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Continuous–Time Quantum Monte Carlo (CT-QMC) method combined with Dynamical Mean
Field Theory (DMFT) is used to calculate both Periodic Anderson Model (PAM) and Kondo Lat-
tice Model (KLM). Different parameter sets of both models are connected by the Schrieffer–Wolff
transformation. For degeneracy N = 2, a special particle–hole symmetric case of PAM at half filling
which always fixes one electron per impurity site is compared with the results of the KLM. We
find a good mapping between PAM and KLM in the limit of large on–site Hubbard interaction U

for different properties like self–energy, quasiparticle residue and susceptibility. This allows us to
extract quasiparticle mass renormalizations for the f electrons directly from KLM. The method is
further applied to higher degenerate case and to realistic heavy fermion system CeRhIn5 in which
the estimate of the Sommerfeld coefficient is proven to be close to the experimental value.

PACS numbers: 71.10.-w

I. INTRODUCTION

Computational study of heavy fermion materials1 is
a challenging theoretical problem. These systems are
a subset of intermetallic compounds that have a low–
temperature specific heat whose linear term is up to
1000 times larger than the value expected from the free-
electron theory. The heavy fermion behavior has been
found in rare earth and actinide metal compounds at very
low temperatures (typically less than 10 K) in a broad
variety of states including metallic, superconducting, in-
sulating and magnetic states2.

The physics of the heavy fermion systems is controlled
by the antiferromagnetic interactions of local magnetic
moments residing on the rare earth or actinide atoms
with the sea of conduction electrons. The theoretical
problem of a localized spin interacting with the conduc-
tion electrons is the celebrated Kondo problem3–8 whose
solution is one of the outstanding achievements of many-
body physics. It describes how the local spin is com-
pensated as the temperature falls below a characteris-
tic Kondo temperature. Something similar occurs in the
heavy fermion materials which represents an array of such
spins forming a Kondo lattice.

In this regime, each f orbital is occupied by a fixed
number of electrons, and all types of charge fluctuations
are approximately frozen due to a large Coulomb repul-
sion penalty that the system pays when the electron is
added/removed from the shell. Therefore the low–energy
degrees of freedom are provided by localized spins only
and the corresponding model is known as the Kondo Lat-
tice Model (KLM)9–17. The KLM effective Hamiltonian
is obtained by using a second–order perturbation with
respect to hybridization18 of a more general Periodic An-
derson Model (PAM)19–21where the localized f–electrons
can exchange with the conduction electrons bath thus al-
lowing both charge and spin fluctuations to occur. The

introduction of the limit of infinite dimensions and sub-
sequent development of the dynamical mean field the-
ory (DMFT) has allowed to study the properties of both
models in a systematic manner22–28

Due to developments in the electronic structure the-
ory for strongly correlated systems based on a combi-
nation of Density Functional Theory (DFT) in its local
density approximation (LDA) and DMFT29, studies of
real heavy fermion materials have recently appeared in
the literature30–32. Here the development of Continu-
ous Time Quantum Monte Carlo Method (CT–QMC) for
solving corresponding Anderson Impurity problem has
played a central role33–36. These calculations are ex-
tremely computationally demanding especially for the f
elements such as Plutonium37,38 where a large number of
atomic states needs to be kept in the calculation.
We have recently proposed a simplified approach39

where instead of full solution of the Anderson impu-
rity model, a corresponding Kondo Impurity (or more
general Coqblin–Schrieffer Impurity40) is studied to ex-
plore low–energy physics of heavy fermion materials41,42

using most recently developed CT–QMC algorithm for
this problem43–45. In this regard, an interesting ques-
tion arises on how exactly the scaling between Ander-
son and Kondo impurity models occurs and whether
the low–energy properties of heavy fermion systems such
as electronic mass enhancement and associated with it
linear specific heat coefficient can be recovered from a
restricted solution provided by the conduction electron
self–energies available within the KLM. Such scaling be-
havior has been explored46 for the temperature depen-
dent susceptibility of the symmetric Anderson model us-
ing numerical renormalization group techniques7, where
a precise mapping has been found to spin– 1

