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We investigate the fundamentals of compositional patterning induced by energetic particle irradi-
ation in model A-B substitutional binary alloys using kinetic Monte Carlo simulations. The study
focuses on a novel type of nanostructure that was recently observed in dilute Cu-Fe and Cu-V alloys,
where precipitates form within precipitates, a morphology that we term “cherry-pit” structures. The
simulations show that the domain of stability of these cherry-pit structures depends on the thermo-
dynamic and kinetic asymmetry between the A and B elements. In particular, both lower solubilities
and diffusivities of A in B compared to those of B in A, favor the stabilization of these cherry-pit
structures for A-rich average compositions. The simulation results are rationalized by extending the
analytic model introduced by Frost and Russell for irradiation-induced compositional patterning so
as to include the possible formation of pits within precipitates. The simulations indicate also that
the pits are dynamical structures that undergo nearly periodic cycles of nucleation, growth, and
absorption by the matrix.

I. INTRODUCTION

Dissipative material systems are known to develop
non-equilibrium phases and patterns in a wide variety
of situations, e.g., in chemical reactions, macromolecu-
lar assemblies, cell membranes, ecosystems, lasing sys-
tems, weather, and earthquakes1. These findings have
particular importance for materials that are subjected
to energetic particle irradiation, for example in nuclear
reactors.2 The primary concern is that non-equilibrium
phases and microstructures often impact negatively the
performance of these materials during their service life.
Irradiation, however, can also be used to stabilize novel
microstructures through self-organization reactions, with
the potential of improving materials properties. The
present work focuses on the fundamental processes re-
sponsible for self-organization under irradiation and re-
ports on a novel structure, where matrix atom precipi-
tates form within solute-rich precipitates in dilute binary
alloys.

The stabilization of nano-structures by irradiation was
first reported by Nelson and co-workers3 for Ni-Al alloys.
These authors showed that after ion irradiation at inter-
mediate temperature (T = 550◦C) the alloy had reached
a steady state microstructure comprised of nanometer-
size ordered precipitates in a Ni-rich matrix. The ori-
gin of this mesoscale organization was attributed to the
fact that the mixing forced by energetic ions takes place
over distances far exceeding the typical length scale for
thermally activated atomic jumps, which is typically one
nearest neighbor distance in the host lattice, ann. Com-
positional patterning induced by irradiation has since
been reported in several immiscible binary Cu alloys,4,5

and in systems comprised of metallic precipitates in
silica6,7. In particular, Krasnochtchekov et al.4 used
magnetic measurements to carry out a systematic in-
vestigation of the evolution of Co precipitates in dilute
Cu-Co alloys subjected to Kr irradiations using various
irradiation temperature, doses, and initial microstruc-

tures. They confirmed that the stabilization by irra-
diation of finite size precipitates only occurs within a
specific range of irradiation temperatures. At too low
of temperature the alloys homogenize and at too high
of temperature, precipitates coarsen. Chee et al.5 re-
ported similar results for other dilute Cu-base alloys, in-
cluding Cu-Ag, investigated by X-ray diffraction (XRD)
and transmission electron microscopy (TEM) and Cu-Fe,
characterized by atom probe tomography (APT). The
atomic reconstruction maps in Cu-Fe showed, quite sur-
prisingly, that the Fe-rich precipitates contained a sig-
nificant amount of Cu and that these Cu atoms would
often form precipitates within the Fe-rich precipitates,8

as illustrated in Fig. 1. These unusual precipitate struc-
tures are akin to core shell structures found in ternary
alloys after thermal annealing,9–11 but here the core con-
sists host matrix atoms. We refer to these structures as
“cherry-pit” nanostructures. We note that morphologi-
cally similar nanostructures, known as double emulsions,
have also been reported in immiscible liquids.12 While
compositional patterning induced by irradiation is rea-
sonably well understood from a fundamental perspective,
as we will detail in the next paragraph, the stabilization
of cherry-pit nano-structures by irradiation has not been
discussed previously. The main objective of the present
work, therefore, is to elucidate how these cherry-pit nano-
structures develop, and to identify the irradiation condi-
tions required for their stabilization.

