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In charge-coupled circuit QED systems, transition amplitudes and dispersive shifts are governed by the ma-
trix elements of the charge operator. For the fluxonium circuit, these matrix elements are not limited to nearest-
neighbor energy levels and are conveniently tunable by magnetic flux. Previously, their values were largely
obtained numerically. Here, we present analytical expressions for the fluxonium charge matrix elements. We
show that new selection rules emerge in the asymptotic limit of large Josephson energy and small inductive en-
ergy. We illustrate the usefulness of our expressions for the qualitative understanding of charge matrix elements
in the parameter regime probed by previous experiments.
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I. INTRODUCTION

The fluxonium circuit [1, 2] is one of the most recent addi-
tions to the family of superconducting qubits. It is composed
of a small Josephson junction shunted by a large Josephson
junction array which primarily acts as a large kinetic induc-
tance. For quantum state manipulation and readout, the fluxo-
nium circuit can be capacitively coupled to a microwave res-
onator and thus integrated into the circuit QED architecture
[3, 4]. The amplitudes of photon-induced transitions between
different energy levels are then determined by the charge ma-
trix elements Nll′ = 〈 l |N | l′ 〉 where l and l′ denote the cir-
cuit’s eigenstates, and N is the dimensionless charge operator.
For circuits like the Cooper pair box (CPB) in both charg-
ing [5, 6] and transmon regime [7, 8], simple selection rules
give a very good approximation limiting the one-photon tran-
sitions to nearest-neighbor levels (l→ l ± 1). For the fluxo-
nium circuit, this selection rule is absent – leading to interest-
ing and useful features including the experimentally observed
large dispersive shifts over a wide external flux range despite
strong detuning between the lowest fluxonium energy splitting
and the photon frequency. [2, 9].

In previous work, we have presented numerical results for
the charge matrix elements of the fluxonium circuit [9, 10]. As
illustrated in Ref. 9 with results obtained for the experimen-
tally realized parameter values of Josephson, charging and in-
ductive energy, matrix elements indeed do not obey strict se-
lection rules. Nonetheless, trends of certain matrix elements
being up to an order of magnitude larger than others hint at the
fact that a new set of selection rules emerges asymptotically
in the limit of large Josephson energy and small kinetic en-
ergy. In this limit, and making use of the classification of flux-
onium eigenstates into metaplasmon and persistent-current
states [10], we derive analytical expressions for the charge
matrix elements. Based on the asymptotic selection rules, we
finally shed light on the different magnitudes of charge matrix
elements realized in the experimental parameter regime.

Our paper is structured as follows. In Section II, we briefly
summarize the classification of the fluxonium eigenstates into
metaplasmon and persistent-current states (previously pre-
sented in Ref. 10) and derive analytical expressions for the
charge matrix elements. Based on the resulting asymptotic

selection rules, we distinguish matrix elements of different
magnitudes and compare the analytical results with numerical
results for the experimentally realized parameters in Section
III. Finally, we summarize our findings in Section IV.

II. ANALYTICAL EXPRESSIONS FOR FLUXONIUM
CHARGE MATRIX ELEMENTS

The Hamiltonian describing the fluxonium circuit within
the superinductance model [10, 11] is given by

Hf = 4ECN
2 − EJ cosϕ+

1

2
EL(ϕ+ 2πΦext/Φ0)2. (1)

Here, the operator ϕ describes the phase difference across the
small junction. The conjugate operator N = −i ddϕ is asso-
ciated with the charge imbalance across the small junction,
in units of the Cooper pair charge (2e). The three coeffi-
cients represent the three relevant energy scales in the cir-
cuit, namely the charging energy EC = e2/(2CJ), Joseph-
son energy EJ of the small junction, and the effective induc-
tive energy EL of the “superinductor” made by the Josephson
junction array. It is instructive to view the Hamiltonian Hf
as describing a fictitious particle in a sinusoidal potential, de-
formed by an overall parabolic envelope. In this point of view,
ϕ plays the role of the spatial coordinate. Hence, the Joseph-
son and inductive energy terms in Hf determine the potential
energy V (ϕ), while the charging term produces the kinetic
energy contribution. The external magnetic flux Φext (in units
of the flux quanta Φ0 = h/2e) spatially shifts the parabolic
envelope. Due to the presence of the inductive term, the ap-
propriate boundary conditions supplementing the stationary
Schrödinger equation for Hf are derived from normalizability
of its eigenstates |ψ 〉, i.e.,

∫
R dϕ |〈ϕ |ψ 〉|

2 < ∞, implying
ψ(ϕ)→ 0 when ϕ→ ±∞.