2 Kondo
Hamiltonian. Here we explore a similar mapping between
single–particle functions such as the self–energy where
upon increasing the value of on–site Coulomb repulsion
U , we report a convergence of the conduction electron
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self–energy extracted from the solution of the PAM to the
one obtained within KLM. We use CT–QMC method for
the corresponding impurity models and the Dynamical
Mean Field Theory for achieving self–consistent solution
of the lattice problem. We utilize an inverse relationship
to extract the f–electron self–energies and monitor how
the low–frequency behavior of the AIM converges to the
KLM limit. Our obtained mapping allows the extrac-
tion of the mass renormalization of heavy quasiparticles
directly from the solution of the Kondo lattice Hamilto-
nian.
As an illustration, we consider an electronic structure

of CeRhIn5 where we compute hybridization functions of
the f–electrons with conduction bath and evaluate Kondo
exchange coupling. We subsequently solve the Kondo
Lattice Model with CT–QMC and DMFT, compute con-
duction electron self–energies, and then use the inverse
mapping obtained from our analysis of the model Hamil-
tonian to evaluate electronic mass enhancement and spe-
cific heat coefficient of this system. Our theoretical re-
sults are compared with available experimental data.
This article is organized as follows. In Section II, we

discuss the mapping between periodic Anderson model
and Kondo lattice model in the limit of large U, and pro-
vide the results for electronic self–energies, quasiparticle
residues and susceptibilities. In Section III, application is
presented to evaluate electronic mass enhancement and
Sommerfeld’s coefficient for CeRhIn5. Section IV is the
conclusion.

II. MODEL CALCULATION

A. Periodic Anderson and Kondo Lattice Models

One of the popular models to describe the physics
of heavy fermion materials is the periodic Anderson
model19–21. The effective Hamiltonian is given by

HPAM =
∑

kσ

ǫkσc
†
kσckσ + ǫf

∑

iσ

f †
iσfiσ + U

∑

i

nf
i↑n

f
i↓

+
∑

ikσ

Vk(c
†
kσfiσ +H.c.)

(1)

where c†
kσ (ckσ) creates (destructs) a conduction electron

with momentum k, spin (and orbital) σ and dispersion

ǫkσ; f
†
iσ (fiσ) creates (destructs) an f electron with spin

σ and energy ǫf on site i; nf
i↑ (n

f
i↓) is the number operator

for f electron at lattice site i with spin up (down); U is
the on–site Coulomb repulsion; Vk is the hybridization
between f electrons and conduction electrons which we
assume to be k–independent, Vk = V, for simplicity.
In systems where the Hubbard U is large, the charge

fluctuations become effectively frozen and the ground
state wave function has a little weight of configurations
with the number of f–electrons different from its aver-
age number n̄f . This results in transforming the PAM

Hamiltonian which eliminates the hybridization term in
the first order by Schrieffer–Wolff transformation. The
second–order in V Hamiltonian is a famous Kondo Lat-
tice Hamiltonian9–17 that describes interaction between
spins of localized and conduction electrons

HKLM =
∑

kσ

ǫkσc
†
kσckσ + JK

∑

i

Si · σ (2)

where Si represents the localized spin of the f electron at
the i site, the σ is the spin operator of the itinerant con-
duction electron and JK is the Kondo coupling constant.

JK = V 2(
1

−ǫf
+

1

ǫf + U
). (3)

For the half–filled case, ǫf = −U/2, and JK is simplified
to 4V 2/U .

B. Dynamical Mean Field Theory

Solutions of both models in a general case represent a
complicated numerical problem. Using dynamical mean
field theory, the algorithm breaks down into (i) the solu-
tion of the corresponding (Anderson or Kondo) impurity
problem and (ii) the self–consistency loop over hybridiza-
tion functions which enforces lattice periodicity25.
For the periodic Anderson model, the DMFT evaluates

the local Green function for heavy electrons

G
(loc)
f (iωn) =

∑

k

[

iωn − ǫf − Σf (iωn)−
V 2

iωn − ǫk

]−1

.