The stabilization of cherry-pit structures during irra-
diation is closely related to compositional patterning,
therefore we briefly review some key results previously
obtained by modeling and atomistic simulations. As
indicated above, Nelson et al.3 recognized that an es-
sential physical parameter for patterning was the long
range recoil of atoms. Frost and Russell13,14 later pro-
posed a model for the evolution of precipitates in a bi-
nary immiscible alloy where irradiation forces the relo-
cation of atoms to a distance R ≫ ann, and they found
that, when this finite-range forced mixing competes with
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FIG. 1. Microstructure found by atom probe reconstruction
of a Cu88Fe12 sample, irradiated by 1.8 MeV Kr+ ions at
350◦C to a dose of 3×1016 ions/cm2. The cross section of the
1-nm thick layer of atoms is about 50 nm in diameter. The Fe
atoms (yellow) have been minimized to make the Cu atoms
(red) inside the Fe precipitate more visible. Adapted from
ref. 8.

thermodynamically driven phase separation, finite size
precipitates could be stabilized. An important simpli-
fication introduced in this model, however, is that the
ballistic jumps transfer solute atoms from precipitates
to the matrix, but not from the matrix to the precipi-
tates. This simplification can sometimes lead to unphys-
ical results,15 particularly for electron and light ion irra-
diations for which the average recoil distances are compa-
rable to ann, and recoil-induced back diffusion should be
important. Indeed, according to the Frost-Russell model,
even for low values of R, compositional patterning is al-
ways predicted in some region of the irradiation param-
eter space, whereas compositional patterning induced by
electron or light ion irradiations has never been reported
experimentally.2,16

Enrique and Bellon later introduced a kinetic model
that accounts for the full contribution of ballistic
jumps.17 This model predicts that the competition be-
tween finite range ballistic mixing and thermal decompo-
sition can stabilize three different steady states, namely a
homogeneous single-phase state, a phase-separated state
where phases co-exist at a macroscopic scale, and a
phase-separated state where phases co-exist at a finite
length scale, also referred to as compositional patterning
(see Fig. 2). For a given average composition, the do-
mains of existence of these three distinct steady states
were calculated as a function of the mixing distance R
and the reduced forcing parameter γ = Γ/M , where Γ is
the ballistic jump frequency, and M is the thermal mo-
bility, possibly enhanced by radiation. Note in particular
that compositional patterning is only found when the re-
location distance R exceeds some critical value Rc. The
above three steady states and their corresponding transi-
tions were confirmed by kinetic Monte Carlo (KMC) sim-
ulations on a rigid face centered cubic (fcc) lattice.17–19

One important feature of the patterning regime for what

follows is that the steady state size of the precipitates in-
creases continuously with decreasing γ, until undergoing
a first-order transition to macroscopic phase separation.

In the present work, we employ similar KMC simu-
lations to investigate more broadly the stabilization of
nanostructures by irradiation in a generic A1−cBc alloy
on an fcc lattice. In particular we vary systematically the
composition of the alloy, from the dilute compositions in-
vestigated by Krasnochtchekov4 to the equiatomic com-
position investigated by Enrique et al.19 We also consider
the effect of the asymmetries in thermodynamic interac-
tions and diffusion coefficients in the A-B alloys. Indeed,
while past simulations on compositional patterning in-
duced by ballistic mixing only considered A1−cBc binary
alloy systems that are invariant under the transforma-
tion c ↔ (1 − c), it is well documented that thermo-
dynamic and kinetic asymmetries can significantly affect
kinetic pathways during thermal annealing,20–23 as well
as under irradiation.23 Furthermore these asymmetries
are always present in real alloy systems, and it is thus
important to evaluate their effect on self-organization.
By varying composition and asymmetries, we find that
there exists in fact five distinct steady states for alloys
under irradiation: the three noted above, plus two as-
sociated with cherry-pit structures. We show that these
five regimes can be rationalized by extending the Frost-
Russell model13,14 and combining it with the dynamical
phase diagram predicted by the Enrique-Bellon model.17

Lastly we show that our simulations provide the basis for
understanding the new experimental results on cherry-pit
structures in irradiated Cu-Fe and Cu-V alloys.
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FIG. 2. Dynamical phase diagram for an irradiated A50B50

alloy. Steady-state regimes are illustrated as a function of
mixing distance R (normalized by the equilibrium interfacial
thickness) and reduced forcing parameter γ. Adapted from
ref. 17.
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II. KMC SIMULATIONS

