
from this point, assuming that the Zeeman energy is negligible compared to E., can be readily incorporated. However,
this makes the mathematical details significantly more complex without being more illuminating, and will hence be
ignored for the sake of clarity. Using the Hamiltonian in Eq. (1) we can write the partition function as the imaginary-
time functional integral

Z = / [Dd][Dé]e?, (19)

where the action

B - - R
S = / dT[Z dka[0r + €k]dka + Eo(N — N0)2+
0 ko

Z Cpsl0r + €plCps +t Z (épﬁczka + jkaép,@) ] : (20)
B kpaf

In the above action, we have assumed that we are below the energy scale A*. In this regime, it is possible to select
an appropriate unitary transformation of the degrees of freedom of the system {cga, dps} — {Cka,dps}, such that the
channel-mixing is maximal (to3 = t) in terms of these effective degrees of freedom.

Introducing the Hubbard-Stratonovich variable V () via the identity [[DV]exp [— foﬂ %dﬂ = 1, the quartic term

in the djq operators can be absorbed by the transformation
V(r) = V(1) + 2iE.(N — Ny), (21)
such that

7= /[DJ] [Dé][DV]e~%. (22)

Here, the transformed action

N B = - V2
= d dral0- V| dka — N
S /0 T[% k [8 —I—ek—l—’LV] k +4Ec iNgV
+ Z EPB [(97— + Ep]éplg +t Z (Epadkﬁ + h.C.) :| . (23)
B kpaS
The variable V(7) can be expanded in terms of its Fourier components V(1) = %EVmei”mT, where v, = Q’TT’”

denotes bosonic Matsubara frequencies. The zero mode Vj can be pinned to the values 2nmw, where n € Z, and
its fluctuations neglected®. We define the field ¢, (7) = [ Vii(7')d7’ such that it satisfies the boundary condition
On (T + B) = ¢n(7) + 27n. Transforming,

dia(r) = dra(r)exp [~ign(7)] (24)



we decouple N(7) and V(7), while preserving the antiperiodicity dio (7 + 8) = —dko (7). Thus, we obtain
2=y [mdpa[ve.e s, (25)
where the transformed action is given by

= 1 5 .
S = /OdT[kZd [0 + ex)dra + EC(aTa;n) — iNyO-¢n,

+ Z Eplg [6-,— + Ep]épﬁ +t Z (Epa(iklgeiw" + h.C.) :| . (26)
pB kpaf

Integrating the topological term Nyd,¢ over (imaginary) time we obtain

oo

2= > e [ (pdpd(e,exsl-S). (1)

n=—oo

We separate the terms in the action as S = S§! + Séb + Sing, where we define

B = - _
Sel = / dr Z dra[0r + €x)dra + Z CpplOr + €plCpp | (28)
0

ka pBs

the action for noninteracting electrons in the lead and dot, the kinetic energy of the field ¢

B (06,2
S§= [ dr— (5= 29
0 /0 T1E, < Bor ) ! (29)
and finally the interaction term
5 —_ ~ .
Sint = / dr t Z (&pﬁdme*“"" + h.c.) . (30)
0 kpaf

Expanding the partition function in powers of Sj,;, and subsequently transforming to the charge representation we
integrate out the fermionic degrees of freedom. The existence of a strong Coulomb blockade together with the fact
that we confine ourselves to the vicinity of the charge-degeneracy point, allows us to project out the other charge
states which are energetically distant. This leads to the partition function of the well-known Coulomb gas*344

T — Ty

0 B T1—Te T2l—1—Te
l d7’1 dTQ dTgl it
Z_Z(VoultWM)/o A - /0 exp |2 (~1)" log (31)

-
1=0 ¢ i<j

c

Details of this procedure are included in Appendix B. Here, the ultraviolet cutoff 1/7. is formally identified to be A*.

To make a direct connection with the Kondo mapping in the previous Subsection, we could have alternatively
rewritten Eq. (20) in terms of the totally symmetric mode and N’ — 1 and M — 1 modes in the dot and lead
respectively. The charging energy term is given exclusively in terms of the totally symmetric mode, and the Coulomb
repulsion term enforces the projection to the two charge states near the charge-degeneracy point. The Coulomb gas
expansion follows directly from this fact. This Coulomb gas representation allows us to prove that at energy scales
smaller than FE., the effective model for a quantum RC circuit with maximal inter-channel mixing, is the one-channel
Kondo model.

In the complete absence of channel mixing, i.e. diagonal tunneling matrix elements, rewriting the partition function
as a cumulant expansion in Ht and retaining terms to second-order yields the well-known effective action for the single-
electron box in terms of a dissipative particle on a ring®® . The key ingredient in this mapping is the fact that higher
orders in the cumulant expansion are suppressed by factors of at least O(1/N).