Then, the bath Green function is defined

G
(0)−1
f (iωn) = G−1

f (iωn) + Σf (iωn) ≡ iωn − ǫf −∆(iωn)

and used as an input to the impurity solver. The latter
produces an impurity Green function

G
(imp)
f (iωn) =

1

iωn − ǫf −∆(iωn)− Σf (iωn)

from where, a new self–energy can be found

Σf (iωn) = G−1
0 (iωn)−G

(imp)−1
f (iωn).

The process is repeated by recalculating the lattice Green
function with the new self–energy. The self–consistency
condition is when

G
(imp)
f (iωn) = G

(loc)
f (iωn).

The Kondo lattice Hamiltonian can be obtained by
considering the limit V 2 → ∞, U → ∞, ǫf → −∞ while
keeping V 2/ǫf = const. First, define a local Green func-
tion for conduction electrons

G(loc)
c (iωn) =

∑

k

[iωn − ǫk − Σc(iωn)]
−1
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where conduction electron self energy is given by

Σc(iωn) =
V 2

iωn − ǫf − Σf (iωn)
.

Thus, in the DMFT self–consistent loop one can iter-
ate over conduction electron quantities: The bath Green
function

G(0)−1
c (iωn) = G(loc)−1

c (iωn) + Σc(iωn)

serves as the input to the Kondo impurity solver. The

latter produces an impurity Green function G
(imp)
c (iωn)

from which the new conduction electron self–energy
is found. The process is repeated by reevaluating

G
(loc)
c (iωn).The self–consistency condition is when

G(imp)
c (iωn) = G(loc)

c (iωn).

Several powerful methods such as exact diagonaliza-
tion or numerical renormalization group techniques have
been developed in the past to deal with the impurity
models. In this work we utilize a Continuous Time Quan-
tum Monte Carlo method33–36 that was originally pro-
posed to deal with Anderson impurities but has been
recently generalized for Kondo (Coqblin–Schrieffer) type
of impurities43.
The density of states of conduction electrons is an in-

put to the simulation. Despite realistic materials may
have complex band structures, we use a simple constant
density of states to gain the physical insight from these
calculations. The half–bandwidth D is set to 1 which
provides the corresponding units. As we are looking for
a mapping between the two models in the regime of large
U , we first fix the Kondo coupling JK to some predeter-
mined value. There are typically two phases that emerge
in the KLM: the antiferromagnetic RKKY phase and the
paramagnetic Fermi liquid phase, which compete with
each other on the scale of JK

11 . We are mainly inter-
ested in the Fermi liquid behavior and consider the value
of JK = 0.3 in all our calculations. Second, we study two
cases with the effective f–electron degeneracies N = 2
and N = 4. For the case N = 2, the only non–trivial oc-
cupancy of the f–orbital is 1 which for the particle–hole
symmetric placement of the conduction electron band
results in the condition ǫf = −U/2, for the f orbital
to be half–filled. Although the system becomes a band
(Kondo) insulator in this case, the f–electrons states are
strongly renormalized by correlations which is the basis
for the comparison of these two models.

C. DMFT Solutions for N = 2

We first discuss the solutions for the case N = 2. The
behavior of density of f–electron states obtained from the
solution of the periodic Anderson model for several val-
ues of Hubbard U = 3, 6, 9 using CT QMC algorithm at
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FIG. 1: (color online) Density of f–electron states obtained
from the solution of the periodic Anderson model for the val-
ues of Hubbard U = 3, 6, 9.
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FIG. 2: (color online) Conduction electron density of states
obtained from the solution of the periodic Anderson model
for the values of Hubbard U = 3, 6, 9. Also shown the result
obtained from the Kondo lattice simulation.

imaginary axis and analytically continued to the real fre-
quncies is shown in Fig. 1. We can see that the energy
gap is opened up at the Fermi level as we expected. As
U increases, the peaks get narrower which correspond to
smaller values of quasiparticle residue zf . Since we fix
JK=4V 2/U , the hybridization increases according to U
and so does the hybridization gap.