The KMC simulations are based on the model de-
scribed by Enrique and Bellon.18 In this model, atoms
migrate by two distinct mechanisms: thermally acti-
vated jumps assisted by nearest neighbor atom-vacancy
exchanges, and athermal ballistic relocations arising from
atomic collisions. An immiscible binary A-B alloy is
created on a rigid fcc lattice using periodic boundary
conditions. A single vacancy is introduced into the sys-
tem for the thermally activated atom jumps. Nearest-
neighbor atomic pair interactions (ǫAA,ǫAB,ǫBB) and
atom-vacancy interactions (ǫAV ,ǫBV ) are used to model
cohesion and vacancy formation energies of the system.
Pure A and B cohesive energies are defined as EA

coh =
Z
2
ǫAA and EB

coh = Z
2
ǫBB; Z is the nearest neighbor site

coordination number (Z = 12 here). The ordering en-
ergy is defined as ωAB = 2ǫAB − ǫAA − ǫBB. Therefore a
positive value of ω corresponds to an alloy system that is
immiscible and phase separates at low enough tempera-
ture. Effective vacancy-atom interactions ǫXV , X = A,B
are used to adjust the vacancy formation energy,24 which
is defined by EXV

for = ZǫXV − Z
2
ǫXX .

In addition, we have extended this model in order to
explore the effect of asymmetric thermodynamic interac-
tions by including triplet atomic interactions are intro-
duced. An interaction energy is assigned to the equilat-
eral triangles formed by three common nearest neighbor
atoms. Direct counting of bonds and triplets shows that,
in mean-field point approximation (Bragg-Williams), the
mixing enthalpy of a homogeneous system ∆Emix with
triplet atomic interactions takes the form

∆Emix

N
=

Z

2
cAcB[2ǫAB − ǫAA − ǫBB] (1)

+
Zt

6
cAcB[3(−ǫAAA − ǫBBB + ǫAAB + ǫABB)

+ (cA − cB)(−ǫAAA + ǫBBB + 3ǫAAB − 3ǫABB)]

where N is the total number of atoms in the system,
Zt = 24 is the number of first nearest neighbor tri-
angles sharing one summit. We note that the func-
tional dependence of the mixing enthalpy with composi-
tion is identical to the Redlich-Kister expansion used in
sub-regular solution models.25 For simplicity, we set the
triplet atomic interactions ǫAAA and ǫBBB to be zero,
so that the cohesive energies of pure A and B systems
remain identical to the ones calculated with pairwise in-
teractions. Moreover, we assume that ǫAAB = −ǫABB,
so that when cA = cB, we recover the same mixing en-
thalpy as in the case with pairwise interactions. When
cA 6= cB, however, the mixing enthalpy deviates from the
value obtained with pairwise interactions. An important
consequence is that, with non-zero ǫAAB and ǫABB, the
equilibrium phase diagram is no longer invariant under
the transformation cA ↔ cB, and thus the solubilities
of A and B atoms are no longer equal. The frequency
of thermal jumps is determined using standard-rate the-
ory, with the activation energy calculated using a broken-

bond model,

∆EV X = ESP
X −

∑

m

ǫmX −
∑

n

ǫnV −
∑

p,q

ǫpqX (2)

where ESP
X is the saddle point energy, m and n label

the nearest neighbor sites of V and X , respectively, and
p, q, and X are the sites forming first nearest neighbor
triangles.
As in previous works, irradiation induced mixing is

simulated by randomly picking one atom and switching
it with another atom according to a predetermined dis-
tribution of relocation distances. Here this distribution
is chosen to be a decay exponential, exp(−rij/R), where
rij is the pair separation distance, and R is the char-
acteristic relocation distance. If not specifically noted,
R = 1.08ann is used in the simulations, following molec-
ular dynamics simulation results of energetic cascades
in Cu-Ag alloy irradiated with 1 MeV Kr ions.19 Note
that such a distribution of relocation distances includes
a non negligible fraction of relocation events to sites far-
ther than nearest neighbor ones. These short-to-medium
range relocations are at the origin of the stabilization of
compositional patterns under irradiation.
Time evolution is followed using the residence-time

