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Model of quantum depinning of magnetic vortex cores from line defects in a disk geometry and
under the application of an in-plane magnetic field has been developed within the framework of the
Caldeira-Leggett theory. The corresponding instanton solutions are computed for several values of
the magnetic field. Expressions for the crossover temperature Tc and for the depinning rate Γ(T )
are obtained. Fitting of the theory parameters to experimental data is presented.
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I. INTRODUCTION

Quantum tunneling of mesoscopic solid-state objects
has been intensively studied in the past. Examples
include single domain particles1–3, domain walls in
magnets4–6, magnetic clusters7,8, flux lines in type-II
superconductors9,10 and normal-superconducting inter-
faces in type-I superconductors11,12. It is well known
that micron-size circular disks made of soft ferromag-
netic materials exhibit the vortex state as the ground
state of the system for a wide variety of diameters and
thicknesses13–16. This essentially non-uniform magnetic
configuration is characterized by the curling of the mag-
netization in the plane of the disk, leaving virtually no
magnetic “charges”17,18. The very weak uncompensated
magnetic moment of the disk sticks out of a small area
confined to the vortex core (VC). The diameter of the
core is comparable to the material exchange length and
has a weak dependence on the dot thickness18,19. Be-
cause of the strong exchange interaction among the out-
of-plane spins in the VC, it behaves as an independent
entity of mesoscopic size.

Recent experimental works have reported that the dy-
namics of the VC can be affected by the presence of struc-
tural defects in the sample20–23. This is indicative of the
elastic nature of the VC line, whose finite elasticity is
provided by the exchange interaction24. In Ref. 22 non-
thermal magnetic relaxations under the application of an
in-plane magnetic field are reported below T = 9 K. It is
attributed to the macroscopic quantum tunneling of the
elastic VC line through pinning barriers when relaxing
towards its equilibrium position. In such range of low
temperatures only the softest dynamical mode can be
activated, which corresponds to the gyrotropic motion
of the vortex state. It consists of the spiral-like preces-
sional motion of the VC as a whole25–29 and can also
be viewed as the uniform precession of the magnetic mo-
ment of the disk due to the vortex. The gyrotropic mode
is intrinsically distinct from conventional spin wave ex-
citations: in the latter case, it is worth noting that the
VC has a significant influence on the form of spin-wave
mode eigenfunctions in thin disks30,31 and in disks with

moderate aspect ratio32–34.
The aim of this paper is to study the mechanism of

quantum tunneling of the elastic VC line through a pin-
ning barrier during the gyrotropic motion. We focus our
attention on line defects, which can be originated for in-
stance by linear dislocations along the disk symmetry
axis. This case may be relevant to experiments performed
in Ref. 22 since linear defects provide the maximum pin-
ning and, therefore, the VC line in the equilibrium state
is likely to align locally with these defects. Such a sit-
uation would be similar to pinning of domain walls by
interfaces and grain boundaries. Thus, we are consid-
ering the depinning of a small segment of the VC line
from a line defect. The problem of quantum and thermal
depinning of a massive elastic string trapped in a linear
defect and subject to a small driving force was considered
by Skvortsov35. The problem studied here is different as
it involves gyrotropic motion of a massless vortex that is
equivalent to the motion of a trapped charged string in
a magnetic field24. We study this problem with account
of Caldeira-Leggett type dissipation.
The paper is structured as follows. In Sec. II the

Lagrangian formalism of the generalized Thiele’s equa-
tion is presented and Caldeira-Leggett theory is applied
to obtain the depinning rate. The imaginary-time dy-
namical equation for instantons is derived in Section III
and numerical solutions are computed. In Section IV the
crossover temperature between the quantum and thermal
regime is obtained. Discussion and fitting of the theory
parameters (which is related to the pinning potential) to
experimental data are provided in Sec. V. Final conclu-
sions are included in this section.