For large-A this furnishes a natural hierarchy of relevant terms, and in the A" — oo regime all other terms become
completely irrelevant. This is in contrast to the case where channel mixing or anisotropy in the tunneling amplitudes
is present, where no such ordering is possible. Defining k = (V0V1t2N ./\/l), all terms in the cumulant expansion in &
are of O(1) in A and M, once « is held fixed.



IV. CLOSE TO PERFECT TRANSMISSION

We now address the regime opposite to that in Section III, i.e. a Coulomb-blockaded dot near perfect transmission.
In Sub. IV A we study the perfect transmission limit, where the system can be exactly solved. We introduce the
notation and find the general expression for R, and Cy for N channels. We then focus (Sub. IVB) on the case
of a single (orbital) channel of spinful fermions, where we use an intuitive description of the system in terms of
spin and charge degrees of freedom, and introduce weak-backscattering at the dot-lead interface. In the absence of
spin-flip mechanisms tunneling between opposite spin projections is not possible and the the tunnel couplings are
diagonal. We extend the results of Ref. 36, which treats the case of perfectly symmetric channels®®%7, to include
an asymmetry in the backscattering amplitudes. Such an anisotropy in the backscattering amplitudes for a single
(orbital) channel of spinful fermions can be introduced by applying an in-plane magnetic field*?. At high energies we
treat perturbatively renormalization effects of the backscattering amplitudes, and show that the value of R, remains
unaltered. Lowering the energy cutoff leads to non-universal corrections and we conclude that in the low-energy limit
one of the channels is pinched off and the system flows to a single channel Kondo model’. Here, R, equals the unit
of quantum resistance, and near the charge-degeneracy point the physics is identical to the one-channel Kondo model
obtained in the weak-tunneling regime discussed in Section II.

A. Perfectly transmitting channels

It is convenient to describe the system using a bosonization approach following Ref. 45,46. The coordinates of this
one-dimensional system are chosen such that the lead occupies the semi-infinite line € (—o00,0). The dot extends
from z = 0 to x = L. We consider the situation when the level spacing of the dot A = (wvp)/L goes to zero, which
implies that L — oo. In this limit electrons entering and leaving the dot are uncorrelated. For a concrete analysis,
we focus on the case with two conducting channels. We bosonize the total Hamiltonian H = Hy + H, + H}, 581 (for
an excellent survey on the subject and details of the notation used, see Ref. 39). Here, we assume that the channels
are perfectly tansmitting. The role of backscattering will be investigated in the next subsection.

The kinetic term takes the form*%:46:

v e
Hy = o / dr 3 [(0:61(@))* + (0.0:(2))?] (32

i=1,2

Here, vp is the Fermi velocity which is obtained by linearizing the energy spectrum around the Fermi points. The
ultraviolet cutoff 1/a denotes the extent around kp upto which the spectrum can be linearized. We note that the
bosonic field operators ¢;(z) and 6;(x) obey the usual commutation relations:

(04(2), 65 ()] = (e — )5 (3)

In particular, the total electron charge on the cavity becomes Q = (1/7)(¢1(0) + ¢2(0)) such that the charging
Hamiltonian takes the form*%-46:

2

> ¢i(0) = 7N | (34)

i=1,2

E.
H.=—
C 7T2
and Ny, which is related to the gate voltage, has been introduced earlier in Sec. II. For electrons in the cavity, we
choose ¢;(00) = 0 which fixes the charge on the dot to be zero when Ny = 0. Here, the two conducting modes can refer
to the two spin polarizations of the electron or two electron channels. In either case it is then natural to introduce
the charge and (pseudo-)spin modes ¢. s = (¢1(0) & ¢2(0))/v/2.
At perfect transmission, we can omit the spin part of the Hamiltonian and integrate out the charge fields except
the one at x = 0, which results in the following action:
2 2F,
(|wn| + Wc) . (35)

-3
Here, we have defined the shifted charge field gZ;C(O,wn) = ¢.(0,w,) — mNp, in order to make the action independent
of Ny. From the Green’s function of the charge mode ¢.(0,w, ), one can easily evaluate the function K (¢) in Eq. (7)

¢EC(07 Wn)
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and obtain
) C
@__ G (36)
V(] 1- 2F.

Above, we have chosen units in which & = 1. Comparing the low-frequency expansion of Eq. (36) with Eq. (12) this
results in:

h

7 9e2°

(37)

At a general level, for a large cavity and a number N of perfectly conducting channels one finds R, = h/(Ne?).
In Section IIT we showed that the presence of channel mixing and/or asymmetry in the tunneling amplitudes cause
R, to be universal and equals the unit of resistance h/e®. In the remainder of this section we study the effect of
backscattering on Rg4; in particular, we investigate the role of asymmetry of the backscattering amplitudes on the
relaxation resistance.