algorithm,2 where the frequencies of vacancy exchanges
are weighted against the frequencies of random atomic
relocations. The pre-exponential factor for the thermal
jump is set to 1014s−1, and Γ(s−1) is the frequency of
random atomic relocation. At each KMC step, a thermal
jump or a ballistic jump is randomly chosen according to
their relative probabilities, and time is incremented by
the residence time of the current configuration, which is
given by the inverse of the sum of frequencies for all pos-
sible events. Because of the possible trapping of vacancy
on solute atoms and solute clusters, we followed the ap-
proach proposed by Soisson and coworkers,26 to rescale
the KMC time tMC to obtain a physically meaningful
time t. For alloy compositions such that the matrix phase
is highly concentrated in A atoms, as in the present work,
this re-scaling assumes that the physically correct va-
cancy concentration in a pure A phase should match the
equilibrium vacancy concentration in that phase, leading
to the following rescaling:

t = tMC

CMC
V (A)

Ceq
V (A)

(3)

where CMC
V (A) is the fraction of the time spent by the

vacancy when surrounded with 12 A nearest neighbors
times the nominal vacancy concentration, here 1/643.
Ceq

V (A) is the equilibrium vacancy concentration in pure
A at the specific temperature. Such rescaling of time
guarantees that the B diffusivity in the matrix remains
constant during precipitation. This rescaling does not
take into account radiation-enhanced diffusion (RED),
for which one would need to use KMC simulations that
explicitly include point defect production, migration, re-
combination, and elimination on sinks.27 As a conse-
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TABLE I. Different energetic parameters used in the study.

Parameter set EA
coh EB

coh ǫAAB

1 -4.34 eV -4.34 eV 0

2 -4.34 eV -4.34 eV ±0.005 eV

3 -4.34 eV -4.30 eV 0

4 -4.34 eV -4.20 eV 0

quence of the simpler KMC model used here, forcing val-
ues of γ cannot be directly compared to experimental
ones. Nevertheless, the sequence of steady states pre-
dicted by the present simulations when Γ or T are varied
can be directly compared to experiments.

Four parameter sets are used in this study, see Table. I.
Parameter set 1 corresponds to the model and values used
by Enrique and Bellon;18 in particular this set has only
pairwise interactions, the same cohesive energy for A and
B solids, and the same self-diffusion coefficients in pure A
and pure B phases. To investigate a system with asym-
metric thermodynamic properties, parameter set 2 has
ǫAAB set to ±0.005 eV , leading to asymmetric equilib-
rium phase diagrams, which will be discussed in Section
III B. In parameter sets 3 and 4, the triplet atomic inter-
actions are set back to zero but we introduce asymmetric
diffusivities for A and B elements; this is achieved by as-
signing different values to the A and B cohesive energies.
This kinetic asymmetry is much more pronounced in pa-
rameter set 4 than in parameter set 3, as will be detailed
in Section III C. For all parameter sets, the vacancy for-
mation energy was taken as equal for the two elements,
with a value typical of pure Cu: EAV

for = EBV
for = 1.28

eV . The ordering energy ω = 0.0553 eV is typical of al-
loy systems with moderately immisicibility, e.g., Cu-Ag.
These parameters yield a positive heat of mixing of 8
kJ · mol−1 when triplet interactions are ignored, which
results in a miscibility gap with a critical temperature Tc

= 1573 K,28,29 at the equiatomic composition. The sad-
dle point energy of the vacancy jump, ESP

X is taken as a
constant independent of the nature of the jumping atom
X , X = A or B. In this study, ESP

X is set to -10.217
eV for both elements, which corresponds to a vacancy
migration energy of 0.80 eV for parameter sets 1 and 2.
All the simulations were carried out at the temperature
of 0.036 eV . The standard simulation system used in
this work contains 64×64×64 sites, although some simu-
lations were run with 128×128×128 to evaluate possible
finite size effects.