The behavior of the conduction electron density of
states from the PAM calculation is shown in Fig. 2 where
we also see the gap that gets opened at the Fermi en-
ergy. The result of the simulation using the Kondo lat-
tice model is shown here as well for comparison. Upon
increasing U, we see that the conduction electron DOS
of the PAM tends to the infinite U limit represented by
the KLM calculation.
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FIG. 3: (color online) Conduction electron self–energy of the
periodic Anderson model with N = 2 calculated for several
values of U and the conduction electron self–energy of the
Kondo lattice model that correspoinds to U → ∞ limit.

1. Self-energies

We first obtain the f–electron self–energy from the
PAM calculation. Then we extract the conduction elec-
tron self–energy and compare with the data of the KLM
simulation. We present such comparison in Fig. 3 where
we plot ℑΣc(iωn) for several values of U and U → ∞
limit corresponding to KLM. We monitor a slow conver-
gence of the PAM self–energy towards its KLM value,
although even for U = 10 the discrepancy between the
two is still noticeable.
We now address the question of U → ∞ limit for the

f–electron self–energies, which numerically corresponds
to the Kondo regime, and compare these data with our
scaling behavior established analytically. First, notice
that the low–frequency expansion for both f–electron and
conduction electron quantities can be derived without a
problem

Σf,c(iωn) = Σf,c(0) + iωn(1 − z−1
f,c)

which leads us to

Σf (0) = −ǫf −
V 2

Σc(0)

zf =
[RΣc(0)]

2

V 2

zc
1− zc

. (4)

This formula has been used in our recent LDA+DMFT
work to extract mass renormalization parameters in sev-
eral heavy fermion compounds42 using simulations with
the Kondo lattice.
Unfortunately, this approach will not work for the

model considered here since for the particle–hole sym-
metric case of the Kondo insulator, the conduction elec-
tron self–energies diverge to produce an energy gap in
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FIG. 4: (color online) The convergence for the f–electron self-
energy obtained from the periodic Anderson model with N =
2 upon increase in the interaction U . The limiting behavior of
this quantity extracted from the solution of the Kondo lattice
model is also plotted.

the excitation spectrum. We therefore look for a scaling
behavior in a different way. We write

Σf (iωn) = iωn − ǫf −
V 2

Σc(iωn)
(5)

and noticing that we target the U → ∞ limit, we replace
V 2 with 1

4JKU , and divide both parts by U . For the
imaginary part we obtain the following scaling behavior

ℑΣf (iωn)

U
=

JKℑΣc(iωn)

4|Σc(iωn)|2
(6)

that expresses the large U limit of the PAM self–energy
via the quantities available within KLM.

The self–energies from both models can now be directly
compared. Fig. 4 shows the behavior of ℑΣf (iωn)/U for
several values of U together with the corresponding data
extracted from KLM. From the figure we see that as U
increases the PAM self–energy converges to that of the
KLM. The plot actually includes both the intermediate
regime and the Kondo regime. When U < 2 the two
Hubbard bands are within the conduction electron band
which has a bandwidth of 2 in our units. In this case the
self–energy deviates more than the data for U > 2. As
U goes to 8, the self–energies from both models collapse
at low energies.

Finally, we notice here that the U → ∞ limit pro-
duces ℑΣf (iωn)/U that grows linearly with the fre-
quency which is exactly the case of the self–energies ob-
tained in slave–boson type of methods for solving the
impurity problems47,48 or within quasiparticle Gutzwiller
approximation49.
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2. Quasiparticle Residues

Our self–energy results show qualitative convergence
between the two models. To get quantitative agreement
we further check the quasiparticle residues that we ex-
tract from the low frequency behavior of the self–energies.
These are related to renormalized effective masses for the
quasiparticles responsible for the enhanced specific heat
coefficient which is one of the central properties of sys-
tems with heavy fermions.
The CT–QMC algorithm works on an imaginary time

axis, which after the Fourier transformation gives us the
data on the imaginary frequency axis. Analytically con-
tinued to the real axis, the real part of the self–energy
around the Fermi level exhibits a linear behavior with
the slope determining the electronic mass enhancement,
while its imaginary part exhibits a quadratic behavior
which is a known result of the Fermi liquid theory. De-
spite problems associated with numerical noise that pre-
vents us to extract accurate data at real frequencies us-
ing analytical continuation, we can find the quasiparticle
residue from the imaginary axis data as follows:

z = (1−
∂ℑΣ(iωn)