II. ELASTIC THIELE’S LAGRANGIAN

FORMALISM AND DEPINNING RATE

In this paper we restrict ourselves to a circular disk
geometry and to an applied in-plane magnetic field con-
figuration. The VC line is pinned by the line defect going
in the Z direction (symmetry axis of the disk) at the cen-
ter of the disk. The vortex line shall be described by the

vector field ~X = (x, y), where x(t, z) and y(t, z) are co-
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ordinates of the center of the VC in the XY plane. The
dependence on the Z-coordinate emerges from the elas-
tic nature of this magnetic structure. Figure 1 shows an
sketch of the vortex line deformation due to pinning and
its gyroscopic motion.

FIG. 1: (Color online) Vortex state and depinning via nucle-
ation of the part of the VC line in a circular disk made of soft
ferromagnetic material.

The softest dynamical mode of the VC, and hence of
the whole vortex, originates from gyroscopic motion and
it is described by the generalized Thiele’s equation24:

~̇X(t, z)× ~ρG + ∂z~Πz +∇ ~Xω = 0, (1)

where ’ ˙ ’ means time derivative. The gyrovector
density36 ~ρG = ρGêz is responsible for the gyroscopic
motion of the VC and its modulus is given by ρG =
2πpnvMs/γ, where Ms is the saturation magnetization,
γ is the gyromagnetic ratio, p = ±1 is the polariza-
tion of the VC and nv = ±1 is the chirality of the
magnetization of the disk. The potential energy den-

sity ω( ~X, ∂z ~X) splits into the sum of two contributions,

ω1( ~X) and ω2(∂z ~X). The latter is the elastic energy

term, ω2(∂z ~X) =
1

2
λ

(

∂ ~X

∂z

)2

, which is provided by the

exchange interaction. The elastic constant is given by
λ = 2πA ln(R/∆0), where R is the radius of the disk, A

is the exchange stiffness constant and ∆0 =
√

A/M2
s is

the exchange length of the ferromagnetic material. Fi-

nally, ~Πz = −δω/δ(∂z ~X) = −λ∂z ~X is the generalized
momentum density with respect to Z. Consequently, the
generalized Thiele’s equation becomes

~̇X(t, z)× ~ρG − λ∂2
z
~X(t, z) +∇ ~Xω = 0 (2)

Let L be the thickness of the circular disk. The La-
grangian corresponding to the above equation is given

by24

L[t, ~X, ~̇X, ∂z ~X ] =

∫ L

0

dz

{

~̇X · ~AρG
− ω( ~X, ∂z ~X)

}

,

(3)

where ~AρG
= ρGyêx is the gyrovector potential in a con-

venient gauge37. The VC is a mesoscopic object con-
sisting of many degrees of freedom. Quantum depinning
of such object must be considered within semiclassical
method of Caldeira-Leggett theory: the depinning rate
at a temperature T , Γ(T ) = A(T ) exp [−B(T )], is ob-
tained by performing the imaginary-time path integral38

∫

D{x}
∫

D{y} exp
[

−1

~

∮

dτLE

]

(4)

over ~Xτ ≡ ~X(τ, z) trajectories, which are periodic in τ
with period ~/kBT . Notice that τ = it is the imaginary
time and LE is the Euclidean version of Eq. (3). That
is,

LE [τ, ~Xτ , ~̇Xτ , ∂z ~Xτ ] =

∫ L

0

dz

{

− i ~̇Xτ · ~AρG

+ ω( ~Xτ , ∂z ~Xτ )

}

, (5)

The energy density ω1( ~Xτ ) splits into the sum of three

terms: The first one, ωXY ( ~Xτ ), represents the sum of the
magnetostatic and exchange contributions in the z-cross-
section, whose dependence on the vortex core coordinates

is ωXY ( ~Xτ ) ∼ ~X2
τ for small displacements24. The second

term, ωdep( ~Xτ ), represents the pinning energy density
associated to the line defect. Recent experimental works
have reported an even quartic dependence of pinning po-
tentials on the VC coordinates for small displacements in
permalloy rings39. Consequently, it is legitimate to take
the following functional dependence for the sum of both
terms:

(ωXY + ωdep)( ~Xτ ) =
1

2
κ
(

x2
τ + y2τ

)