B. Weak backscattering and 2-channel Kondo physics

A deviation from the perfect transmission condition is captured by the back-scattering Hamiltonian*®
1
Hys = — A 2¢;(0)) . 38
= g 3 Puleos (2640) (39)

In terms of the charge and spin fields this can be recast as
Z |Ai| cos ( (¢ + mcbs)) ; (39)

where we have introduced 7, = 1 and 2 = —1. Defining A = |A1| + |A2| and dx = |A2] — |A1] we can rewrite Eq. (39)
as

Hy :% {/\ cos (\@J)C — 7TN0) cos (\/5055)
+ 6y sin (\/%C - wNO) sin (\/§¢) ] . (40)

In the Coulomb blockade regime, the shifted field ¢Ec is pinned to zero. To be mathematically rigorous we adopt
a coherent state functional integral approach in the ensuing treatment. The reader is to assume that the various
transformations are implemented in the action and not at the level of operators.

2 . 2
We define the energy scales I'y = % (%\/%V“)) and I'_ = % (%\/%ND)) . A physical interpretation of these

energies in terms of lifetimes of Majorana fermions is discussed later in this subsection. To study the low-energy
physics, following Ref. 36, we introduce an intermediate energy scale A, such that max{T';,[_} < A < E.. We
then integrate out the high-energy contribution A < w < E. to the charge mode, such that the resultant action still
effectively describes the interaction between charge and spin modes at the energy scales of I'yx. This amounts to

replacing the factor cos (\/ZZA)C — 7TN0) with
oS (\/55% _ wNO) e~ (Se(Mde(M)exn (41)

where ¢Elc contains the low-energy fluctuations of the charge field. In this regime, we can expand the backscattering
terms in powers of ¢!, and approximate

cos (\/5(;% — 7Ny os(mNo) + V2sin(mNo) L,
— cos(mNo)(¢4)? := cos(mNp) + V2ral, (42)
sin (\/5(;% — 7Ny —sin(mNg) 4+ V2 cos(mNo) @,

+sin(mNp)(¢L)? := —sin(7Np) + V2maC_. (43)
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We define the dimensionless backscattering amplitudes r; o via the relation

2avpE
A2 =T1,24/ Ffm (44)

In other words we set (¢e(T)de(T))esn ~ (1/2)In(wpn/2E,), where wp = vp/ya, v being the Euler-Mascheroni
constant. .

In the ensuing analysis we implicitly assume @) to be small. Since the charging energy E. is assumed to be much
larger than the backscattering amplitudes, the dynamics of the spin field are completely captured by the pinned charge
field gf)lc Next, we compute corrections to R, due to charge fluctuations and study the role of an asymmetry in the
backscattering amplitudes.

The spin part of the Hamiltonian can be treated exactly by refermionizing the field ¢ using the procedure outlined in
Ref. 40. The kinetic part of the Hamiltonian can be written as the sum of its charge and spin parts, i.e. Hy = H_+H;.
Rewriting Hy as a functional integral and integrating out the charge field away from z = 0, we obtain the action in
Eq. (35). In terms of the new fermionic fields 15 (x) and the “slave” fermion d, the kinetic part of the spin Hamiltonian
becomes

H} = —ivp / 4] (2)0 (), (45)

— 00

and the backscattering Hamiltonian is given by
Hys = |:(X+ +AC4) (¥1(0) +45(0)) (d — d")

+ (X +6,C) (¥1(0) = 15(0)) (d + dT) |, (46)

reminiscent of the two-channel Kondo model*®7? in the presence of a channel asymmetry?®"3. The introduction of

two Majorana fermions follows from Ref. 40, and Ref. 73 uses this representation to make an analogy with the
2-channel Kondo model in the presence of a channel asymmetry (at the Emery-Kivelson line).This Majorana model
also finds applications in the context of dissipative mesoscopic structures”.

Here, we have defined X = Acos(mNp)/v2ra and X_ = —§ sin(mNy)/v/27a, to isolate the terms which involve

the shifted charge field éé These terms capture the dependence of the spin propagator on the pinned charged and is
included in the unperturbed Hamiltonian. Next, the action of the remainder of Hys on the charge response function
is treated perturbatively. For this purpose it is convenient to recast this Hamiltonian in terms of Majorana fermions
on the lines of Ref. 40. Details of this computation are provided in Appendix C.

We define the functions x4 (Ng) := cos(mNy) and k_(Ny) := sin(wNp). The energy scale of the Fermi velocity, which
is lost in the bosonization process where an infinite bandwidth is assumed, is reintroduced by fixing the cutoff*>. The
widths T’y and T'_ of the impurity Majoranas, given by I'c = 2X?2/vp, determine the two intrinsic energy scales
in the problem, corresponding to the total backscattering strenth and the channel asymmetry respectively; they
can be explicitly obtained through the Renormalization Group (RG) approach?®. We define the infrared cutoff
I' = max{T'y,T_}. Tt corresponds to the energy scale which is inversely proportional to the lifetime of the (shorter
lived) Majorana fermion. As previously stated, the system can be mapped onto the 2-channel Kondo model at the
Emery-Kivelson line*® and in terms of this they represent the Kondo coupling constants J,, and .J,, respectively.

