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The complexity of competing orders in cuprates has recentlybeen multiplied by a number of bulk evidences of
charge ordering with wavevector that connects the antinodal region of the Fermi surface. This result contradicts
many spectroscopic results of the nodal nesting. To resolvethis issue, we carry out a unified study of the result-
ing electronic fingerprints of both nodal and antinodal nestings (NNs/ANs), and compare with angle-resolved
photoemission, scanning tunneling spectroscopic data, aswell as bulk sensitive Hall effect measurements. Our
result makes several definitive distinctions between them in that while both nestings gap out the antinodal re-
gion, AN induces an additional quasiparticle gapbelow the Fermi level along the nodal direction, which is so
far uncharted in spectroscopic data. Furthermore, we show that the Hall coefficient in the AN state obtains a
discontinuous jump at the phase transition from an electron-like nodal pocket (negative value) to a large hole-
like Fermi surface (positive value), in contrast to a continuous transition in the available data. We conclude
that individual NN and AN have difficulties in explaining alldata. In this spirit, we study the possibility of
coexisting NN and AN phases within a Ginzburg-Landau functional formalism. An interesting possibility of
disorder pinned ‘chiral’ charge ordering is finally discussed.

PACS numbers: 74.72.Kf,74.25.Jb,74.25.F-,74.40.Kb

I. INTRODUCTION

Doped materials can accommodate multiform compet-
ing phases of matter, either in a uniform phase or phase
separated,1 with a subclass of it that inherits high-Tc su-
perconductivity. In cuprates, different theoretical routes to
the mechanism of superconductivity are primarily motivated
by the experimental evidences of different competing orders
in the corresponding normal state. In particular, the well-
established results of many bulk-sensitive probes have sug-
gested a uniform or non-uniform nodal nesting (NN) which
usually involves spin (and a possible interplay with charge
excitations via incommensurability) modulations in La-based
cuprates.2 In stark contrast, recent measurements including
scanning tunneling microscopy (STM)3, nuclear magnetic
resonance (NMR) at finite magnetic field,4 X-ray probes,5

and a thermodynamic measurement at high field,6 indicate a
charge modulation in Y-, Bi-based cuprates, arguably due to
either uniaxial or biaxial antinodal nesting (AN). There also
exist other possible experimental scenarios such as smectic7,
nematic,8 orbital loop orders,9 with various active degrees of
freedom which can sometimes differ from spin and charge
quanta. Therefore, discerning the correct nature of the com-
peting phase, and their possible coexistence and competition
is not only important to throw light on the pairing mechanism,
but also to expand the possible choices of known emergent
phases that can arise in an inhomogeneous environment.

From theoretical standpoint, the presently debated compet-
ing order scenarios of the pseudogap literature can mainly be
classified into three categories: (1) A NN giving rise to Umk-
lapp process,10 ord-density wave,11 or spin-ordering;12 (2) An
AN between Van-Hove singularity (VHS) region producing
charge density wave (CDW);13 and (3) An incommensurate
version of the NN involving both spin and charge excitations
(‘stripe’-phase).1,14 The perfect NN of any active order ren-
ders a nodal hole-pocket in hole-doped systems,10–12 consis-

tent with Luttinger volume counting. On the other hand, in
recent works Harrison and co-workers,13 and Markiewiczet
al.15 have demonstrated that the AN governs a nodal electron-
pocket in these systems. Given that the shadow bands of the
nodal pocket is difficult to detect unambiguously by angle-
resolved photoemission spectroscopy (ARPES) and STM [via
quasiparticle interference (QPI) technique], both scenarios
can taken to be consistent with these data as long as only the
Fermi surface (FS) topology is concerned. To resolve this is-
sue, we carry out a mean-field calculation within single band
model. A main conclusion of this paper is that an electron-
pocket in the nodal region leads several inconsistencies when
compared to other spectroscopies. Since the nodal electron-
pocket implies an additional quasiparticle gappingalong the
nodal direction below the Fermi level (EF ), it leads inconsis-
tency when compared to well-established ARPES and STM
results.16,17 The NNQn ∼ (π, π), which yields nodal hole-
pocket, and no nodal gap opening belowEF , is in detailed
agreement with most features observed in spectroscopies. The
‘stripe’ phase,14 creating many FS pockets in contrast to a sin-
gle ‘Fermi arc’, is not discussed here.