∂(iωn)
|ωn→0)

−1. (7)

For the KLM, according to Eq. (5), the zf can be written
as:

zKLM
f = −

4πT

JKU

|Σc(iπT )|
2

ℑΣc(iπT )
. (8)

Although this expression is actually valid only for U =
∞, where zKLM

f becomes zero, we expect that it gives
an approximate value for PAM with U < ∞.
We present our comparisons between the two quanti-

ties in Fig. 5 where we plot the quasiparticle residue
extracted from PAM as a function of U as well as the
one extracted from the KLM according to Eq. (8). Also
plotted for comparison is the quasiparticle residue calcu-
lated using the slave–boson method as described in Ref.
48.
From the plots, we can quantitatively see the conver-

gence from the result obtained from PAM to the one
obtained by KLM. When U reaches 10, the KLM over-
estimates zf of the PAM data by about 30%. While
the slave–boson method, a very fast calculation, demon-
strates a similar behavior, it overestimates the PAM data
by about 100%.

3. Susceptibilities

Since the KLM freezes the spatial fluctuations but
keeps the essential magnetic properties, the correspond-
ing spin susceptibilities χ(T ) should agree between the

FIG. 5: (color online) Comparison between quasiparticle
residues zf calculated as a function of Hubbard U using pe-
riodic Anderson model with N = 2, Kondo lattice model as
well as a slave–boson method described in Ref. 48.
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FIG. 6: (color online) Calculated using the periodic Anderson
model with N = 2 temperature dependence of spin suscepti-
bility (times the temperature) for several values of Hubbard
U as well as the data extracted for the Kondo lattice model.

PAM and KLM at least for low temperatures. In-
deed, these quantities have been calculated and compared
against each other for the corresponding impurity mod-
els using numerical renormalization group methods long
time ago46 where a precise mapping between Anderson
impurity and spin– 1

2 Kondo impurity has been observed.

We present our own calculations in Fig. 6 where we
plot Tχ(T ) against the temperature for several values of
U calculated using the PAM as well as the data extracted
from the KLM. The comparison shows a nice conver-
gence for susceptibility within our chosen temperature
range. The deviation may result from the combination
of thermal effect and charge fluctuations. We see that the
convergence is worse here than that for the quasiparticle
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FIG. 7: (color online) Density of f–electron states obtained
from the solution of the periodic Anderson model for the val-
ues of Hubbard U = 3, 5, 10.

residues discussed earlier, but we believe that the sus-
ceptibilities should map precisely to each other at lower
temperatures.

D. DMFT Solutions for N = 4

The N = 2 case with one localized electron leads to
the Kondo insulator state which is topologically special.
However, our method can be generalized to larger orbital
degeneracy, where any integer occupancy of the f–shell
can be explored. Also the Coqblin–Schrieffer model is
more favorable. Below we consider the case with N = 4
and nf = 1 which is away from particle–hole symme-
try. As is the case with N = 2, we fix the value of the
Kondo coupling JK to 0.3. For each value of U that
we input to the PAM calculation, there are two remain-
ing parameters, the impurity level ǫf , and the value of
hybridization V 2 that should be searched for to obtain
nf = 1, JK = 0.3.
The density of f–electron states obtained from the so-

lution of the periodic Anderson model for several values
of Hubbard U = 3, 5, 10 is shown in Fig. 7. Away from
particle–hole symmetry, this shows a Fermi–liquid behav-
ior, i.e. a quasiparticle peak at the Fermi level instead
of the hybridization gap. As U increases, the trend is
similar to the N = 2 case, Fig. 1.
The behavior of the conduction electron density of

