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We study the finite temperature and magnetic field phase diagram of electrons on the pyrochlore
lattice subject to a local repulsion as a model for the pyrochlore iridates. We provide the most
general symmetry-allowed Hamiltonian, including next-nearest neighbour hopping, and relate it to
a Slater-Koster based Hamiltonian for the iridates. It captures Lifshitz and/or thermal transitions
between several phases such as metals, semimetals, topological insulators and Weyl semimetals,
and gapped antiferromagnets with different orders. Our results on the charge conductivity, both
DC and optical, Hall coefficient, magnetization and susceptibility show good agreement with recent
experiments and provide new predictions. As such, our effective model sheds light on the pyrochlore
iridates in a unified way.

I. INTRODUCTION

The pyrochlore iridates, R2Ir2O7 (R-227) where R is
a rare earth, provide an ideal setup to study the in-
terplay of correlations, band topology and frustration.
Building in part on the strong role of spin-orbit coupling
(SOC) and correlations for Ir,1 various novel phases have
been predicted to potentially occur in this family of com-
plex oxides such as fractionalized topological insulators2,3

(TIs), chiral spin liquids,4 topological Weyl semimetals5,6

(TWSs), and axion insulators.5,7 This has contributed to
a substantial experimental effort,8–21 in particular to de-
termine the nature of the still-elusive magnetic ordering,
except for Pr-227 which shows no sign of long-range or-
der down to the lowest accessible temperatures. Recent
theoretical and experimental work has been pointing to-
wards a q = 0 all-in/all-out (AIO) magnetic pattern in
the ground state5,6,14–16,20,21 but direct evidence is still
lacking. Another question concerns the nature of the
metal insulator transition as a function of chemical pres-
sure via the change of the R-site element8,11,12 or hydro-
static pressure,17,18 as well as the nature of the thermal
continuous transitions: what are the respective roles of
magnetic ordering, Mott physics, and band structure?
Finally, are any of the new phases, for example the TWS,
present in the actual compounds?

We provide insight into these questions by consider-
ing a microscopically-motivated Hubbard model which
we probe at finite temperature and magnetic field. We
compute transport, magnetization and susceptibility in
the various phases (metal (M), TI, TWS, AIO, antiferro-
magnet (AF), etc) as well as their behaviour across the
phase transitions, quantum or thermal. The similarity
of our results with recent experimental data allows us to
make guesses on the locations of different iridates in our
phase diagram, and make predictions for future experi-
ments. Before considering the observables, we discuss a
fully general Hubbard Hamiltonian on the pyrochlore lat-
tice, its relation to previous models used for the iridates,
and to the new model underlying this work.

The iridium ions form a pyrochlore lattice of corner-

sharing tetrahedra and have a partially filled shell of 5d
electrons. This results in the local repulsion and spin
orbit coupling being of similar size, both on the order of
0.5-1 eV.2,5 The localized f-electrons of the R-site (absent
for Y) can complicate the picture for some members of
the iridates family for which the R-site ion carries a net
magnetic moment. In this work we shall not consider the
interplay between these local moments and the more itin-
erant Ir d-electrons. As such, our results apply directly
to the compounds with Y, Lu and Eu for which this com-
plication does not arise. Regarding the compounds with
a magnetic R-site, such as for R = Nd, Sm, Yb, etc, the
Ir d-electron physics might still play a key role. Indeed,
the similarity of the phenomena across the pyrochlore iri-
dates family, independent of whether the R-site is mag-
netic or not, provide weight to this statement.8,9,11–13,21

In the context of the pyrochlore iridates, a recent work22

has examined the interplay between the more itinerant
d-electrons and the localized f -electron moments by in-
cluding an exchange coupling between our nearest neigh-
bor hopping Hamiltonian,6 Eq. (1), and an appropriate
spin model. It was found that Weyl semimetal and axion
insulator5,7 phases can be induced by the f−d exchange,
and that the latter can cooperate with the Hubbard in-
teraction on Ir sites to stabilize the Weyl semimetal over
a larger region of parameter space than when it is in-
duced by d-electron correlations alone. Further studies
in that direction will be of interest, notably to get a bet-
ter understanding of the chiral spin liquid behavior of
Pr-227.4