To strengthen our conclusion, we also compute temperature
(T ) dependent Hall coefficient by solving Boltzmann trans-
port equation in the two nesting cases, and compare with ex-
periments. We find that, while experimental data in Y- and
Hg-based cuprates18,19show a ‘continuous’ sign reversal from
negative to positive at aT below the onset of pseudogap, the
transition from an electron-pocket in the AN phase to large
hole-FS in the paramagnetic state is discontinuous. Finally,
we write down a Ginzburg-Landau functional for the com-
peting scenario between NN and AN phases, and propose a
candidate phase diagram. An interesting manifestation of dis-
order pinned ‘chiral’ CDW is also proposed.

The rest of the paper is arranged as follows. In Sec. II, we
compute the electronic fingerprints of NN and AN, and com-
pare with ARPES, STM and Hall effect measurements. In
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FIG. 1. (Color online) (a) Schematic FS evolution for the NN
at Qn → (π, π). (b) Same as (a) but for the AN atQa →
(±π/2, 0), (0,±π/2). (c)-(d) Electronic dispersion along the nodal
direction for two cases discussed in their corresponding upper panels.

Sec. 2, we present a Ginzburg-Landau argument for the possi-
ble coexistence and competition of these two phases. A mech-
anism of chiral charge order is presented in Sec. IV. Finally,
we conclude in Sec. V.

II. ELECTRONIC FINGERPRINTS OF OF NODAL AND
ANTINODAL NESTINGS

A. Angle-resolved photoemission spectroscopy

In Fig. 1 we illustrate the NN and AN properties, and their
differences in the electronic structure. In the NN phase, FSs
across the magnetic zone boundary are nested, and thereby
introduce a hole pocket centering at the nodal point as shown
in Fig. 1(a). The hole-pocket incipiently implies that the top
of the lower split band crossesEF , and a gap opensin the
empty state along the nodal direction, see Fig. 1(d). On the
other hand, the biaxial AN nests the VHS regions of the FS,
and thereby creates an electron-pocket whose center lies inbe-
tweenΓ → (π/2, π/2) and its equivalent directions as shown
in Refs. 13 and 15, see Fig. 1(b). The ‘nodal electron pocket’
implies that the bottom of the upper split band lies belowEF ,
anda gap opens in the filled state along the nodal directionas
illustrated in Fig. 1(e).

To provide a proof of principle, we perform a mean-field
calculation using NN,12 and AN,13 with same noninteract-
ing starting point, and the corresponding results are shownin
Fig. 2. We use a one-band tight-binding model with param-
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FIG. 2. (Color online) (a) Computed FS for the NN atQn. (b) Same
as (a) but for the AN atQa (see text). (d)-(e) Computed dispersion
along the nodal direction for the two cases discussed in their cor-
responding upper panels. (c)-(d) ARPES FS and dispersion along
nodal line for underdoped YBCO6.3.16

eters fitted to theab-initio band-structure of YBa2Cu3O6+x

(YBCO) given in Ref. 20. UsingQn = (π, π), we obtain the
quasiparticle spectral weight map atEF as shown in Fig. 2(a),
which gives the impression of the FS measured in ARPES.21

Using the same AN atQx
a = (π/2, 0) andQy

a = (0, π/2)
from Ref. 13, which presumably yields a CDW, we obtain the
expected nodal electron-pocket as shown in Fig. 2(b).The cor-
responding dispersion along the nodal direction is shown in
Fig. 2(d) which clearly reveals a gap opening belowEF . This
is a robust result expected for any electron-pocket.

The ARPES FS, shown in Fig. 2(c) for a representative case
of underdoped YBCO6.3, observes the main segment of the
Fermi pocket or the so-called ‘Fermi arc’. ARPES FS can be
considered to be consistent with both hole- or electron-pocket
scenarios with the notion that it is difficult to detect the weak
intensity of the shadow band which is present either on the
front or on the back side of the main band, respectively. How-
ever, an important distinction between the hole- and electron-
pockets along the nodal direction can be made via ARPES by
searching for a gapless or gapped dispersion belowEF along
the nodal direction, respectively, as shown in Fig. 2(d)-(e).
The ARPES dispersion shown in Fig. 2(f) does not reveal any
such gap opening.