− 1

4
βp4(xτ , yτ ) (6)

where (κ, β) are the parameters of our model and p4(x, y)
is a linear combination of monomials of degree four on
variables x and y. The last term is the Zeeman energy

density, which is given by24 ωZ( ~Xτ ) = −µ
[

ẑ × ~Hin

]

· ~Xτ

-with µ = (2π/3)MsnvR- for small displacements. The
latter correspond to the application of a weak in-plane

magnetic field ~Hin. In what follows, ~Hin = −Hêy is
applied along the Y direction.
The simple dependence p4(xτ , yτ ) = x4

τ keeps the main
features of the pinning potential (see Section V). We also

neglect the elastic term 1
2λ
(

∂yτ

∂z

)2

. The assumptions

made regarding the structure of the potential can affect
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the values of factors of order unity but should not change
our conclusions as to the magnitude of the effects studied
in the manuscript. From all these considerations, the
Lagrangian (5) becomes

LE [τ, ~Xτ , ~̇Xτ , ∂z ~Xτ ] =

∫ L

0

dz

{

− iρGyτ ẋτ − µhxτ

+
κ

2
x2
τ +

κ

2
y2τ − β

4
x4
τ +

λ

2

(

∂xτ

∂z

)2
}

(7)

Finally, Gaussian integration over yτ reduces Eq. (4)
to

∫

D{x} exp
[

−1

~

∮

dτLE,eff

]

(8)

with

LE,eff [τ, xτ , ẋτ ,∂zxτ ] =

∫ L

0

dz

{

1

2

(

ρ2G
κ

)

ẋ2
τ − µhxτ

+
κ

2
x2
τ − β

4
x4
τ +

λ

2

(

∂xτ

∂z

)2
}

(9)

Within the framework of the Caldeira-Leggett
theory40, dissipation is taken into account by adding a
term

η

4π

∫ L

0

dz

∮

dτ

∫

R

dτ1
(xτ (τ, z)− xτ (τ1, z))

2

(τ − τ1)2
(10)

to the action of Eq. (8). The dissipative constant η is
related to the damping of the magnetic vortex core38 and
Ref. 26 shows that η ≃ 3αLLG|ρG|, with αLLG being the
Gilbert damping parameter. Introducing dimensionless
variables τ̄ = (κ/

√
2|ρG|)τ , z̄ = (κ/2λ)1/2z and u =

(2β/κ)1/2xτ , the depinning exponent becomes

B(T, h) =
|ρG|

√
λκ

2~β

∫

dz̄

∮

dτ̄

[

1

2
u̇2+

1

2
(u′)2+V (u, h)

+
η

2
√
2π|ρG|

∫

R

dτ̄1
(u(τ̄ , z̄)− u(τ̄1, z̄))

2

(τ̄ − τ̄1)2

]

(11)

where ’ ′ ’ means derivative with respect to z̄, V (u, h) =

−hu + u2 − u4

4
is the normalized energy potential and

h = 2
√

2β/κ3µH . Let u0(h) be the relative minimum of
V for a fixed value of h. We reescale the energy potential
V (u, h) → V (u, h) := V (u0(h) + u, h)− V (u0(h), h) and
the variable u → u0(h) + u so that we obtain V (u, h) =

u2

((

1− 3

2
u2
0(h)

)

− u0(h)u− 1

4
u2

)

.

III. INSTANTONS OF THE DISSIPATIVE 1+1

MODEL

Quantum depinning of the VC line is given by the eval-
uation of the depinning exponent (11) at the instanton
solution of the Euler-Lagrange equations of motion of the
1+1 field theory described by Eq. (11). This gives

ü+ u′′ −
(

2− 3u2
0(h)

)

u+ 3u0(h)u
2 + u3−

√
2

π

η

|ρG|

∫

R

dτ̄1
u(τ̄ , z̄)− u(τ̄1, z̄)

(τ̄ − τ̄1)2
= 0 (12)

with boundary conditions

u(−Ω/2, z̄) = u(Ω/2, z̄) z̄ ∈ R

max
τ̄∈[−Ω/2,Ω/2]

u(τ̄ , z̄) = u(0, z̄) z̄ ∈ R (13)

that must be periodic on the imaginary time τ̄ with the

period Ω =
κ√
2|ρG|

~

kBT
. This equation cannot be solved

analytically, so we must proceed by means of numerical
methods. Notice that in the computation of instantons
we can safely extend the integration over z̄ in Eq. (11)
on the the whole set of real numbers.