The outline is as follows: we first introduce the gen-
eral Hamiltonian in Section II and relate it to previous
works. The ground state phase diagram and its exten-
sion to finite temperature is obtained in Section III. The
conductivities, both d.c. and optical, are then discussed
in Section IV. We discuss the finite-magnetic field phase
diagram in Section V. Finally, we briefly summarize in
Section VI and draw connections between our results and
experiments on the pyrochlore iridates.
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FIG. 1. Phase diagram of the generic NN hopping Hamilto-
nian on a pyrochlore lattice. It has two possible phases: a TI
and a SM. The square indicates the presence of a gap closing,
surrounded by the TI phase.

II. MODEL DEMYSTIFIED

Rather than starting with a specific microscopic model
for the iridates, we consider the most generic, time-
reversal invariant Hubbard Hamiltonian on the py-
rochlore lattice. We shall focus on an effective model
with a single Kramers’ doublet at each Ir site. This will
lead to an 8-band model that we believe is sufficient to
capture the salient physics. We write the Hamiltonian
in a global basis for the pseudospin to emphasize its sim-
plicity and generality:

H0 =
∑
〈i,j〉

c†i (t1 + it2dij · σ)cj

+
∑

〈〈i,j〉〉

c†i (t
′
1 + i[t′2Rij + t′3Dij ] · σ)cj , (1)

where σ is a vector of Pauli matrices acting on the pseu-
dospin degree of freedom, which in the context of the
iridates can be thought of as arising from the splitting
of the t2g levels by SOC1 and/or trigonal distortions23,24

and subsequent projection onto a half-filled doublet near
the Fermi level (EF ). The real vectors dij ,Rij ,Dij

depend on the given bond as follows: dij is aligned
along the opposite bond of the tetrahedron containing
i, j (Fig. 8(a)); it is parallel or antiparallel with the near-
est neighbor (NN) Dzyaloshinski-Morya (DM) vector of
a spin model on the pyrochlore lattice, of which there
are only two symmetry-allowed configurations,6,25 differ-
ing by a global sign. Rij ,Dij are obtained by going
to the next nearest neighbour (NNN) via the common
NN site and taking a cross product of the two bond or
dij vectors encountered, respectively. See Appendix A
for details regarding the construction of Eq. (1). The
five real hopping amplitudes lead to a four-parameter
free model, to which we add a Hubbard repulsion term,
HU = (U/2)

∑
i(ni − 1)2. In this work we perform a

mean field decoupling of HU in the magnetic channel,
but expect many results to survive the inclusion of quan-
tum many-body effects. Indeed, a subset of many-body
effects was taken into account in our recent study7 of
the NN Hamiltonian using cellular dynamical mean-field
theory (CDMFT). For instance, we obtained the same
magnetic orders as those found at the mean-field field
level.

Before discussing the relation of Eq. (1) to previous
microscopic models for the iridates and to the one used

in this work, we briefly discuss the phase diagram includ-
ing only NN hopping. It depends on a single parameter,
t2/t1, and can be determined exactly at half-filling; the
result is shown in Fig. 1. For −2 < t2/t1 < 0 a semimetal
(SM) results, and otherwise we have a TI,26 with the
exception of t2/t1 = 1 where an accidental gap closing
occurs. Interestingly, it does not alter the topological
structure of the Hamiltonian such that the TI survives
to arbitrary large values of t2/t1. The SM is charac-
terized by lines of nodes between the Γ and L points.
The phase transitions at t2/t1 = −2, 0 occur via gap
closing/opening at the Γ point. At t2 = 0, the Hamil-
tonian can be diagonalized analytically.27 Interestingly,
it is also the case at t2/t1 = −2, where the band struc-
ture corresponds exactly to the t2 = 0 case, albeit with a
spectrum inversion; specifically: {t1 = 1, t2 = −2} maps
to {−3, 0}. The phase transition at t2/t1 = 0 was previ-
ously discussed,28 where the t1,2 model was identified as
the most general NN symmetry-allowed Hamiltonian.