B. Scanning tunneling microscopy/ spectroscopy

The multiple gap structure for the AN, as compared to a sin-
gle gap in the NN case is also evident in the density of states
(DOSs), plotted in Fig. 3. In both cases, the gap at the antin-
ode (denoted as ‘AG’) occurs atEF (dictated by purple hori-
zontal arrow). For AN, the gap along the nodal axis (denoted
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FIG. 3. (Color online) Computed DOS for AN and NN cases
(solid thick lines) are compared with STM results for two differ-
ent hole-doped systems. The data for Ca1.88Na0.12CuO2Cl2 (Na-
CCOC) and Bi2Sr2Dy0.2Ca0.8Cu2O8+δ (Bi2212) (normal state) are
obtained from Ref. 22. The two horizontal arrows dictate theantin-
odal gap (AG) and nodal gap (NG) for the AN case.
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FIG. 4. (Color online) Computed Hall coefficient,RH as a function
of T , for the AN and NN cases. Symbols give experimental data
for YBCO6.51 at dopingx = 0.1 and magnetic fieldB = 55 T,
taken from Ref. 18. In both cases, the phase transition is assumed to
occur at the sameT = 55 K. NN gives positiveRH and connects
smoothly to its paramagnetic value, whereasRH for the AN case is
negative (coming from electron-like FS) belowTa, and at the tran-
sition, it shows a discontinuous jump (dashed line) to the positive
value for the paramagnetic hole-like FS. We note, however, that al-
though Boltzmann approach is applicable in the low-field region as
compared to high-field experimental data, the results are pertinent.

as ‘NG’) manifests as a separate gap in the DOS belowEF ,
marked by red horizontal arrow in Fig. 3. For NN, however,
the AG and NG (aboveEF ) are connected to each other via
the ‘hot-spot’ momenta, and thus appears as single gap. The
STM results in the normal state for two hole-doped cuprates22

(shown by different symbols), as available in this energy scale,
do not show any signature of the second gap.

C. Hall effect

Hall coefficient,RH , provides a crucial test of the nature of
the quasiparticles on the FS, and its low-T dependence gives
valuable insights into the FS evolution, and the characteristic
phase transition. Being interested in low-T , and low field, we
employ a Boltzmann approach with momentum-independent
quasiparticle scattering rate.23 Furthermore, since our focus
here is to compare the signatures of NN and AN onRH(T ),
we fix the sameT -dependence of the gap to be of BCS-like as
∆(T ) = ∆0(1 − T/To)

0.5, where∆0 is the gap amplitude,
taken to be same as in Fig. 2 and 3, andTo = 55 K is the same
transition temperature. Sample results ofRH(T ) for NN and
AN phase are shown in Fig. 4 which indeed reveal a sharp
difference between them, both of which also depart from the
experimental data.18 For AN, the electron-pocket (RH < 0)
to paramagnetic hole-FS (RH > 0) transition atTo is discon-
tinuous. For NN, althoughRH is smooth at the phase tran-
sition, a dominant negativeRH is difficult to reproduce un-
less electron-like chain state in YBCO is taken into account23.
Similar result of continuous transition from negative to posi-
tive RH in Hg-based cuprate,19 however, indicates that both
AN and NN may indeed coexist and/ or compete in these sys-
tems at some intermediate doping.

III. COEXISTENCE AND COMPETITION OF NODAL
AND ANTINODAL NESTING PHASES

In this spirit, we study the stability of the two phases, and
their possible coexistence at the level of Ginzburg-Landau
functional argument. The Lagrangian of a system with com-
peting interactions atQa andQn can be written in the Nambu
decomposition of the Grassmann (fermionic) fieldψk,σ as

L =
1

2

∑

k,σ,ωm

[

ψ†
k,σG

−1
k (iωm)ψk,σ

+
∑

i=a,n

{

ψ†
k+Qi,σ

G−1
k+Qi

(iωm)ψk+Qi,σ

+Uiψ
†
k,σψk,σψ

†
k+Qi,σ′ψk+Qi,′

}]

, (1)

whereσ denotes spin, andσ′ is either the same spin for a
CDW, or d-density wave or any phenomenological Umklapp
process, or a spin flip for spin-ordering. The correspond-
ing Green’s functions areG−1(k′, ωn) = iωn − ξk′ , for
k′ = k,k + Qa/n, whereωm is the Matsubara frequency
andξk is bare fermionic dispersion. The factor1/2 arises due
to summing over the reduced Brillouin zone twice.