Simulations were run well beyond the time required
to reach steady state, which was based on the evolution
of internal energy and structure factor with time. Typi-
cally, up to 600 iterations of 2×109 jumps were employed
for each run (counting both thermal and ballistic jumps),
thus representing ≈ 5 × 106 jumps per atom. Further-
more, two different initial configurations were employed,
namely a random solid solution and a single pure B pre-
cipitate embedded in a pure Amatrix, in order to confirm

that the systems have reached steady state.
Cluster analysis is used in this study to identify and

calculate the size of precipitates. A cluster is comprised
of atoms that are connected by at least one first nearest
neighbor bond. The number and possible clustering of
matrix atoms inside a precipitate is also analyzed by the
same cluster analysis algorithm.
The structure factor S(k), defined as the Fourier trans-

form of the pair-correlation function, is calculated to de-
termine the characteristic length of the microstructure
in the patterning regime. Since microstructures in this
study are statistically isotropic, we used a spherically av-
eraged structure factor:

S(k) =
1

4π

∫

S(k)dΩ (4)

The peak position of the S(k) curve is used to identify
the system’s steady state regime in the dynamical phase
diagram.18 When S(k) is maximum for the first non-zero
k point, the system is decomposed at the largest possi-
ble length scale available in that run. This is charac-
teristic of macroscopic phase separation. In that state,
the intensity of the peak of S(k) scales with the simula-
tion volume. In contrast, in the compositional pattern-
ing regime, S(k) exhibits a maximum for a finite k, and
the intensity of that peak is independent of the system
size. Since the characteristic relocation distance R that
we use here is much smaller than the system size, it is
relatively easy to distinguish these two possible steady
states solely based on the peak position of the structure
factor. For a few ambiguous cases, we ran simulations
with larger system sizes to determine the size dependence
of the S(k) peak and resolve the ambiguity. Lastly, the
solid solution steady state is characterized by a small and
size-independent S(k) that decays monotonously with k.

III. RESULTS

A. Novel cherry-pit nanostructures

A-B alloys with B concentration 0.10 ≤ cB ≤ 0.50
have been studied in this work. Results shown in Sections
III A, III B, III C and IIID were obtained for cB = 0.15
as it provides a basis to describe all steady states when
only one of the two phases is connected, and thus when
the matrix and precipitate phases can be unambiguously
distinguished. The effect of composition is discussed in
Section III E.
In this section, we first report results obtained for an

A85B15 alloy using parameter set 1, that is for a sys-
tem where all thermodynamic and kinetic properties are
invariant under the transformation cA ↔ cB. Upon
increasing Γ, while keeping other parameters constant,
analysis of the structure factor shows that the system
undergoes a transition from macroscopic phase separa-
tion regime to a compositional patterning regime when
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FIG. 3. (a) “Cherry” and “pit” size evolution as a function
of KMC time. Data points begin from a time during steady
state, and the time is set to zero. Γ = 0.7 s−1.(b) Structure
factor and the microstructure shows that the system is in the
patterning regime. A atoms: red, B atoms: yellow. All figures
use the same color coding.

Γ exceeds 0.1 s−1. This transition is in agreement with
previous results reported by Enrique and Bellon17 for
cB = 0.50 and by Krasnochtchekov et al.4 for cB = 0.10.
The novel result however is that in the patterning regime
a significant number of the precipitates, particularly
larger ones, possess a sub-structure, as seen in Fig. 3(b).
These precipitates are comprised of a nearly pure-A core
covered by a nearly pure-B shell. In order to investigate
the formation and stability of these cherry-pit structures,
we employ cluster analysis, and illustrate the results of
that analysis in Fig. 3(a) for Γ = 0.7 s−1.

For simplicity, we plot here only the evolution of the
size of the largestB precipitate in the simulation cell, and
the number of A atoms in that B precipitate, as a func-
tion of KMC iterations. As seen in Fig. 3(a), while the
precipitate size remains stable, the number of A atoms
inside the B precipitate evolves in a cyclic manner. We
point out that, during most of a cycle, the A atom con-

centration inside the largestB precipitate greatly exceeds
the equilibrium solubility limit, which is ≈ 10−4.
This large number of matrix atoms have in fact precip-