In the limit of large Josephson and small inductive energy,

EJ � EC � EL, (2)

the low-lying eigenstates of fluxonium can be classified
into two physically distinct types: metaplasmon states and
persistent-current states [10]. For clarity and introduction of
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necessary notation, we briefly review this classification as ob-
tained in Ref. 10. To do so, we rewrite Hf in a more suitable
basis and start by separating off the inductive energy term,
Hf = H ′ + Hind, where H ′ = 4ECN

2 − EJ cosϕ. De-
spite the tempting appearance of H ′, we must refrain from
identifying it as the ordinary Cooper pair box Hamiltonian:
in Eq. (1), the spatial coordinates ϕ and ϕ + 2π are distinct
positions. Hence, H ′ is not subject to periodic boundary con-
ditions as the Cooper pair box, but rather obeys the quasi-
periodic boundary conditions familiar from Bloch’s theorem,
as appropriate for a particle in an infinitely extended periodic
potential. Accordingly, the eigenstates of H ′ are Bloch states,

H ′| p, s 〉 = εs(p)| p, s 〉, (3)

where s ∈ N is the band index, p ∈ [0, 1) the quasimomen-
tum in the first Brillouin zone, and εs(p) denotes the band
dispersion for the cosine potential (which coincides with the
ordinary offset charge dispersion of the Cooper pair box levels
[7]).

To rewrite the inductive contribution Hind in the Bloch ba-
sis, we re-interpret p as a new spatial coordinate. Since it
“lives” on a circle with circumference 1, the resulting expres-
sion ϕ = i d/dp+ Ω for the phase operator must generally in-
clude an inter-band coupling operator Ω [12]. This inter-band
coupling can be neglected for low-lying bands and sufficiently
largeEJ/EC [10]. In that limit, the HamiltonianHf hence be-
comes block-diagonal, splitting into individual Hamiltonians
for each band s, Hf ≈

∑
sHs| s 〉〈 s | where

Hs =
EL
2

(
i
d

dp
+

2πΦext

Φ0

)2

+ εs(p). (4)

Now, accompanied by periodic boundary conditions in p, each
Hamiltonian Hs indeed has the same structure as the Hamil-
tonian of a Cooper pair box. The only difference lies in the
form of the periodic “potential” εs(p), which generally devi-
ates from a pure cosine. To make the analogy concrete, note
that the variable 2πp ∈ [0, 2π) in Hs takes on the role of the
periodic phase variable of the Cooper pair box, and the ex-
ternal flux Φext/Φ0 that of the Cooper pair box offset charge
ng .

Next, two different types of low-lying fluxonium states can
be distinguished for each band s. First, eigenstates | ν, s 〉
with energies below the maximum of the energy dispersion,
Eνs(Φext) < maxpεs(p), are metaplasmon states. They are
quasi-bound states [15] in the εs(p) potential analogous to
the lowest states of the Cooper pair box in the transmon
regime. The corresponding eigenenergies depend only weakly
on the external flux Φext, just as Cooper pair box levels are
offset-charge insensitive in the transmon regime [7]. Sec-
ond, eigenstates with energies above the maximum of the en-
ergy dispersion, are persistent-current states. Their energies
strongly depend on the external flux Φext, closely mimicking
the offset-charge dependence of the high-lying transmon lev-
els (for which, effectively, the charging regime holds). While
quasi-itinerant in the εs(p) potential, persistent-current states
localize in the individual minima of the V (ϕ) potential [Eq.
(1)]. They are conveniently expressed in terms of Wannier

states

|m, s 〉 =

∫ 1
2

− 1
2

dp e−i2πmp| p, s 〉. (5)

Expressed in this basis, the Hamiltonian (4) reads:

Hs ≈
(2π)2

2
EL(m + Φ/Φ0)2 (6)

+
1

2

∞∑
m=−∞

εs,1

[
|m, s 〉〈m+ 1, s |+ H.c.