The expression for the charge reponse function to leading order in the backscattering can be written as

K(w) = Ko(w) + K1 (w) + Ky (w) + O\, (47)
where
Y 1 E.
Ki(w) = 9rE. (1 B z%)Q ;”C(NO)Q (r1 + Cra)? | log <?>

Kaw) = ~ 50 ( L IS (Vo) (1 + Cra)? (log (%) - <1 +z%) tog (1 —z%)) L 48)

1-— zﬂ) =+
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When the backscattering amplitudes are symmetric the contributions corresponding to ( = — disappear and this case
has been looked at in detail in Ref. 36. The level asymmetry, which is captured by the energy scale I'_, plays a
crucial role in the low energy behavior of the system which we discuss below.

We now compare

K =i [ ae ({6060} (19)

T2 J_

with the expansion K (w) = Co(1 + iwCoR,) + O (w2). To proceed systematically we formally expand the functions
Ko(w), Ki(w) and Ka(w) to linear order in the frequencies

Ko(w) = Ao + ino

Ki(w) = Z r? [Aﬁ + inﬂ
==+

Ky(w) = Z g [Ag + ing} . (50)
(==

Here, we have defined the parameters ry = 1 +r5. From Eq. (50) we extract the formal expressions for the mesoscopic
capacitance and relaxation resistance

Co= Ao+ Y [ 45 + 4§
¢=+
. (Bo+ Yoy 12 | BS + BS] .
(Ao + ooy 72 [A§ + 452

respectively, where we have retained terms to leading order in the backscattering amplitudes.
One then finds to O(r7)

C() = — T?K,C(No)z
c =+

0 2 Ee
+ 5 E ;CTC cos(2mNy) log ( T )

c

h
In the vicinity of Ny = 1/2 the logarithm term dominates and in particular setting r; = r9 one recovers the correction
to the mesoscopic capacitance 6C = 2v/(mE.)r? cos(2mNo) log (1/(r? cos®(mNy))) obtained in Ref. 38. Specifically,
the logarithmic contribution of the capacitance Cy agrees with Ref. 40 in the presence of a channel asymmetry.
Note, R, is not affected by backscattering and remains h/2e? to the second order in the backscattering amplitudes.
Non-universal corrections to R, nevertheless appear at fourth or higher order in backscattering amplitudes.

At low frequencies and temperatures the backscattering amplitudes are substantially renormalized, thus entering
the regime of strong backscattering, and this perturbative scheme to compute R, is inadequate. For low energies, the
channel asymmetry for energy scales below I'_ grows till 7y = max{ry,r2} — 1, indicating that one of the channels
is pinched off and there is only one channel effectively contributing to transport’. In this regime, near a charge
degeneracy point, the system is described by a 1-channel Kondo model and the value h/e? of R, should reemerge in
agreement with the weak-tunneling limit.

V. CONCLUSION

To summarize, we have investigated dissipation effects in a strongly correlated multichannel quantum RC circuit
through the charge dynamics at low frequency and the concept of charge relaxation resistance. We have corroborated
the violation of the Kirchhoff’s law as a result of quantum coherence effects. Our main message is that in the vicinity
of a charge degeneracy point and in the case of a large cavity, the system can flow to a one-channel Kondo fixed point
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at low energy as a result of channel mixing or channel asymmetry, leading to a resistance unit h/e? close to absolute
zero, reminiscent of the one-channel RC circuit!?.

It is relevant to note that such a resistance unit has also appeared in a distinct and purely non-equilibrium context,
where a Landau-Zener sweep of the gate voltage is investigated'®!>. In the latter situation, the effect of channel
mixing or channel asymmetry was not considered which suggests a different origin for the emergence of the resistance
quantum.

It is also important to underline that for the multichannel quantum RC circuit, prominent deviations from the
resistance quantum are expected either in regions where the weak backscattering or weak tunneling limit describing
the coupling between lead and cavity is applicable. We believe that our results shed new light on the understanding
of the dynamics of quantum RC circuits in close connection with multichannel quantum impurity models®® 777, and
could be in principle detected with current technology??:3°, especially close to perfect transmission”®.

We thank B. Horovitz and P. Le Doussal for fruitful discussions. This work is supported by Department of Energy
under the grant DE-FG02-08ER46541 (P.D and K.L.H).

Appendix A: Perturbation Theory in weak tunneling regime

In this Appendix, we present the derivation related to the main Eq. (14) in Sec. II. We start from the function
K(t) defined in Eq. (7) and first we focus on the second order contribution in the tunneling amplitude, which will
generate the mesoscopic capacitance Cy38. We generalize the computation of Ref. 10 which has been performed in
the context of the one-channel quantum RC circuit.