We now relate the general parameters to
microscopically-motivated ones for the iridates. We
first consider the case of no trigonal distortion,2,6 lead-
ing to ideal oxygen octahedra surrounding the iridiums.
The SOC splits the t2g manifold into Jeff = 1/2 and 3/2
multiplets. Projecting onto the half-filled doublet near
EF yields a pseudospin Jeff = 1/2 description. Going
from the atomic picture to the lattice, we introduce
oxygen-mediated2 and direct6 overlap NN hopping toxy

and tσ, tπ, respectively. These relate to the generic
model hoppings via:

t1 =
130toxy

243
+

17tσ
324

− 79tπ
243

; t′1 =
233t′σ
2916

− 407t′π
2187

;

t2 =
28toxy

243
+

15tσ
243

− 40tπ
243

; t′2 =
t′σ

1458
+

220t′π
2187

;

t′3 =
25t′σ
1458

+
460t′π
2187

; (2)

where we have also added t′σ,π, the σ- and π-overlap NNN
hoppings. We see that the microscopic model already
saturates the general Hamiltonian. As such, small trig-

onal distortions23 will renormalize the t
(′)
a but will not

contribute new terms allowing us to use the Jeff = 1/2
description without loss of generality. We mention that
Ref. 2 used purely oxygen mediated hopping, hence their
large SOC TI can be mapped to t2/t1 = 14/65 ≈ 0.215
which indeed corresponds to a TI in Fig. 1. Also, Ref. 27
studied TIs in the t1, t

′
2 model.

We shall work in units of toxy in the rest of the
paper. As before, we choose a representative subset
of direct hoppings, tπ = −2tσ/3, which translates to
t1 = 0.53 + 0.27tσ and t2 = 0.12 + 0.17tσ. We plot the
relation between t2/t1 and tσ/toxy in Fig. 9. An impor-
tant addition in this work is the presence of small NNN
hoppings: t′σ/tσ = t′π/tπ = 0.08. These are expected
to appear in the effective pseudospin model, and will re-
move line Fermi surfaces at EF in some portions of the
phase diagram, giving instead a TWS or metal with small
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pockets.6 The line nodes are an artifact of the NN band
structure.

III. PHASE DIAGRAM

The mean field phase diagram is shown in Fig. 2. At
T = 0 and small U , it contains metallic (M), SM and TI
phases depending on tσ. The metallic state has electron-
and hole-like pockets while the SM is associated with a
quadratic band touching, that splits into 8 linearly dis-
persing touchings in the AF TWS,6 see the spectra in
Fig. 3(b) or in Fig. 5 c). The shaded regions break TRS
due to the appearance of either the symmetric AIO or-
der (pale blue), or orders which are related to the AIO
state by local π/2 rotations6 (denoted by AIO′, in green).
At intermediate U , there is an extended region of TWS,
which turns into a metallic AF (mAF) for tσ < −1.085.
The latter is actually a tilted TWS, where the 3D “Dirac
cones” have been tilted such as to create metallic pockets,
but with the “Weyl touchings” remaining, see Fig. 3(a).
These phases should be compared with similar results
obtained in Ref.6 by two of us. The main difference is
that we have now included the NNN hoppings in the
self-consistent treatment. Indeed, the previous work was
mainly concerned with the self-consistent analysis of the
NN Hamiltonian: the NNN hoppings were added to the
final spectrum to establish that the line-nodes at EF can
give rise to a Weyl phase when the ordering is of the
AIO type. The present work confirms this. Moreover, a
metallic phase now appears for tσ < −1.085, which will
be relevant when we compare with experiments on the
iridates. Another new feature is the presence of mag-
netization “jumps” that appear within the AIO phase,
present for −0.78 < tσ < −0.68, denoted by the orange
(larger) markers in Fig. 2. The spontaneous onsite mag-
netization, m, grows abruptly along that line and the
TWS becomes a gapped AF insulator: energetically, the
system finds it preferable to preempt the continuous an-
nihilation of Weyl points of opposite chirality via a dis-
continuous evolution of m, this is illustrated in Fig. 4.
The abrupt continuous increase of magnetization seems
tied to the peculiar spectrum of the TWS.