states from the PAM calculation is shown in Fig. 8, to-
gether with the result of the simulation using the Kondo
lattice model. Upon increasing U, the conduction elec-
tron DOS of the PAM tends to the infinite U limit given
by the Kondo lattice.
Conduction electron self–energies ℑΣc(iωn) calculated

within PAM for several values of U as well as within KLM
corresponding to U −→ ∞ limit are compared in Fig.9.
We see that the convergency of ℑΣc(iωn) is rather slow
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FIG. 8: (color online) Conduction electron density of states
obtained from the solution of the periodic Anderson model for
the values of Hubbard U = 3, 5, 10. Also shown is the result
of the simulation with the Kondo lattice.
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FIG. 9: (color online) Conduction electron self–energy of the
periodic Anderson model with N = 4 calculated for several
values of U and the conduction electron self–energy of the
Kondo lattice model that corresponds to U → ∞ limit.

when U increases similar to the N = 2 case presented in
Fig. 3. The low frequency behavior of ℑΣc(iωn) shows
that the hybridization gap is no longer opened at the
Fermi energy and the system remains metallic contrary
to the particle–hole symmetric case of the Kondo insula-
tor where ℑΣc(iωn) diverges at iωn → 0 as seen on Fig.
3. Here, the low–frequency slopes determine quasipar-
ticle residues zc for conduction electrons which display
a somewhat faster convergence to the Kondo limit upon
increase in U .

To compare how Σf (iωn) scales to the Kondo limit, we
start from Eq. (5) , take its imaginary part and divide
by U on both sides. Using Eq. (3), the formula becomes:
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FIG. 10: (color online) The convergence for the f–electron self-
energy obtained from the periodic Anderson model with N =
4 upon increase in the interaction U . The limiting behavior of
this quantity extracted from the solution of the Kondo lattice
model is also plotted.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  3  4  5  6  7  8  9  10

z f

U

N=4, T=0.01, JK=0.3

Anderson
Equation (8)
Equation (4)

FIG. 11: (color online) Comparison between quasiparticle
residues zf calculated as a function of Hubbard U using pe-
riodic Anderson model with N = 4, and the values extracted
from the Kondo lattice model using two different approaches
described in text.

ℑΣf (iωn)

U
=

iωn

U
+ JKη(1− η)

ℑΣc(iωn)

|Σc(iωn)|2
(9)

where η = −
ǫf
U

is a dimensionless parameter which affects
the electron counting at impurity site.
Fig. (10) presents the behavior of ℑΣf (iωn)/U calcu-

lated within PAM for several values of U together with
the corresponding data extracted from KLM. From the
figure we see that as U increases, the PAM self–energy
maps into its U −→ ∞ limit of the KLM.
The low–frequency behavior of ℑΣc(iωn) shown in

Fig. 9 may lead to a conclusion on the presence of

some exotic non–Fermi liquid behavior but this is ac-
tually only a temperature effect. Our model with N = 4
(Coqblin–Schrieffer model and multiorbital periodic An-
derson model) has the ordinary Kondo fixed point and
does not show undercompensated or two–channel Kondo
effect. Indeed, the f–electron self–energy in Fig. 10
clearly shows a Fermi–liquid behavior
We have finally extracted the values for quasiparti-

cle residues from the low–frequency slopes of ℑΣf (iωn)
which can be compared with the values of zf that we ob-
tain from the KLM calculation either using the approach
that leads us to Eq.(8) or using the low–frequency be-
havior of ℑΣc(iωn) that leads us to Eq. (4). We present
such comparison in Fig. 11 where the behavior of zf is
plotted against Hubbard U. We see that starting from
U = 10, the quasiparticle residues computed from PAM
and KLM become very close to each other.