A. Zero temperature

In this case we apply the 2D Fourier transform

û(ω, θ) =
1

2π

∫

R2

dτ̄ dz̄ u(τ̄ , z̄)ei(ωτ̄+θz̄) (14)

to Eq. (12) and obtain

û(ω, θ) =
1

ω2 + θ2 +
√
2|ω|η/|ρG|+ 2− 3u2

0(h)

(

3u0(h)

2π

×
∫

R2

dω1 dθ1û(ω1, θ1)û(ω − ω1, θ − θ1) +
1

(2π)2
×

∫

R4

d2~ω d2~θ û(ω2, θ2)û(ω1−ω2, θ1−θ2)û(ω−ω1, θ−θ1)

)

(15)

which is an integral equation for û. The depinning expo-
nent (11) in the Fourier space becomes

B(T = 0, h) =
|ρG|

√
κλ

2~β

[

∫

R2

dω dθ û(ω, θ)û(−ω,−θ)

(

(

1− 3

2
u2
0(h)

)

+
ω2 + θ2

2
+
|ω|√
2

η

|ρG|

)

−u0(h)

2π

∫

R4

d2~ω d2~θ

û(ω1, θ1)û(ω2, θ2)û(−ω1−ω2,−θ1−θ2)−
1

(4π)2

∫

R6

d3~ω d3~θ

û(ω1, θ1)û(ω2, θ2)û(ω3, θ3)û(−ω1−ω2−ω3,−θ1−θ2−θ3)

]

.

(16)
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The zero-temperature instanton is computed using an
algorithm that is a field-theory extension of the algorithm
introduced in Refs. 41, 42 for the problem of dissipative
quantum tunneling of a particle: To begin with, we in-
troduce the operator

O(λ, α, û(ω, θ), h) =
1

ω2 + θ2 +
√
2|ω|η/|ρG|+ 2− 3u2

0(h)

×
(

λ

∫

R2

dω1 dθ1û(ω1, θ1)û(ω − ω1, θ − θ1)+

α

∫

R4

d2~ω d2~θ û(ω2, θ2)û(ω1−ω2, θ1−θ2)û(ω−ω1, θ−θ1)

)

.

(17)

which generalizes the integral operator from Eq.
(15). Notice that the equation of motion for the
instanton in the Fourier space becomes û(ω, θ) =
O(3u0(h)/2π, 1/(2π)

2, û(ω, θ), h). Secondly, it is impor-
tant to point out the scaling property of this operator
because it will be used in the computation of Eq. (16):
Given any triplet (λ0, α0, û0(ω, θ)) satisfying the identity
(15), so will any other triplet (λ1, α1, û1(ω, θ)) provided
that

û1(ω, θ) = χû0(ω, θ) (18)

λ1 = λ0/χ (19)

α1 = α0/χ
2, (20)

where χ is a constant. This means that if we are able to
find a solution (λ1, α1, û1(ω, θ)) for arbitrary parameters
(λ1, α1), then we can obtain the solution corresponding
to the pair (λ0, α0) simply by rescaling û1(ω, θ) by a fac-
tor χ = λ1/λ0 as long as (λ1/λ0)

2 = α1/α0 is verified.
The algorithm consists of the following steps:

1. Start with an initial (λ0, α0, û0(ω, θ)).

2. Let û1(ω, θ) = O(λ0, α0, û0(ω, θ), h).

3. Calculate λ1 = λ0/χ
2, α1 = α0/χ

3, where χ =

û1(~0)/û0(~0).