Turning to finite temperature, we find that most ther-
mal transitions are continuous; this is denoted by the
out-of-plane fibers ended by circular markers in Fig. 2.
We have also examined the model at larger NNN hop-
pings, t′σ,π/tσ,π = 0.16, and found that small regions of
1st order transitions to the AIO phase appear at inter-
mediate U . As can be seen in Fig. 2, the transition tem-
peratures naturally increase with U , since an increase in
the latter leads to larger gaps. Thus, the gapless TWS is
fairly unstable to melting at finite T , with typical tran-
sition temperatures Tc ∼ 0.01 in units of toxy. We note
that the continuous transitions are consistent with ex-
perimental data on the pyrochlore iridates.

IV. CONDUCTIVITIES

A. Optical conductivity

We examine the optical conductivity associated with
the various phases, as illustrated in Fig. 5. Panel a)
shows the Lifshitz transition associated with a change
in the Fermi surface topology from a metal with small
electron- and hole-like pockets at U = 0 to a gapped
AIO state at U = 1. The optical conductivity in panel b)
reflects this via a small Drude peak in the former case,
and a gap in the latter. Panel c) shows the spectra of
the TWS and quadratic band touching SM out of which
it arose. The associated conductivities are reduced ap-
proaching the DC limit because these two states have a
vanishing density of states (DOS) at EF . We note the
distinguishing peak at low frequency for the TWS: it re-
ceives weight from transitions across the depleted energy
range corresponding to the TWS, where the DOS van-
ishes quadratically.

B. DC transport

We turn to the DC electric transport, which provides
further insight into the phase diagram. The AIO state
has isotropic conductivities due to the highly symmetric
magnetic configuration, i.e. σxx = σyy = σzz. The same
holds for the Hall conductivities: σxy = σyz = σzx. This
will cease to be true for the AIO′ states, which select a
given direction.6 To compute the transport coefficients
in the DC limit, we introduce a momentum independent
scattering time, τ . For example, the longitudinal and
Hall conductivities are given by29,30

σxx = e2τ
1

V

∑
k,α

(
− ∂nF
∂εα(k)

)
(vαx (k))2 , (3)

σxy = e3τ2Bz
1

V

∑
k,α

(
∂nF
∂εα(k)

)
vαy (vαx∂y − vαy ∂x)vαx ,

(4)

where 1 ≤ α ≤ 8 is the index associated with the energy
band εα, the corresponding band velocity is vα = ∂kεα.
In the Hall conductivity σxy, Bz is the component of
the magnetic field in the z-direction. Fig. 6 shows the
longitudinal resistivity, ρxx, and Hall coefficient, RH , at
tσ = −1.2 and U = 1.25 as a function of temperature.
At large temperatures, the system is in a paramagnetic
metallic state, with the expected dρxx/dT > 0. As T is
lowered beneath Tc = 0.21, the system undergoes a con-
tinuous transition to the AIO AF: the on-site magnetiza-
tion increases resulting in the spectrum evolving from be-
ing gapless at T just below Tc, to a fully gapped AF at the
lowest temperatures. We indeed find that the resistivity
shows a rapid upturn at Tc (where the slope changes sign)
and becomes exponentially activated at low T . The Hall
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FIG. 3. Spectra for the Hamiltonian Eq. (1) for (a) tσ = −1.2
and (b) tσ = −0.8. These are associated with the phase
diagram Fig. 2.