itated and formed the A-rich core, as seen in Fig. 3(b).
A sequence of atomic configurations separated by a small
number of iterations, see Fig. 4, reveals that cores first
nucleate near the center of the larger B precipitates, then
grow, until they make contact with the matrix phase, at
which point the precipitates undergo a morphological re-
construction, leading to precipitates that are core-free.
The sequence then repeats itself, unless the precipitate
size changes significantly, for instance through coagula-
tion with another precipitate, or through dissolution into
the matrix. The volume fraction occupied by pits in pre-
cipitates was measured using our cluster analysis. In the
present case, clusters containing 10 A atoms or more were
counted as pits, but the results are not sensitive to the
choice of this threshold, and a nearly identical volume
fraction is obtained if we use a threshold of 30 A atoms.
At steady state, for Γ = 0.7s−1, the pit volume frac-
tion was 4.0%. This fraction is thus small but easily
detectable. Cherry-pit nanostructures persist as part of
the stable steady state microstructure until Γ exceeds
15s−1, at which point the system enters the solid solu-
tion regime.

FIG. 4. Temporal evolution of the cherry-pit structure: (a) a
compact B precipitate, (b) nucleation of the “pit”, (c) growth
of the “pit”, (d) absorption of the “pit”, (e) recovery of a
compact B precipitate. Γ = 0.7 s−1.

In summary, for the A85B15 alloy with parameter set
1, three distinct steady states are observed upon increas-
ing Γ as previously reported by Enrique and Bellon18. In
the patterning regime, however, novel cherry-pit nanos-
tructures are observed, and patterning is not only spa-
tial but temporal, as these cherry-pit structures undergo
cyclic formation and elimination.

B. Effect of asymmetric thermodynamic

interactions

In this section, we consider the effect of asymmetric
thermodynamic interactions by setting the triplet atomic
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interactions to ǫAAB = ±0.005 eV , see parameter set 2
in Table. I. A consequence of these asymmetric thermo-
dynamic interactions is that the equilibrium solubilities
become asymmetric. A positive (resp. negative) triplet
interaction decreases (resp. increases) the equilibrium
solubility of B in A, as illustrated by the low temperature
part of the equilibrium phase boundaries calculated with
parameter set 1 and 2, see Fig. 5. Since the temperature
used in the simulations is low, ≈ 0.27Tc, we employed
a mean field approximation for this calculation, based
on the mixing enthalpy given in Eq. (1). At T = 0.036
eV , the solubility of B atoms in A for ǫAAB = 0.005 eV
is about 780 times smaller than that for ǫAAB = -0.005
eV , according to the mean field free energy. Note that
the equilibrium solubility of A in B is obtained by ex-
changing A and B everywhere in Fig. 5, that is, in the x
axis label, and in the subscripts of the triplet interaction
parameters, using the relationship ǫBBA = −ǫAAB. A
series of simulations has been carried out by increasing
systematically Γ, so as to identify the sequence of steady
states stabilized with parameter set 2. We identified five
distinct steady states, instead of three for parameter set
1.

FIG. 5. Low-temperature section of the A-rich side of the
equilibrium phase diagram of A-B alloy, with ω = 0.0553 eV ,
ǫAAB = ±0.005 eV .

For ǫAAB = 0.005 eV , the steady state changes from
macroscopic phase separation at Γ = 0.05s−1 to compo-
sitional patterning when Γ is increased to Γ = 0.1s−1.
This is illustrated by the structure factors and atomic
configurations shown in Fig. 6(a) and (b). Note that
in both cases, the size of the largest precipitate grows
as the systems approach steady state, but it exhibits
discontinuities. These discontinuities result from coag-
ulation events, which were confirmed by direct visual-
ization of atomic configurations. More importantly, for
the current discussion, the B-rich precipitates stabilized
for Γ = 0.1s−1 do not contain A-rich cherry pits. Fur-
thermore, the A solubility in the largest B precipitate

remains small, ≈ 10−2. Upon increasing Γ to 0.5s−1,
however, cherry-pit structures appear, see Fig. 6(c), and
cluster analysis indicates that the steady-state volume
fraction of the pits reaches 5.0%.
Turning now to the case where ǫAAB = −0.005 eV ,

we observe a stabilization of cherry-pit structures before
the transition from macroscopic phase separation to pat-
terning. As illustrated in Fig. 6(d) for Γ = 0.05s−1, the
system is still in the macroscopically decomposed state
as indicated by the high intensity of the structure fac-
tor and the presence of only one precipitate, but A-rich
cores are found in this precipitate. Simulations started
from configurations with one large precipitate led to a
similar steady state.
In contrast to the cherry-pit structures in the compo-