III. APPLICATION TO CeRhIn5

Realistic heavy fermion materials have much more
complicated electronic structures than we used in our
model calculations. The f–orbitals are 14–fold degen-
erate and split in the presence of spin–orbit coupling
and crystal–field effects. This makes LDA+DMFT
calculations with full solution of Anderson impurity
problem dramatically heavy. With the advantage of
reaching lower temperature range, LDA+DMFT simu-
lations with Kondo (or Coqblin–Schrieffer) impurity was
established39. In this method, the first step is to find the
local hybridization function ∆α(ǫ) between fully localized
f and conduction spd electrons, where subscript α refers
to a particular representation that tries to diagonalize a
general matrix ∆m′σ′mσ(ǫ) by taking advantage of spin–
orbit and crystal–field symmetries. This is achieved by
using the so called Hubbard I approximation50 where
purely atomic f–electron self–energy is entered to the
LDA+DMFT calculation. Knowing ∆α(ǫ), the Kondo
coupling constant JK and the initial Green’s function of
conduction electrons can be extracted.

Gα(iωn) =

∫ Dcutoff

−Dcutoff

dǫ
ℑ∆α(ǫ)

iωn − ǫ
/

∫ Dcutoff

−Dcutoff

dǫℑ∆α(ǫ),

(10)
and

V 2
α =

1

π

∫ Dcutoff

−Dcutoff

dǫ
ℑ∆α(ǫ)

NF

. (11)

These are required for solving realistic Kondo lattice
problem with JK calculated from the Schrieffer–Wolff
transformation, Eq. (3).
Our target material is CeRhIn5 which is believed to

have the most localized f–electrons in the 115 family. The
spin–orbit coupling and crystal fields of the tetragonal
structure effectively reduce the degeneracy and make the
Γ7 doublet of the j = 5/2 state to be the ground state.
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FIG. 12: (color online) Conduction electron self–energies
RΣc(ǫ) (top plot) and ℑΣc(ǫ) (bottom plot) of Γ7 states for
CeRhIn5 at temperature T = 0.002 eV(≈23K) calculated us-
ing the LDA+DMFT method with the Kondo lattice.

TABLE I: Calculated LDA density of states at the Fermi en-
ergy, N(0) (states/eV/cell), the hybridization V 2 (eV2), es-
timated quasiparticle residue zf for the f–electrons as well as
predicted and experimental values of the Sommerfeld coeffi-
cient γ (mJ/mol/K2) for CeRhIn5.

materials N(0)LDA V 2 zf γ γexp
CeRhIn5 2.21 0.16 0.01255 414 400a

aRef.51

Therefore at very low temperatures, a single localized f–
electron resides at the Γ7 doublet and we have the N = 2
case discussed above in the model calculation.

A general LDA+DMFT calculation for this material
has been done in the former work39 with ǫf = −2.5eV
and U = 5eV which are the typical values for Ce–based
compounds. Here we provide an analysis of its low energy
physical properties. Fig. 12 shows calculated conduc-
tion electron self–energies, RΣc(ǫ) and ℑΣc(ǫ), for the Γ7

state from our LDA+DMFT simulation with the Kondo
lattice. We clearly see that the imaginary part of Σc

tends to diverge at least to T ≈ 23K although this be-
havior could result from the temperature being not low
enough in our simulation. However, a conventional low–
frequency expansion of the self–energy and the connec-
tion between zf and zc, Eq. (4), cannot be utilized to
estimate the quasiparticle residue for the f electrons and
the Sommerfeld coefficient γ.
Here we use our mapping method to extract zf exactly

as we illustrated for our model calculation. In this way,
we first estimate the quasiparticle residue zf and, second,
evaluate the renormalized density of states at the Fermi
level N(0)eff = N(0)LDA/zf . Then the Sommerfeld co-
efficient can be found

γ =
1

3
πNeff(0). (12)

All calculated properties are summarized in Table I. It
can be seen that our estimate for γ is very close to the
experimental value which indicates that our simulation
is sufficiently accurate to describe this material.

IV. CONCLUSION

We have studied a mapping of periodic Anderson
model to the Kondo lattice model in the limit of U → ∞
for single–particle functions such as the self–energy. The
crossover occurs at the values of interaction U = 10D
where the models become equivalent. This allowed us to
map the quasiparticle residue zf of the f–electrons and
extract its values directly from the Kondo lattice model.
We applied the method to realistic heavy fermion system
CeRhIn5 where our estimates for the Sommerfeld coeffi-
cient agree well with the experiment.
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