coefficient also shows a signature at the transition. Note
that the latter is positive suggesting hole-like carriers in
that portion of the phase diagram. The behaviour of
the resistivity and sign of the Hall coefficient are consis-
tent with recent experiments on Eu-227.11,12,15,17 Fig. 6
also shows the evolution of the resistivity as the ratio of
the Hubbard repulsion to the bandwidth is reduced. The
transition occurs at a lower temperature at U = 0.9 com-
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FIG. 4. Evolution of the magnetization, m, as a function of
the Hubbard repulsion U for tσ = −0.775. Note the abrupt
evolution of m when going from the TWS to the AF insulator
(AFI). The shaded regions have the AIO order.

pared to 1.25, as is expected because the onsite magneti-
zation is reduced and the corresponding ground state has
a smaller gap. At sufficiently small U , the system does
not develop magnetic ordering and the T = 0 metallic
bandstructure is present at all temperatures, in particu-
lar this leads to a finite T = 0 resistivity. This behaviour
resembles what happens in the iridates as the size of the
R-site ion is increased8,11,12 (chemical pressure). It also
roughly agrees with hydrostatic pressure experiments on
Eu-22717 with the difference that Tc was not found to
change appreciably with pressure, unlike for Nd-227.18
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FIG. 6. Solid lines: on-site magnetization (m), DC resistivity
(ρxx) and Hall coefficient (RH) for tσ = −1.2 and U = 1.25.
The non-solid lines show ρxx for U = 0.9 and 0.5. The arrows
indicate the locations of the continuous transitions, at which
ρxx shows a rapid upturn. The vertical axis goes from zero
to positive values in arbitrary units.

V. MAGNETIC FIELD

We examine the effects of a magnetic field on some of
the ground states of Fig. 2 via the addition of a Zeeman
coupling to the Hubbard Hamiltonian. Since we ignore
orbital coupling to the applied field, we focus on the non-
metallic phases. We solve the self-consistent mean-field
equations as above We have considered fields along the
[100], [110] and [111] directions. In all cases, we find
a rather continuous evolution to a fully polarized para-
magnetic state, without any first order transition to a
FM aligned with the field, in contrast with claims made
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FIG. 7. Main: magnetization per unit cell, M , as a function
of an applied magnetic field along the [100] direction for the
AIO insulator at tσ = −1.2 and U = 2.1. The evolution of the
magnetic moments across an abrupt feature is shown. Inset:
Susceptibility for fields along [100] and [111] versus T . The
dashed line corresponds to the 2nd order transition.

in Ref. 5. Instead, the net magnetization grows until it
(asymptotically) reaches a fully polarized state, as shown
in Fig. 7 for the case of the AF insulator at tσ = −1.2 and
U = 2.1. The magnetization profiles generically present
small features that correspond to sudden changes in the
magnetic order (never to a FM, though), but lead to
small changes in the actual magnetization. One such
abrupt evolution is seen to occur around µBB ≈ 0.32 in
Fig. 7. The magnetic susceptibility, χ, as a function of
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temperature is shown in the inset of Fig. 7 for fields along
[100] and [111]; with χ[110] = χ[100]. At temperatures
above the magnetic melting transition, T > Tc = 0.148,
χ is isotropic and slowly varying. As T is lowered, χ
has a maximum at Tc, beyond which point it becomes
slightly anisotropic. We find that in the ordered phase,
χ[100] > χ[111]. All of these features are consistent with
recent measurements of the zero-field cooled (ZFC) sus-
ceptibility of Eu-227.15

VI. DISCUSSION

We have introduced a microsopically-motivated Hamil-
tonian for the pyrochlore iridates, which contains all
symmetry-allowed terms up to NNN. Its ground states
include semimetals and metals, topological insulators,
topological Weyl semimetals, gapped AF states with
the all-in/all-out and related orders. Our phase dia-
gram, Fig. 2, and results for the transport and mag-
netic properties at finite T and field suggest that our new
model is apt to describe many salient features of the py-
rochlore iridates family. In particular, in light of recent
experiments11,15,17 that show the presence of a charge
gap in Eu-227, we suggest that its ground state is an
AIO gapped insulator, which under pressure can undergo
a Lifshitz transition to a non-magnetic metal with small
pockets, although TWS and metallic AF (with coexist-
ing Weyl nodes and pockets) are possible. At sufficiently
high temperatures, we find that the magnetic order melts
continuously leading to a paramagnetic metal, consistent
with experiments. For Y-227, which shows insulating be-
haviour at all temperatures (dρ/dT < 0), we suggest that
the high temperature non-magnetic state (connected to
the U = 0 parent phase) is a semimetal. The TWS, which
we find melts at relatively low temperatures, is probably
not present in the ground states of Eu- and Y-227 because
of the evidence for a finite gap but it might be accessible
by hydrostatic pressure.17,18 Similarly, the ground state