1. 2nd order

Assuming ¢ > 0 the response function can be simplified to give

00 0
K®(t) = —i / dty / dty
t —o00

x (pas|Hr(t1)N (t)N(0)Hr(t2)|dcs)- (A1)

The contributions can be conveniently indexed by the path adopted by the dot electrons. There are two possible
paths which give non-zero contributions. 0 — 1 — 0 represents a lead electron hopping onto the dot and back, while
0 — —1 — 0 represents a dot electron hopping onto the lead and back.

For ¢ > 0 the contribution of the 0 — 1 — 0 path is evaluated to be

o 0
Z tiﬁ/ dtl/ dtyeier—eptEe(1-2No))(t1 —t2)
t —0o0

kpaf

X O(—ep)0(ex). (A2)
Similarly, the 0 — —1 — 0 path contributes

[eS) 0 )
Z ti@ / dtl / dtze—l[e’ip—€k+Ec(l+2N0)](t1—t2)
kpaf t —00

X 0(ep)0(—ex). (A3)
Collecting these contributions together, we obtain for (¢ > 0)
0(er)0(— ;
KO =iY £, [7(6'“)A% ) i (kp)t

kpap

+ 9(_26%9(5P) e*iA,l(k,p)t ) (A4)

Here, we have defined

Asr(k,p) = E.(1F 2No) + (e — &) (A5)
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The t < 0 contribution can be deduced from Eq. (A4) by the replacement ¢ — —¢. Fourier transforming we obtain

K(z)( ) = /OO dtetwt —0+\t|K(2)()

1
Z ab Z p)] (Ag(k,p)—l—w—l—in

kpaf3 o==+1

1
+Aa(kap)—w+in>' (A6)

Assuming a metallic dot, we can let >, — 14 ‘L dey, (for the lead we have Z — f de,,) and the mesoscopic
capacitance is determined to be

1401%
CO = 62K(2)(O) = 1/1 1 N2 Zt (A?)

This corresponds to Eq. (13) in the main text. This shows that in the weak-tunneling regime, the mesoscopic
capacitance of a single-electron box differs very strongly from the geometrical capacitance as a result of the Coulomb
blockade phenomenon.

2. 4th order

The various contributions which arise at 4th order are classified by indexing the dynamics of the charge occupation
on the dot and the number of virtual particle-hole excitations. Only the paths 0 =1 —-0—-1—-0,0—>1—0—
-1-0,0--1—-0—-1—0and0— —1 — 0 — —1 — 0 contribute at low energies (i.e. linear in w). Furthermore,
based on phase space arguments, only paths within this subset that have particle-hole virtual excitations contribute.
We explicitly compute the relevant contribution by the path 0 — 1 — 0 — 1 — 0. Its contribution to K® for t > 0

follows from the expression
[e’e] t to 0 R
/ dtl/ dtz/ dt3/ dts(pcs|Hr(t1)N (1) Hr(t2)
t 0 0 —00

x Hr(t3)N(0)Hr (t4)|¢as)- (A8)

Isolating the product of operators contributing to this path we obtain

o0 t tg 0
> tarpitaspstassstasss / dt / dts / dts / dty
t 0 0 —00

kipra1B1
B4

w e~ A1 (k1,p1)t1 = A1 (ka,p2)ta+Ai (ks,ps)ts— A1 (ka,pa)ts)

x <¢GS |Cz)1ﬂ1 iy ay dLQ azCp2B2 0;23,83 dizas lem a4 CPaBa |¢GS> . (Ag)

The pairings corresponding to single particle-hole excitations in the intermediate state are given by

[ e o ' |
(bGsch, g drron o, CpasnChy g, Bhsos By, oy Cpapal bG5) (A10)
and
I |
I 1 I 1
(basleh, g diran ], o, CpapaCh g, Brsas o, Cpapal Gs)- (A11)

The pairing (A10) corresponds to an electron-hole excitation in the reservoir, whereas (A1l) corresponds to an
electron-hole excitation in the dot. Integrating over the time variables and extracting the imaginary contribution of
the above expression leads to a contribution linear in w (hence gapless)

Z layBitaspilasBs tal,@ze (6161) ¢ (Ekz) ¢ (_Epl) g (51)2)

k1p1kap2
a1BlazBz

ei[Al(kl,Pz)—Al(kh;Dl)]t
X
Aq(k1,p1)Ar (b2, p1) A1 (k2 p2) Ay (K1, p2)

(A12)
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The contribution of this term to the response function K(w) to linear order in w is evaluated to be

4
S"71[((()12)10(“)) = Wng Z talﬁlta2ﬁlta2ﬁ2talﬁ2

a181
agfB2

2

X + O(w?). (A13)

k)
Z 1 — 2N0) + Ek]

k

Note that the imaginary contribution for w < 0 arises from the ¢ < 0 expression. Collecting the contribution from
the paths0 41 —-+0—--1—-0,0—--1—-0—>1—0and 0 - —1 - 0 — —1 — 0 in a similar fashion, and noting
that for electron-hole excitations in the lead given by the grouping in Eq. (A10) we obtain an identical contribution