]
+ εs,0,

where we have approximated the potential εs(p) by the
truncated Fourier series εs(p) ≈ εs,0 + εs,1 cos(2πp), and
used

∑∞
m=−∞ |m, s 〉〈m+1, s | = e−i2πp as well as m =

i d/d(2πp). Note that in the transmon regime (EJ � EC),
ε0,0 is just the plasmon energy

√
8EJEC . Analytical approx-

imations for εs,0 and εs,1 in the transmon regime are given
in Ref. 7. Based on the classification into metaplasmon and
persistent-current state, we are ready to derive analytical ex-
pressions and asymptotic selection rules for the charge matrix
elements. Due to the two types of states involved, there are
three possible types of charge matrix elements which we dis-
cuss one by one in the following.

a. Matrix elements between persistent-current states.
The Wannier states |m, s 〉 provide good approximations for
the persistent-current states (away from degeneracies which
occur at integer and half-integer Φext/Φ0). The charge matrix
elements between two persistent-current states, possibly from
different bands s and s′, are then given by

〈m, s |N |m′, s′ 〉 ≈ −i
(

EJ
32EC

) 1
4
∫ ∞
−∞

dϕw∗ms(ϕ) (7)

×
[√

s′ wm′
s
′−1(ϕ)−

√
s′ + 1wm′

s
′
+1(ϕ)

]
.

Here, wms(ϕ) ≡ 〈ϕ |m, s 〉 is the approximate persistent-
current state wavefunction in ϕ-space. Due to the strong lo-
calization in the minima of V (ϕ), persistent-current states in
adjacent minima are nearly orthogonal. One hence obtains the
approximation

〈m, s |N |m′, s′ 〉 (8)

≈ −i
(

EJ
32EC

) 1
4

δm,m′

[√
s′δs,s′−1 −

√
s δs,s′+1

]
.

To obtain nonzero values for the charge matrix elements in
this limit, the two states involved must obey two asymptotic
selection rules. The first is the neighboring-band selection
rule, demanding ∆s = s′ − s = ±1. The second is the same-
minimum selection rule, given by ∆m = m′ −m = 0. Ac-
cordingly, both states involved must belong to the same local
minimum m of the potential V (ϕ). This rule implies that the
circulating persistent current (and the flux it generates) can-
not change its magnitude or direction during the transition.
Both rules follow intuitively from considering the momentum
matrix elements of local harmonic oscillators with negligible
neighbor overlap.
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b. Matrix Elements between metaplasmon states. The
charge matrix elements involving metaplasmon states only,
can be brought into the form

〈 ν′, s′ |N | ν, s 〉 ≈ i
(
EJ

32Ec

) 1
4

(
√
sδs,s′+1 −

√
s′δs,s′−1)

×
∫ 1

2

− 1
2

dp χ∗ν′
s
′(p)χνs(p). (9)

This expression was previously derived in Ref. 10, except
for a misprint in the prefactor (fixed here). By χνs(p) ≡
〈 p, s | ν, s 〉, we denote the metaplasmon wavefunctions in the
Bloch basis. The index ν = 0, 1, 2, . . . labels energy levels
within a fixed band s. The first asymptotic selection rule
manifest in Eq. (9), is the neighboring-band selection rule
∆s = ±1. The matrix elements still depend on the overlap
between two metaplasmon states, see again Ref. 10 for ana-
lytic approximations and asymptotic selection rules in ν, ν′.

c. Matrix Elements between metaplasmon and persistent-
current states. The last type of matrix elements involves
both a metaplasmon and a persistent-current state. Its asymp-
totic expression is given by

〈 ν, s |N |m, s′ 〉 (10)

≈ − iν+1

√
2νν!

(
EJEL

32EC
∣∣εs,1∣∣

) 1
4

(
√
sδs,s′+1 −

√
s′δs,s′−1)

× exp
[
−πF 2

ms(Φext)
]
Hν

[√
2πFms(Φext)

]
.

Here, Hν(x) is the Hermite polynomial of order ν and we
have abbreviated Fms(Φext) = (m+Φext/Φ0)(EL/|εs,1|)

1/4.
The only selection rule present is the one for neighboring
bands. The magnitude of the matrix elements depends on both
quantum numbers m and ν, and is conveniently tunable by
magnetic flux Φext.

III. MATRIX ELEMENTS REALIZED IN EXPERIMENTS

The values of Josephson, charging and inductive energy
realized in recent experiments (EJ/h = 8.9 GHz;EC/h =
2.48 GHz;EL/h = 0.53 GHz in Ref. 1) do not quite reach
the asymptotic behavior predicted for EJ � EC � EL.
Hence, we cannot expect the asymptotic results from Section
II to quantitatively match the exact results. Nonetheless, the
asymptotic selection rules can still give valuable intuition and
qualitative predictions for the different magnitudes of matrix
elements, which will be of immediate use in the design of fu-
ture fluxonium devices.