of Nd-227 was suggested20 to be poised near a metal-
insulator transition (on the insulating side), potentially
in the vicinity of the TWS.

In closing, we mention recent experiments on
Bi2Ir2O7

31,32 which shows some similar properties to
the other rare-earth based pyrochlore iridates. It was
found that the resistivity of Bi-227 remains metallic
down to sub-Kelvin temperatures,31 and recent µSR
measurements32 have found evidence for a continuous
transition into a long-range magnetically ordered state
at ≈ 2 K. Moreover, the measurements suggest that the
magnetic moments are very small. We observe that these
features can be consistently fitted into our framework if
we assume the ground state of Bi-227 is a metallic AF,
see Fig. 2, which is obtained by “over-tilting” the TWS.
Such a state carries the AIO order with small on-site
moments. As a consequence, the continuous transition
into a paramagnetic state occurs at a temperature much
smaller than for the phases with a gapped AF ground
state. An important caveat is that the Ir d-electrons will
hybridize with the s- and p-orbitals of Bi,31 a feature that
we do not take into account. Nevertheless, since our ef-
fective model is quite general, it may not be unreasonable
to expect that it will capture some features of Bi-227.
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Appendix A: Constructing the general Hamiltonian

We provide details regarding the construction of the Hamiltonian used in the main text. We choose the basis
vectors of the pyrochlore lattice to be Fig. 8 a): b1 = (0, 0, 0) , b2 = (0, 1, 1) , b3 = (1, 0, 1) , b4 = (1, 1, 0). In these
units the FCC unit cell has dimension a = 4. As stated in the main text, the most general hopping Hamiltonian on
the pyrochlore lattice takes the form:

H0 =
∑
〈i,j〉

c†i (t1 + it2dij · σ)cj +
∑

〈〈i,j〉〉

c†i (t
′
1 + i[t′2Rij + t′3Dij ] · σ)cj , (A1)

where the NN Hamiltonian is built using the vectors:

dij = 2aij × bij , (A2)

aij =
1

2
(bi + bj)− xc , (A3)

bij = bj − bi , (A4)
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(a) (b)

FIG. 8. Definitions of vectors entering into the general Hamiltonian. The green (thin) arrows correspond to the bij , whereas
the blue (thick) ones to the dij . b) shows the vectors involved in obtaining the NNN hopping amplitude between sites 1 and
4′, who share a common NN, site 2.

where it is understood in these definitions that bi selects the basis vector of the full lattice (Bravais + basis) index, i.
aij points from the center of the tetrahedron, xc = (1, 1, 1)/2, to the middle of the 〈i, j〉 bond; it is always orthogonal
to the faces of the cube built out of the tetrahedron’s vertices, see Fig. 8. bij is the NN bond vector pointing from
site i to site j. We have chosen the notation for the dij in analogy with the Dzyaloshinski-Morya (DM) vectors, Dij ,
of a spin model on the pyrochlore lattice because both sets of vectors are parallel or antiparallel on all bonds. The
difference arises in the sign. There are only two symmetry-allowed configurations of DM vectors,6,25 differing by a
global sign. The dij ’s are always found to differ by a sign on some bonds with either type of DM vectors.