%mK(Ll)(w) = 277”8”%‘” Z ton i tan i tanatan
1By
az Bz

2
! + ! J + O(w?). (A14)

X
[Ec(l —2Ny) | E.(1+2N,

In the last step we assume a metallic dot and let Y., — vy [~ dey (for the lead we have > 10 7 dey).
Comparing Eq. (A14) with the general relation Sg((t)) = Cp(1 +iwCoR,) + O(w?) and using Eq. (A7) we identify the
AC charge relaxation resistance to be

R 2h Zz;g; ton i tan i tanfatan
= —

o2 2
(Zus2s)

This corresponds to the formula (14) in the main text. Note that here we have explicitly restored the Planck constant
h which was set to one in the derivation.

(A15)

Appendix B: Coulomb gas formulation

Here, we show that for energy scales below A*, the partition function close to the charge degeneracy points can be
rewritten exactly as the partition function of the one-channel Kondo model, resorting to the Coulomb gas analogy3:44.
By assuming that only one mode, e.g., the totally symmetric mode penetrates into the cavity for energy scales below
A*, Eq. (16) formally reproduces a one-channel Kondo model. Here, the goal of this Appendix is to provide an
alternative derivation, following the same terminology as the one used in Refs. 59-65, but keeping the channel-mixing
terms.

First, it is relevant to observe that the partition function in Eq. (28) can be expanded in powers of ¢ as follows

o0

> e [Dd[DdDs, ] expl-5 - )
D= TN
m=0 :
= Z Z %eﬂﬂnNo /['D¢]€_Sg <(Sint)m>81. (Bl)

The notation (.. .>gl implies that the the expectation value is taken with respect to the (free) actions of the electrons
in the lead and dot. X
. . e
Let us simplify the term ((Sing)™), -

5 B _ _
<(Sim)m>81:tm/0 dﬁ.../o dtm S 0 S (e e 0 o (g i +he)).

kipiaif EmDm @m Bm

(B2)
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We alter the notation, such that the subscript ¢r = ¢(7%) is now taken to indicate the time label of the ¢ operator.
It is implicitly assumed that the ¢ fields obey twisted boundary conditions. This expression has contributions only
when m = 21 is even, and furthermore contains an equal number of ¢ and ¢ operators (and as a corollary d and d
operators). The most general term looks like

B .
y e T O R D )
0 iy Diq ctiq Biyg kj,pj, o, B,
x <(E:Di1 Biq dkil Qg vt 'Epilﬁil dkilail) (dkjl ajy Cpjy By - dkjlajl Cpj, B, )> ) (B'?’)

where (i1,...,%,) and (j1,...,Jn) are permutations of (1,...,2l). Noting that the propagator of the electrons in the
dot and electrons in the lead are independent of the channel index, i.e {d,a; (T1)dkzas (72)) = Saras (diy (T1)di, (T2))
and (Cp, 8, (T1)Cpy 8, (T2)) = 08,8, (Cp, (T1)Cpy (T2)), and furthermore assuming a continuous spectrum (i.e. large lead
and dot) such that », , (dy, (11)dy, (72)) and > pips (o1 (T1)cp, (T2)) are proportional to each other, we obtain

A:th (NM)I/ dr ...drye” i(p1+...+dr—bry1—...—P21) Z Z

0 p1.--p21 k1...kyy
X <5p1 .. 'EZDZCPH»I .. 'szl> <dk1 .. 'dkldkl+1 L. dk21> . (B4)

In the last line we use the fact that for every complete contraction of the above correlators, the number of free indices
for o and 3 reduces from 2[ to . Summing over each o we get a factor A and similarly summing over each 3 we get
a factor M. Since there are [ such sums, we get an overall factor (M M)".

Thus, the partition function reduces to

n=—oo

oo 2 0o B
Z= Z tNM > e [Can | [ (Do~ bz [§ 40 9(nF i1 4 u=drri =)
= 0 (B)=do+2mn

X Z Z Cpy -+ CpCpryy - - -Cp2z> <d;€1 R dleZkHl .. -Jk2l> . (B5)

p1---P2i k1...k2g

The next step is now to use a “charge” representation of the partition function.
We then transform the ¢ dependent part of the partition function (within square brackets) to the charge represen-
tation as follows

i ei27rnN0/ ['D¢]e*ﬁfoﬁd7(87¢7(7))2*i(¢71+---+¢71*¢L+1*»~*¢72l)
n=—oco #(B)=¢o+2mn
o B .
= > e [ipgl [ Dolexp |E. [ dT{Q2+iQ¢}+i27mQ(ﬁ)—i(¢1+...+¢l—¢l+1—~-—¢2l)]7
n=—oo #(B)=do+2mn 0
(B6)