4. Find û2(ω, θ) = O(λ1, α1, û1(ω, θ), h).

5. Repeat steps (2)-(4) until the successive difference
satisfies a preset convergence criterion.

The output is the triplet (λn, αn, ûn(ω, θ)). The final
step consists of reescaling ûn to obtain the solution corre-
sponding to the pair (λ, α) = (3u0(h)/2π, 1/(2π)

2): from
the scaling property we know that the reescaling rules of
the λ- and α- terms of Eq. (15) are different. Thus, to
obtain an accurate approximation of the instanton solu-
tion we have split û(ω, θ) into the sum of two functions
û1(ω, θ) and û2(ω, θ) in the above algorithm, and calcu-
lated their next iteration by means of the λ-term, respec-
tively the α-term of the operator (17). Finally, we rescale
û1 by a factor 2πλn/3u0(h) and û2 by a factor 2π

√
αn.

The depinning rate is calculated evaluating Eq. (16) at
this solution.

B. Non-zero temperature

In the T 6= 0 case, taking into account the finite peri-
odicity on τ̄ we consider a solution of the type

u(τ̄ , z̄) =
∑

n∈Z

un(z̄)e
−iωnτ̄ (21)

with ωn =
2πn

Ω
for all n ∈ Z. Introducing this functional

dependence into Eq. (12) and applying a 1D Fourier
transform we obtain

ûn(θ) =
1

ω2
n + θ2 +

√
2|ωn|η/|ρG|+ 2− 3u2

0(h)
×

(

3u0(h)√
2π

∑

p∈Z

∫

R

dθ1ûp(θ1)ûn−p(θ − θ1)+

1

2π

∑

p,q∈Z

∫

R2

d2~θ ûp(θ2)ûq(θ1 − θ2)ûn−p−q(θ − θ1)

)

(22)

which is an integral equation for the set {ûn}n∈Z of
Fourier coefficients. The depinning exponent (11) in the
Fourier space becomes

B(T > 0, h) =
|ρG|

√
κλ

2~β

[

∑

n∈Z

∫

R

dθ ûn(θ)û−n(−θ)

(

(

1− 3

2
u2
0(h)

)

+
ω2
n + θ2

2
+
|ωn|√

2

η

|ρG|

)

−u0(h)√
2π

∑

n,m∈Z

∫

R2

d2~θ

ûn(θ1)ûm(θ2)û−n−m(−θ1 − θ2)−
1

8π

∑

n,m,l∈Z

∫

R3

d3~θ

ûn(θ1)ûm(θ2)ûl(θ3)û−n−m−l(−θ1 − θ2 − θ3)

]

Ω (23)

The numerical algorithm is analogous to the one used
in the zero-temperature case, but taking into account
the reescaling of {û1

p}p∈Z by a factor
√
2πλn/3u0(h) and

{û2
p}p∈Z by a factor

√
2παn in the last step of the calcu-

lations.
Fig. 2 shows the normalized action B̄(T ) =
2~β

|ρG|
√
κλ

B(T ) as a function of Ω at different values of

the parameter h. In the simulations we have taken the
standard value αLLG = 0.008 for bulk Permalloy26.

IV. CROSSOVER TEMPERATURE

The crossover temperature determines the transition
from thermal to quantum tunneling relaxation regimes.
It can be computed by means of theory of phase
transitions43: above Tc, the instanton solution minimiz-
ing Eq. (11) is a τ̄ -independent function u(τ̄ , z̄, h) =
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FIG. 2: (Color online) Temperature dependence of the de-

pinning rate: normalized action
2~β

|ρG|
√
κλ

B(T ) versus Ω at

different values of the parameter h.