To apply the results derived in Section II, we first need
to establish the type of each low-lying fluxonium eigenstate
(metaplasmon vs. persistent-current), given the experimental
parameters. As shown in Fig. 1(a), the energy dispersion of
the lowest band, εs=0(p), turns out to be too shallow to sup-
port any metaplasmon states. As a result, the ground state
and first excited state are found to be s=0 persistent-current
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FIG. 1: (Color online) (a) Fluxonium energy levels (solid curves) as a
function of external flux Φext, for the parameters realized experimen-
tally [1]. Shaded regions in the background show position and width
of the bands εs(p). The three s= 0 persistent-current states with
parabolic flux dependence are labeled by their quantum number m.
(b) Fluxonium eigenfunctions for Φext/Φ0=0.4 [vertical dashed line
in (a)]. The bold black curve shows the fluxonium potential V (ϕ).
Local minima are labeled by the quantum numbers m. The fluxo-
nium wavefunctions (thin curves) are offset by their eigenenergies.
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FIG. 2: (Color online) Comparison of numerical results and asymp-
totic predictions for charge matrix elements. Solid curves show nu-
merical results for the magnitude of the charge matrix elements,
|〈0l|N|1l〉|, |〈0l|N|2l〉| and |〈0l|N|3l〉|. Dashed curves show the
asymptotic matrix elements between the ground state and the low-
est metaplasmon state, namely |〈0l|N|0ν , 1s〉|, and between the two
low-lying persistent current states, |〈0m, 0s|N|−1m, 0s〉|.

states, lying in the gap between the lowest two bands εs=0(p)
and εs=1(p). Due to inversion symmetry and periodicity in
the magnetic flux, we may restrict our discussion in the fol-
lowing to the flux range 0 ≤ Φext/Φ0 ≤ 0.5 without loss of
generality. Under these conditions and sufficiently away from
integer and half-integer flux, the two lowest persistent-current
states are well approximated by the Wannier states |−1m, 0s〉
and |0m, 0s〉.
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In the following, we focus on the example flux point
Φext/Φ0 =0.4. The exact wavefunctions at this point are il-
lustrated in Fig. 1(b). Note that the ground state (first excited
state) is indeed primarily localized in the minimum m = 0
(m=−1). The second and third excited states are metaplas-
mon states with band indices s = 1 and s = 2, respectively.
As expected, they delocalize over multiple minima of the po-
tential V (ϕ). At Φext/Φ0 =0.4, the fourth excited state can
easily be identified as a persistent-current state of the s= 0
band, by noting its quadratic flux dependence expected for
the |1m, 0s〉 state. Accordingly, it is strongly localized in the
m = 1 minimum. However, due to the large inter-band cou-
pling for high-lying levels, this state is already significantly
influenced by the nearby metaplasmon state [see the large
avoided crossing of the third and fourth excited states near
Φext/Φ0=0.3 in Fig. 1(a)]. As a result, the wavefunction of the
fourth excited state slightly spreads out of them = 1 well. For
even higher levels, the inter-band coupling becomes stronger
and the classification into metaplasmon and persistent-current
states ceases to apply.

The situation of half-integer and integer Φext/Φ0 is spe-
cial because of the additional parity symmetry of the poten-
tial V (ϕ). For Φext/Φ0 = 0.5, the state |−1m, 0s〉 becomes
degenerate with |0m, 0s〉. The ground and first excited states
are hence the symmetric and antisymmetric superposition of
|−1m, 0s〉 and |0m, 0s〉. For zero external flux, the ground state
is |0m, 0s〉, while the first and second excited states become
the symmetric and antisymmetric superposition of |−1m, 0s〉
and |1m, 0s〉.

With the classification of states in hand, we now employ the
analytic results from Section II to describe the qualitative be-
havior and magnitudes of the charge matrix elements. Away
from the degeneracies at integer and half-integer Φext/Φ0, the
charge matrix element between the ground and the first ex-
cited state is approximated by the matrix element between two
different persistent-current states, namely

〈0l|N|1l〉 ≈ 〈0m, 0s|N|−1m, 0s〉. (11)

Here, l enumerates the fluxonium eigenstates in the order of
their eigenenergies. The magnitude of this matrix element
is relatively small because of the suppression enforced by
the asymptotic selection rules for two persistent-current states
[∆s=±1 and ∆m = 0, see Eq. (8)]. Figure 2 shows that the
charge matrix element between ground and first excited state,
|N01|, is indeed significantly smaller than the other elements
(especially compared to |N02|) over most of the flux range.