where we have introduced the auxiliary bosonic field Q(7), such that Q(5) = Q(0). Defining the source term
J(rm, o) =0(r—m)+ ...+ 6(r—71) —0(r —Tp41) — ... = 6(7 — T21)], (B7)
we can rewrite Eq. (B6) as

o0

et2mn o] ,— B drQ? . ? - .
/[DQ] n:Z_OO i2mn[Q(0)+No] ,— Ee [ d7Q /(;5(5)_¢0+27rn[p¢] exp ll/o dr {Q —J(r;7,. .. ,7'21)} gb]
- /[DQ] Z d (QO + NO + TL) e_EC fOﬁ dTQ25 |:Q - J(T;Tlu e 7T2l):|
n_];ooon ) l 21
Z / [DQle 55 7@ | Q(r) + No+n— > O(r — ) + Z%—n)}
e oo —No—n i=1 i=l+1

l 21
Z / (DQJe—Ee I 4m(Qr)—No)? lQ(T)_njLZ@(T—n)—.Z @(7’—7’1-)], (B8)

n=—oo



17

where in the last step we used the transformation Q(7) — Ny — Q(7).

We now focus on the charge degeneracy point Ng = 1/2 and assume that we are at very low temperatures (i.e.
BE. > 1 or more precisely SA* > 1). This implies that we can focus only on the lowest two charge (energy) states.
This mean trajectories of Q(7) are restricted to access these two charge states Q(7) = 0,1. This projection to the
lowest energy states causes the time labels in Eq. (B5) to be nested, i.e. the trajectory of the charge (in imaginary
time) consists of a succession of blips. Let us focus on one such trajectory is given by the nesting 7 > 741 > 72 >
Ti42 > ... > Ty, and rename 7341 — T{,...,72 = 7. It is simple to see that permuting the time labels of the various
nestings give equivalent contributions. There are [! x [! equivalent contributions, corresponding to permutations of
the labels (71,...,7) and (71,...,7/). Furthermore, the contribution from the trajectories 0 -1 — 0 — ... — 0 and
1—-0—1—...— 1 are identical. Thus in this regime we get

2
Z =25 Z(tNM /dﬁ/ dry .. / dTl/ dr)

=0

Y 3 <a,,1(n)...apl(n)c,,ll(n)...cp;(T;)><d,ﬁ(ﬁ)...dkl(n)cz,g;(ﬁ)...czk;(m)) (B9)

D1.--p1Py---p) k1. kiky . k]

We recall the identities
/B 1

G (7-1 - 7-2) = <C C. > =1 lim - — 1y (Bl()a)
z;m P1P2 plzm P1Ep2 B—o0 sin (1/B(11 — 72)) T — Ty
and
7 : /B 1
“ T2 = ) i dpe) =01 i B10b
];162 k1ko (7'1 7'2) ];162 < P1 P2> %1 5‘?;0 sin (7_‘_/6(7_1 — 7_2)) — 1 Pa— 7-27 ( )

where vy and v; denote the electron density of states in the lead and dot respectively. Thus we obtain

[es} 4 T1 p , /T{l i /Tl J , Z( )P 1
T Ty .. ] T -1 ,
! 0 0 : P (7— _TP1>( _sz) "(Tl/_TPz)

(B11)
where (Pp,...,Pr) is a permutation of (1,...,l) and (—1)F is the corresponding sign (Note : interchanging a pair

indices in (1,...,1) gives a factor of —1). Neglecting the constant factor of 2¢= %7 Eq. (B11) reduces to

2
= Mic; (1 = 75)] [T (= 7))

7 = Z V0V1t2./\/./\/l / drm / dry .. / dm / dr| < = (B12)

= 11 L (T = Ti1)} e [Hélzl (7 = Tiz):|

Renaming 7{ — 7o, 72 — T3, ..., Tl — 79; and introducing an ultraviolet cutoff 1/7. = A*, we can rewrite this
expression as

0 B T1—Te T2l—1—Te
l dTl dTQ dTQl it T, —
2= (unetna)' [ [T ] exp 237 (~1)" log | Z2T

-
1=0 i<j ¢

(B13)

Recalling the partition function of the completely anisotropic single-channel Kondo model (in the language of the
Coulomb gas expansion)

> JLV B d7’1 T1—Te dTQ /T2n71*7'c d7-2'n, o
Zc = _— e 2 _1 117 1
’ 7;3 ( 2 ) A Te Jo Te 0 Te exp Z( ) og

1<j

Ty — Tj

Te

we show that it is identical to Eq. (B13), where v is the density of states of the electrons of the Kondo model. The
relationship between the one-channel Kondo theory and the parameters of the quantum RC circuit can be easily
deduced

Jv

2
(T) = VontQNM. (B15)
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Appendix C: Perturbation theory near perfect transmission