sitional patterning regime, detailed visual inspection of
atomic configurations reveal that several pits can simul-
taneously be present in one macroscopic precipitate, as
illustrated in Fig. 7. As in the patterning regime, pits are
absorbed by the matrix when they make contact with it.
The size of the pits, however, remains small compared
to the size of the macroscopic precipitate. We checked
this point by comparing the pit sizes obtained for system
sizes of 643 and 1283. In the latter case, the macroscopic
B-rich precipitate is 8 times more voluminous, but the
pit size distributions are nearly identical.
In conclusion, with asymmetric thermodynamic inter-

actions, we identified five steady states for an A85B15

alloy: macroscopic phase separation without cherry-pit
structure; macroscopic phase separation with cherry-pit;
patterning regime without cherry-pit; patterning regime
with cherry-pit; and disordered solid solution.

C. Effect of asymmetry in diffusion

We turn next to the effect of asymmetry of diffusion,
in alloy systems with symmetric thermodynamic interac-
tions, that is with the triplet interactions set back to zero.
There are several ways to introduce a kinetic asymmetry
in the present model. Following the works of Athènes et
al.20 and Roussel et al.21, we chose here to vary the rela-
tive diffusion coefficients of A and B species by changing
their relative cohesive energies, while keeping all other
parameters unchanged. As a result, the vacancy jumps
faster when it is in a phase enriched with the species
with the lower cohesive energy, here the B species. We
employ separate kinetic Monte Carlo simulations to mea-
sure the thermal diffusivities of A and B monomers and
small clusters for parameter sets 3 and 4, as this informa-
tion plays an essential role on the formation of cherry-pit
structures.
For these diffusivity measurements, a single atom or

a cluster comprised of N atoms, with N ranging from
∼ 80 to 800, is placed in the appropriate matrix, and
the system is allowed to evolve via thermally activated
vacancy jumps. The diffusivity of a cluster is measured
by calculating the mean squared displacement of its cen-
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FIG. 6. Different steady states and structure factor: (a1) ǫAAB = 0.005 eV , Γ = 0.05 s−1, no cherry-pit structure (a2)
macroscopic phase separation regime; (b1) ǫAAB = 0.005 eV , Γ = 0.1 s−1, no cherry-pit structure (b2) patterning regime; (c1)
ǫAAB = 0.005 eV , Γ = 0.5 s−1, with cherry-pit structure (c2) patterning regime; (d1) ǫAAB = -0.005 eV , Γ = 0.05 s−1, with
cherry-pit structure (d2) macroscopic phase separation regime. Atomic (111) planes of typical microstructure are shown as
inset in the S(k) plots.
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FIG. 7. Atomic plane showing the presence of multiple
pits in one precipitate in the macroscopic phase separation
regime. ǫAAB = -0.005 eV , Γ = 0.05 s−1. System size is
128×128×128.

ter of mass, according to D = 〈R2〉
6t

, using a simulation
box of 32×32×32. In order to account for vacancy trap-
ping effects, time is rescaled according to Eq. (3). Note
that at the temperature of interest here, 0.036 eV , the
above clusters are fairly stable, losing only a few atoms
during the early stage of the simulations. Afterwards,
the cluster remains stable, and the average cluster size
can be calculated. For parameter set 3, as expected, the
diffusion coefficients of A single atoms and A clusters mi-
grating in a pure B matrix are larger than those for the
migration of B atoms and clusters in an A matrix. For
single atom diffusion, we can directly compare our KMC
data with the standard five-frequency model30, and as
expected, the agreement is excellent, see Fig. 8(a). With
parameter set 3, the A impurity diffusion coefficient is
≈ 20 times faster than that of the B impurity. Further-
more, small A clusters migrate also faster than their B
counterpart. Since the diffusivity of A clusters decreases
significantly with cluster size, one can anticipate that if
a pit forms, it will act as a trap for individual A atoms
and small A atom clusters, thus stabilizing the pit.

Similar cluster diffusivity results were obtained for pa-
rameter set 4, but with a larger difference between the
diffusivities of A and B species since the difference in co-
hesive energies between the pure metals is much larger
than for parameter set 3. The diffusion coefficient of A
monomers, for instance, is five orders of magnitude faster
than that of B monomers, as seen in Fig. 8(b).