The NNN Hamiltonian simply uses cross products of the bij ’s and dij ’s:

Rij = bik × bkj , (A5)

Dij = dik × dkj , (A6)

where i and j are NNNs and share the site k as their (unique) common NN. Rij ,Dij are obtained by going to the
NNN via the common NN site and taking a cross product of the two bond or d vectors encountered, respectively.
Fig. 8 b) illustrates the vectors necessary to construct the NNN amplitude between sites 1 and 4′. We note that
Rij and Dij always point along the diagonals (s1, s2, s3), where si = ±1. For instance, R34 = (1,−1, 1) and
D34 = (−1, 1, 1), as can be read off from Fig. 8; they are linearly independent as it should. For completeness, we
provide the momentum-space form of the Hamiltonian, H =

∑
q c

†
a(q)(HNN

ab (q) +HNNN
ab (q))cb(q), with

HNN
ab (q) = 2(t1 + t2iσ · dab) cos [q · bab] , (A7)

HNNN
ab (q) = 2

∑
c 6=a,b

{t′1(1− δab) + iσ · [t′2(bac × bcb) + t′3(dac × dcb)]} cos [q · (−bac + bcb)] , (A8)

where the indices 1 ≤ a, b, c ≤ 4 run over the basis sites. The sum over c in the NNN Hamiltonian runs over the
choice of common NN between NNNs on sublattices a and b. There are two such sites: c ∈ {1, 2, 3, 4} \ {a, b}.

Ref. 27 discussed the t1, t
′
2 model, with a special focus on topological insulator phases. Ref. 28 identified the t1, t2

model as the most general NN, time-reversal-invariant hopping Hamiltonian on the pyrochlore lattice, for a single
(pseudo)spin-1/2 Hilbert space per site. (We note that these two works use dij to denote our bij .)

1. Relation to microscopically motivated Hamiltonian

Two of us have previously proposed a model for the pyrochlore iridates, which was mainly analysed at the NN
level.6 It extends a previous one2 (although we focus on 2 spin/orbital degrees of freedom per site instead of 6) to
which we added hopping amplitudes arising from the direct overlaps of the d-orbitals of Ir. These Slater-Koster like
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FIG. 9. The curve shows the relation between tσ (in units of toxy) and t2/t1, the latter coming from the general Hamiltonian
Eq. (1).

models are more naturally constructed in a local basis because of the relative rotations between the oxygen octahedra
within a unit cell, an illustration of this is found in Ref. 6. It is however useful to consider the same Hamiltonians
expressed in a global basis instead, to see the role of the different microscopic hoppings more clearly.

We have taken the microscopic, local-axis Hamiltonian given by Eq. (1) in Ref. 6, supplemented by NNN direct
hoppings, and have performed spinor rotations to obtain a Hamiltonian in a global basis for the pseudospin. This
was compared with Eq. (A1) to obtain the relation between {t1, t2, t′1, t′2, t′3} and {toxy, tσ, tπ, t

′
σ, t

′
π, t

′
δ}, as given in

the main text. Compared with the main body, we in addition include the NNN hopping arising from the δ-overlap,
t′δ, leading to:

t1 =
130toxy

243
+

17tσ
324

− 79tπ
243

; t′1 =
233t′σ
2916

− 407t′π
2187

− 1843t′δ
8748

;

t2 =
28toxy

243
+

15tσ
243

− 40tπ
243

; t′2 =
t′σ

1458
+

220t′π
2187

+
277t′δ
4374

;

t′3 =
25t′σ
1458

+
460t′π
2187

− 275t′δ
4374

; (A9)

The NNN hopping t′δ was added in order to have a number of degrees of freedom matching that of the general
Hamiltonian at the NNN level. One can also consider the NNN oxygen-mediated hopping, which will add an analogous
term to the t′i. Fig. 9 shows the relation between tσ (in units of toxy) and t2/t1, where we have set tπ = −2tσ/3. The
exact phase boundaries of the NN hopping Hamiltonian expressed using the Slater-Koster amplitudes can be obtained
from the exact ones in the t1 − t2 model, t2/t1 = −2, 0: tσ = −192/115, −84/125 ≈ −1.67, −0.67, as can be verified
in Fig. 9.
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