It is convenient to introduce the Majorana fermions

dy =d +d
d_ =i(d" —d)
Uy (2) = i) + s (@)
b (z) =i [l(x) + s (@)] (C1)

which obey the commutation relations {¢¢, ¢} = 28¢¢ and {d¢,de'} = 20¢¢,. Here, we have used the symbols ¢
(¢’')==+. Using this representation and integrating out the charge field away from x = 0, the partition function of the
system is given as a coherent state functional integral

Z = / DpeDipy Dip_Dd Dd_ exp|—5]. (C2)

We rewrite the action S = Sy + Sine using Egs. (35), (45) and (46) as

B o0 v )
So = S5+ /O Zﬂjﬁ [ /_ e (Ve Mo, 1) = i@, 1), Yl m)) + de(r)0rd(r) +iX e (0, 7)d—c (7)
(C3)

and

B . B
S = / dr 37 (Al + ¢Aal) Ce(rie (0,7 (r) = / dr Hi (7). (C4)

¢=+

We define the constants I'v = 2X<2 /vr, which describe the effective widths of the resonances of the (impurity)
Majorana fermions. For the Majorana description near weak tansmission it is necessary to introduce the infrared
cutoff I' = max{I';,T'_}. This corresponds to the lifetime of the shorter lived Majorana fermion. The local (i.e at
x = 0) Green’s function of interest for the noninteracting Hamiltonian can be computed from the equations of motion
on the lines of Ref. 40, and are given by

B : 7 Wy, SN (W,
Gelion) == [ dre™ (T, 150, 7)uc(0,0)) = - - ) (©5)
B . 12X _ n(wn
O-cen) = [ dree (@ 0.0 = -2t ) (©6)
N
Delu) = = [ dre™ (T, {de(c(0)) = —i . (1)

Note, w, = (2n+ 1)7/F denote (fermionic) Matsubara frequencies. Next, we compute the leading order correction to
the charge response function

K(r) = (T INONO)) = 5 (T, [8030)] ) = Kolr) + Ka(r) + Ka(r) + OO) (C8)
where we have defined the functions

Ko(r) = 2 (. [ 0)])

0

Ki(r) = —= OB ds, <TT {(ﬁi(f)d;lc(O)Him(sl)} >O

T2

Ko(r) = — /0 ’ dsydss <TT [gsg(T)ég(O)Hm(sl)Him(sQ)] >O. (C9)

T2
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Here, the subscript (...)o implies that the expectation value is taken with respect to the quadratic action Sy. The
contribution Ko(r) was computed in Eq. (36) from which we inferred R, = h/(2¢?). Let us explicitly denote the
operators C’C as C’C = ug?)c + vgqgi. The corrections to the Green’s function due to backscattering from the function
K, (7), is given by

1

B . o
[ dsetem 3 v (Dal+ ) (T [SNAOUET] ) (T [c(0,50)d O

(==

Y 1 E,
o E 3 Z ric(No)? (1 + Cra)? log (?> . (C10)
c (1 n %) =

Here, we assume that we are in the Coulomb-blockaded regime and identify E. to be the ultraviolet cutoff . We define
the functions k4 (Ny) := cos(mNp) and k_(Np) := sin(mNp). The energy scale of the Fermi velocity, which is lost in
the bosonization process where an infinite bandwidth is assumed, is reintroduced by fixing the cutoff*>. We define
the dimensionless backscattering amplitudes 7 2 via the relation

2avp B
A2 =T1,24/ y- (C11)

The contribution from the function K»(7) involves 2 types of diagrams

1 [P :
Ky (iw,) = ﬁ/o drdsidsqe™ ™7

[ 3 (L il @2) (Trl6e(T)be (0)Cels1)Cel52)] ) (Tr (0, 51)0 (0, 52)]) (Tl (s1)d-c (52)])

= 2ma

+; (Al + <A2> <TT[¢>C(T)¢c(o)éc(sl)é<(S2)]> (Tr [ (0, 81)d—¢(52)]) <TT[¢<(0,32)d_<(sl)]>]. (C12)

2ma

In this regime we should neglect correlators in ¢Ec which involve more than a product of four QASC fields, since the charge
is pinned due to strong Coulomb interactions. Thus we obtain

Ka(iwn) = —3 7E L S K c(No)? (1 + Cra)? [log <ET) - (1 + E) log (1 + %)} . (C13)

In our calculations we make use of the Fourier transform of the qglc propagator

Fo(ivg) = — /Oﬁ dre™s7 <Tr [52(7)%(0)} >O = —gma (C14)

where v, = 2k7 /8 denotes (bosonic) Matsubara frequencies. Wick rotating iw, — w + i we obtain

1 E.
Ki(w) = 27;YE 5 | D kc(No) (11 +¢ra)? log (?>
“(1-igg) L=

Ko(w) = - S b (No)? (11 + Cra)? [log (E?) _ (1 +z2w—r> log (1 —z%)} . (C15)

1— z%) =+
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