ū0(z̄, h), whereas just below Tc the instanton solution
can be split into the sum of ū0 and a small perturbation
depending on τ̄ ,

u(τ̄ , z̄, h) = ū0(z̄, h) + ū1(z̄, h) cos

(

2π

Ω
τ̄

)

(24)

The depinning exponent (11) is proportional to

∫

R

dz̄ Φ(z̄; ū1, ū
′

1) (25)

where Φ is the spatial action density. Introducing the
expansion (24) into Eq. (11) we obtain the following
expansion

Φ(z̄; ū1,ū
′

1) =

[

1

2
(ū′

0)
2 + V (ū0, h)

]

Ω +

Ω

4
(ū′

1)
2 + Λū2

1 +O(4) (26)

with

Λ =
Ω

4
V ′′(ū0, h) +

π2

Ω
+

π√
2

η

|ρG|
(27)

If Λ > 0 the only pair (ū1, ū
′

1) minimizing Φ is ū1 ≡ 0.
The crossover temperature is then defined by the equa-
tion minz̄∈R Λ = 0, that is

Ωc

4
min
z̄∈R

V ′′(ū0, h) +
π2

Ωc
+

π√
2

η

|ρG|
= 0 (28)

The equation of motion for a τ̄ -independent instanton is

ū′′

0 − (2− 3u2
0(h))ū0 + 3u0(h)ū

2
0 + ū3

0 = 0 (29)

with boundary conditions: ū0 → 0 at |z̄| → ∞ and

ū0(0, h) = −2u0(h) +
√

4− 2u2
0(h) ≡ w(h), which is the

width of the potential. Consequently,

min
z̄∈R

V ′′(ū0(z̄, h), h) = min
ū0∈[0,w(h)]

V ′′(ū0, h) =

min
ū0∈[0,w(h)]

{

(2 − 3u2
0(h))− 6u0(h)ū0 − 3ū2

0

}

=

− 10 + 3u2
0(h) + 6u0(h)

√

f(h) (30)

with f(h) = 4 − 2u2
0(h). Solving the quadratic equation

for Tc given by Eq. (28) we obtain the crossover temper-
ature

Tc(h)=
~κ

4πkB|ρG|

[
√

8+3f(h)−12u0(h)
√

f(h)+
η2

ρ2G
− η

|ρG|

]

(31)
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FIG. 3: (Color online) Field dependence of the dimensionless

crossover temperature θc =
4πkB|ρG|

~κ
Tc. (Inset) Sketch of

the potential V (u, h = 0.1).

Figure 3 shows the dependence of the dimensionless

crossover temperature θc =
4πkB |ρG|

~κ
Tc on the general-

ized magnetic field h.

V. DISCUSSION AND PARAMETERS FITTING

For a given value of the generalized field h, in Fig. 2
we clearly distinguish two regimes in the dependence of
the normalized action on Ω: above Ωc(h) the normalized
action tends to a constant value, whereas below it the
normalized action is linear with Ω. Notice that the tran-
sition from the linear to the constant regime is smooth
(that is, of second-order type). Above Tc the depinning
rate becomes

B(T > Tc, h) =
|ρG|

√
λκ

2~β

∫

dz̄

[

1

2
(ū′

0)
2 + V (ū0, h)

]

Ω

(32)
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with ū0 being the τ̄ -independent instanton. By means of
Eq. (29) this expression can be rewritten as38

B(T > Tc, h) =
|ρG|

√
λκ

2~β

[

2
√
2

∫ w(h)

0

dū0

√

V (ū0, h)

]

Ω

(33)

and, consequently, the slope of the normalized action

B̄(Ω) is equal to 2
√
2
∫ w(h)

0
dū0

√

V (ū0, h), which can be
evaluated analytically. At all values of the generalized
field h, the numerical slope calculated from Fig. 2 coin-
cides with the analytical one within the numerical error
of our simulations. This is indicative of the robustness of
our algorithm.
Quantum effects reported in Ref. 22 can be understood

as being plausibly due to the depinning from line defects
present in the disk. The size of the defects needs to ex-
ceed the nucleation length in order to pin the VC, but
not to be as long as the thickness of the disk. Pinning
of extended parts of the VC line by line defects would
be justified by the fact that linear defects provide the
strongest pinning so that the VC line, or at least some
segments of it, would naturally fall into such traps. Con-
sequently, we can test out our model on the experimental
results obtained in Ref. 22. The crossover temperature is
relevant to the roughness of the fine-scale potential land-
scape due to linear defects at the bottom of the potential
well created by the external and dipolar fields. Above
Tc vortices diffuse in this potential by thermal activa-
tion, whereas below Tc they diffuse by quantum tunnel-
ing. This must determine the temperature dependence
(independence) of the magnetic viscosity. Tc is, there-
fore, the measure of the fine-scale barriers due to linear
defects. It can be measured experimentally and help to
extract the width of the pinning potential.
Now we proceed to obtain estimates of the model pa-