We decouple the interaction terms into two correspond-
ing bosonic fields∆n/a = Un/a

∑

k,s,t ψ
†
k+Qn,s

[σ/δ]stψk,t,
by means of Hubbard-Stratanovich transformation, whereσ

gives the Pauli matrices. For the case of competing orders, the
expansion of Eq. 1 is standard,25 which upto the quartic term
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FIG. 5. (Color online) (a) Phase diagram in (x, T )-plane for the AN
(Ta) and NN (Tn) phases. The shaded area represents a possible
phase coexistence region.T ∗ is a common critical point of present
interests. The doping axis is rescaled with respect to the VHS dop-
ing at which AN nesting is strongest. (b2)-(b2) The bare suscepti-
bilities, plotted in two-dimensional momentum space at zero energy,
show NN and AN at underdoped and optimally doped regions, re-
spectively. (c1)-(c2) Corresponding RPA susceptibilities. (d1)-(d2)
Self-consistent susceptibilittes in the corresponding gap states.

of both fields (assuming they are real) becomes

L =
∑

i=a,n

[

αi

2
(T − Ti)|∆i|

2 +
βi
2
|∆i|

4

]

+
βan
2

|∆a|
2|∆n|

2.

(2)

Tn/a are the corresponding transition temperatures, and the
expansion parametersαi, βi are given in Ref. 26. At the
mean-field level, the leading instability for each order param-
eter stems from the logarithmic divergence of the correspond-
ing susceptibility in the particle-hole channel. SinceQa nests
the antinodal region of the FS (see Fig. 5), it is prone to reach-
ing a singularity when the VHS approachesEF near or above
the optimal doping, and drives the system to a CDW or ferro-
magnetic ordering.27 On the other hand, the NN, which leads
to antiferromagnetism at half-filling dies off quickly withdop-
ing, see Fig. 5(b1)-(b2), leaving a residual ‘hot-spot’ insta-
bility at Qn with suppressed bare susceptibility in the two-
dimensional system. The second order phase transitions of
individual order can thus be monitored by these leading insta-
bility in the quadratic terms (Eq. 2).

Within the GL treatment, the competition and coexistence
of two phases can be studied comprehensively near their com-
mon critical point atT ∗ ≈ Ta ≈ Tn.25 A general formalism is
obtained in the context of iron-pnictides that the Free energy
for any competing orders of the form in Eq. 2 drives a coex-
istence of the two order parameters ifβaβn − β2

an > 0. βa/n
correspond to the quartic Umklapp susceptibility with mo-
mentum transferQa/n, respectively, and a double Umklapp

process involving bothQa andQn generates the coupling
term βan. As shown below in Appendix, the divergence in
the non-interacting susceptibility also leads to that in its quar-
tic channel, and thus a qualitative correspondence betweenα
andβ coefficients for a given order can be build for discus-
sion purpose. For the reasons given in the previous paragraph,
nearT ∗, the non-interacting susceptibilities atQa/n governs
βa >> βn, andβa > βan > βn. To grasp qualitative in-
sights, let us assumeδ ≥ 0 to be the same departure ofβa/n
from βan such thatβan = βa − δ ≈ βn + δ, then the above
condition for the coexistence readsδ2−δ(βa−βn) > 0. This
implies that, forβa > βn, a phase coexistence is unfavored,
and a first-order phase transition separates the AN and NN
phases.

When many-body corrections are included in the Green’s
functions of the expansion parameters given in Ref.26, a sec-
ond order phase transition can be monitored in two ways.
Within a random-phase approximation (PRA), a strong di-
vergence in the susceptibility can be obtained in the spin-
channel atQn, but not atQa below a critical value ofU ,
see Fig. 5(c1)-(c2). Furthermore, a self-consistent calcula-
tion makes the Green’s function to be evaluated in the gapped
quasiparticle state. Recalling results from Fig. 2, both nest-
ings gap out the antinodal region of the FS, and in turn, re-
duce the interacting susceptibility peak atQa, see Fig. 5(d1)-
(d2). Both RPA and self-consistent scenarios thus promote
βn ≥ βa, driving a uniform phase coexistence, and hitherto
a tetra-critical point atT ∗ as shown in the phase diagram in
Fig. 5. Similar result was also proposed earlier in a different
context.25 The possibility of having a bi- or tetra- critical point
near the optimal doping clearly makes it an exciting problem
for future study both experimentally and theoretically.