We note this discrepancy in matrix element magnitudes
could possibly lead to an interesting potential application: if
coupling to the environment via charge dominates the qubit
relaxation, then the lowest three fluxonium levels (l = 0, 1, 2)
could form a Λ-system over a wide flux range, with the state
|1l〉 being a relatively long-lived metastable state, as noted
previously in Ref. 13. The origin of the Λ-configuration is
intuitive from Fig. 1(b): the states |0l〉 and |1l〉 are persistent-
current states localized in different minima with only very
small wavefunction overlap. The state |2l〉, by contrast, is a
metaplasmon state and has a large wavefunction overlap with
both persistent-current states, resulting in relatively large ma-

trix elements (and hence transition rates) between these states.
As a result, the state |1l〉 may have a significantly longer life
time than the state |2l〉.

It is instructive to assess the deviation of exact results for
the experimental parameters from the asymptotic prediction.
For this comparison, we choose two eigenstates which, in a
given flux range, can be approximately classified as a meta-
plasmon state and a persistent-current state, respectively. The
approximate metaplasmon state we choose is |0ν , 1s〉. Fig-
ure 1(a) shows that, in the flux region 0<Φext/Φ0<0.1, this
metaplasmon state approximates the state |3l〉. In the remain-
ing flux region, this metaplasmon state approximates the state
|2l〉. The persistent-current state we choose is |0m, 0s〉, which
approximates the ground state |0l〉 away from Φext/Φ0 = 0.5.
We employ Eq. (10) to calculate the asymptotic result for the
matrix element |〈0m, 0s|N|0ν , 1s〉|, where the input parame-
ter ε1,1/h = 1.774 GHz is acquired from the half-width of the
s = 1 CPB band by diagonalizing H ′.

The result obtained from Eq. (10) is valid only sufficiently
away from Φext/Φ0=0.5. There, the ground state |0l〉 be-
comes a hybridization of the two energy degenerate states
|0m, 0s〉 and |−1m, 0s〉. To account for this, we consider the
2 × 2 subspace containing both persistent-current states. The
Hamiltonian in this subspace is

Hsub ≈

(
2π2EL(Φext

Φ0
)2 + ε0,0

1
2ε0,1

1
2ε0,1 2π2EL(Φext

Φ0
− 1)2 + ε0,0

)
,

a truncated version of Eq. (6). Here, the input parameter
ε0,1/h = 0.187 GHz is obtained from the half-width of the
s = 0 CPB band. By diagonalizing this matrix, we obtain an
improved approximation for the ground state |0l〉, and for the
asymptotic prediction of the matrix element |〈0l|N|0ν , 1s〉|.

The asymptotic prediction (dashed curve in Fig. 2) is to be
compared with the corresponding solid curves showing the
numerically exact results – in particular, the results for N03

and N02 in the previously mentioned flux ranges. Agreement
is qualitative rather than quantitative, as expected. Note that,
by accounting for hybridization, the complete suppression of
N02 at Φext/Φ0=0.5 enforced by parity symmetry is correctly
predicted. Similarly, the asymptotic prediction for vanishing
N01 agrees qualitatively with the significantly smaller values
obtained numerically.

IV. CONCLUSION

In summary, we have derived asymptotic expressions for
the charge matrix elements of the fluxonium circuit in the
parameter limit EJ � EC � EL, presented in equations
(8)–(10). Our derivation is based on the classification of flux-
onium eigenstates into persistent-current and metaplasmon
states [10], and produces simple selection rules for the band
indices s and other quantum numbers which can be intuitively
understood from the localization properties of the different
types of states.

We employ our asymptotic predictions to interpret the nu-
merically calculated matrix elements for the intermediate pa-
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rameter regime realized in experiments [1]. Even though
quantitative agreement cannot be expected in this intermedi-
ate regime, we find good qualitative agreement and confirm
that the asymptotic selection rules provide a useful predictor
for different magnitudes of charge matrix elements. Thus, our
results can easily guide the choice of experimental parameters
in order to reach the desired tunability of charge matrix ele-
ments in future fluxonium devices. The relatively large degree
of tunability in fluxonium devices can be harnessed for influ-
encing transition rates (possibly providing a route towards a
Λ-system [13]), dispersive shifts [9], as well as the effective

qubit-qubit interaction strength when coupling multiple flux-
onium devices to a single microwave resonator mode [14].
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