rameters (κ, β) by fitting our model to experimental data:
Figure 4 shows new magnetic relaxation measurements
of permalloy disks in the vortex state from the remnant
state to equilibrium (zero magnetization). The radius of
these disks is R = 0.75 µm and their thickness is L = 95
nm (subfig. 4a) and L = 60 nm (subfig. 4b). A con-
cise description of the experimental set-up and sample
preparation can be found in Ref. 22. Notice that for
both samples the magnetization depends logarithmically
on time during the relaxation process.
Magnetic viscosity of these relaxation measurements is

computed by means of the formula38:

S(T ) = − 1

M0

∂M

∂ ln t
, (34)

where M0 is the initial magnetization point. That is, the
viscosity at zero field is obtained computing the slopes
of the normalized magnetization curves. Fig 5 shows the
magnetic viscosity as a function of temperature for both
samples. Below Tc = 6 K, magnetic viscosity reaches a
plateau with non-zero value. Above Tc, magnetic viscos-
ity increases up to a certain temperature, from which it
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FIG. 4: (Color online) Relaxation measurements of magnetic
vortices from the remnant state to equilibrium for samples
(L,R) = (95, 750) nm (subfig (a)) and (L,R) = (60, 750) nm
(subfig (b)).
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decreases again. The existence of the plateau is the ev-
idence of underbarrier quantum tunneling phenomena.
The increase of viscosity with temperature above the
crossover temperature is due to thermal activation over
the pinning barriers. Finally, the drop of the magnetic
viscosity is in agreement with the loss of magnetic irre-
versibility in our systems22. On the other hand, the fact
that the crossover temperature Tc is independent of the
thickness of the disks upholds our hypothesis that just a
small portion of the VC line takes part in the tunneling
process via an elastic deformation.
Notice that the depinning rate should not exceed 30−

40 in order for the tunneling to occur on a reasonable
time scale. The estimates of the parameters (κ, β) are
obtained fitting Eq. (31) and Eq. (16) to the values
Tc ∼ 6 K, respectively B(T = 0, h = 0) ∼ 30 at zero field.
Considering the experimental values A = 1.3 · 10−11 J/m
and Ms = 7.5 · 105 A/m for permalloy, we obtain

κ ∼ 5.9 · 107 J/m3, β ∼ 6.9 · 1027 J/m5 (35)

from which we can determine the width of the quartic

potential, w =
√

2κ/β ∼ 0.13 nm. This value is compat-
ible with the width of the potential provided by a linear

dislocation

In conclusion, we have studied quantum escape from
a line defect of the VC line in a disk made of a soft
ferromagnetic material. In the case of permalloy disks,
experimental results let us conclude that the depinning
process occurs in steps about 0.13 nm, which corresponds
to the width of the energy potential.

VI. ACKNOWLEDGMENTS

The authors acknowledge V. Novosad for providing the
samples discussed in the paper and Grup de Dinàmica
Financera de la UB for the use of their computing facili-
ties. The work of R.Z. has been financially supported by
the Ministerio de Ciencia e Innovación de España. J.T.
acknowledges financial support from ICREA Academia.
The work at the University of Barcelona was supported
by the Spanish Government Project No. MAT2011-
23698. The work of E.M.C. at Lehman College has
been supported by the U.S. National Science Foundation
through grant No. DMR-1161571.

1 E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60,
661 (1988).

2 J. Tejada and X. X. Zhang, J. Magn. Magn. Mater. 140-
144, 1815 (1995).

3 E. Vincent, J. Hammann, P. Prené, and E. Tronc, J. Phys.
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