IV. CHIRAL CHARGE OSCILLATION

Since∆x and∆y are decoupled order parameters having
different modulation vectorsQ − nx/y, they form different
domains. An interesting situation emerges when disorder pins
one of the unidirectional AN order parameter∆

(x/y)
a domains

only. When one of the domain, say∆x, falls into a disor-
der, its value becomes enhanced from that of∆y sitting in
a clean domain. According to group symmetry of the sys-
tem, these two order parameters will mix now in a chiral
form. This situation locally breaks in-plane rotational sym-
metry, as well as turns on a time-reversal breaking combi-
nation of∆(x/y)

a as∆t
a = ∆x

a ± i∆y
a with a finite expec-

tation value of∆t∗
a ∆t

a = |∆|2, where∆ is a real num-
ber. Rewriting∆t

a = |∆|eiφ, we find that such scenario
supports the presence of a Goldstone fieldφ, according to
Nambu-Goldstone theorem.28 More interestingly, since the or-
der parameter also breaks additional discrete crystal rotational
symmetry, the emergent Goldstone mode becomes massive in
this case. AU(1) symmetry-induced current hence arises as
J = −|∆|2∂µφ, due to the spatial (µ = x, y) variation of
the order parameter around the disorder. The corresponding
Lagrangian density that supplements to the total Free-energy
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functional in Eq. 2 reads as

L′ = −
1

2

(

∂µ∆t∗
a

) (

∂µ∆
t
a

)

+m2∆t∗
a ∆t

a,

= −
|∆|2

2
(∂µφ) (∂µφ) +m2|∆|2. (3)

Here the constant termm has no physical significance to the
Fermionic ensemble, since it merely shifts the overall energy
scale. This special scenario gives an alternative explanation
to the observations of both rotational,8,29 and time-reversal
symmetry breakings9,30,31 from solely charge ordering mech-
anism in doped systems, although other mechanisms to them
exist.29,32–35

V. CONCLUSIONS

Based on the present results, we conclude that the FS pocket
or the segment of the FS observed in ARPES near nodal re-
gion is hole-like. Of course, such hole pocket scenario cannot
explain the electron-like FS predicted by numerous magneto-
resistance measurements. For the NN, electron-like FSs ap-
pear near the antinodal region close to the bi- or tetra-critical
point of the pseudogap where its strength is weak. Since such
electron-pocket appears in the region where the FS is in the
verge of becoming the large metallic FS, it is difficult to ex-
perimentally separate out the presence of electron-pocket.24

For YBCO, however, the chain state is electron-like and con-
tribute to its large negative Hall coefficient.24 Our obtained
results suggest that the CDW modulation is preferably a sec-
ondary order, which is either phase separated or coexists ina
narrow doping range with the NN order.
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Appendix A: Ginzburg-Landau expansion coefficients

The expansion parameters in Eq. 2 can be obtained in the
zero-frequency limit as:25

αa/n ⇒ T 〈GkGk +Gk+Qa/n
Gk+Qa/n

〉,

≈
1

N

∑

k

tanh
(

ξk
2T )

)

− tanh
(

ξk+Qa/n

2T

)

ξk − ξk+Qa/n

, (A1)

βa/n ⇒ 2T 〈G2
kG

2
k+Qa/n

〉,

≈
1

N

∑

k

Aiksech
2
(

ξk
2T

)

−Aik+Qa/n
sech2

(

ξk+Qa/n

2T

)

T (ξk − ξk+Qa/n
)3

,

βan ⇒ 4T 〈G2
kGk+QaGk+Qn〉,

≈
1

N

∑

k

∑

i=a,n

Aiksech
2
(

ξk
2T

)

−Aik+Qisech
2
(

ξk+Qi

2T

)

T (ξk − ξk+Qi)
2(ξk+Qī

− ξk+Qi)
,

(A2)

where〈...〉 → 1/N
∑

k, with N is the phase space volume.
Aik = −ξk + ξk+Qi + 2T sinh (ξk/T ). ξk is the non-
interacting band. The index̄i = a, n while i = a, n respec-
tively.

It is evident from the above expressions forαa/n andβa/n
that in the particle-hole channel the divergence in these co-
efficients are controlled mainly by the same conditionξk =
ξk+Qa/n

. Therefore, the non-interacting susceptibilities at
Qa/n governsαa >> αn, andβa >> βn, andβa > βan >
βn.
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