We return now to our study of steady states stabilized
by irradiation, starting with parameter set 3. Upon in-
creasing Γ, the steady state changes from macroscopic
phase separation, for Γ = 0.1s−1, to compositional pat-
terning for Γ = 0.5s−1. For this moderately low Γ value,
no cherry-pit structures are found in the compositional
patterning regime, as illustrated in Fig. 9 (a1) and (a2).
At larger Γ values, however, cherry-pit structures are sta-
bilized, as shown in Fig. 9 (b1) and (b2) for Γ =2.0 s−1.
At much larger Γ values, the system is driven into a dis-
ordered solid solution. This sequence of steady states is
therefore qualitatively identical to the ones observed for
parameter set 2 with ǫAAB = 0.005 eV .

In the case of high kinetic asymmetry, that is with
parameter set 4, a different sequence of steady states

FIG. 8. Diffusion coefficients of clusters of N A atoms mea-
sured by Kinetic Monte Carlo simulations at 0.036 eV . (a)
parameter set 3; (b) parameter set 4. Monomer diffusivities
calculated by five-frequency model are also included.

is observed. Namely, cherry-pit structures are never
found, and the system simply undergoes transition from
macroscopic phase separation to compositional pattern-
ing without cherry-pit to solid solution as Γ is increased.
In the compositional patterning regime, the A concentra-
tion in the largest B precipitate remains always small,
never exceeding ≈ 0.01. Direct visualization of atomic
configurations supports the idea that A pits could not
form because of the very high mobility of the A atoms in
the precipitate compared to the rate of ballistic mixing.

D. Effect of ballistic jump relocation distance

All the simulation results reported in the previous sec-
tions were carried out using a ballistic jump relocation
distance of R = 1.08ann, a value chosen based on MD
simulations modeling the ballistic mixing produced by
1MeV Kr irradiation in equiatomic Cu-Ag alloy19. It is
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FIG. 9. Cluster analysis result for simulation with EBB = -4.30 eV . (a1) Γ = 0.5 s−1, no cherry-pit structures (a2) Patterning
regime (a1) Γ = 2.0 s−1, with cherry-pit structures (a2) Patterning regime. Atomic (111) planes of typical microstructure are
inserted in the S(k) plots.

nevertheless useful to investigate the effect of the reloca-
tion distance on the stability of cherry-pit structures. For
instance, for parameter set 2 with R = 1.08ann and Γ =
0.1 s−1 cherry-pit structure is not observed. However,
if the value of R is increased to 2.16ann and 3.24ann,
as shown in Fig. 10, cherry-pit structures form. Simu-
lations were used to determine the boundary in the (R,
Γ) plane between the regimes where cherry-pit structures
were present and absent, for parameter sets 1 and 2, as
summarized in Fig. 10. This boundary is well approxi-
mated by the equation ΓRn = CCP with n ≈ 3.5, and
with CCP a constant. The functional dependence of the
stability boundary for cherry-pit structures as well as the
value of CCP will be discussed in Section IV.

E. Effect of concentration

In previous sections, the KMC simulations were per-
formed for an average B-concentration of 15%. This
concentration facilitated the identification of the cherry-
pit structures as it provided a large volume fraction
of isolated B-rich precipitates. As the B concentra-
tion is increased, the precipitate phase percolates, and

one is left with a bi-connected two-phase microstruc-
ture, as reported by Enrique and Bellon for equiatomic
compositions.18,19 We present here some results obtained
for 25% and 40% B concentration, to illustrate this evo-
lution of the microstructure in the patterning regime. In
the case of cB = 25%, the B rich precipitate phase has
percolated, as seen in Fig. 11(a). This is not surpris-
ing since the static percolation threshold for fcc lattices
is ≈ 20%;31 more importantly the microstructure un-
der irradiation undergoes kinetic roughening under the
above conditions,32 leading to non-compact precipitate
shapes. While cherry-pit structures can also be identi-
fied once the B-rich phase has percolated, the transition
from macroscopic phase-separation to compositional pat-
terning is difficult to identify since the presence of one
large B-rich phase spanning the whole simulation sys-
tem in the patterning regime leads to a structure factor
that is very similar to the one characteristic of macro-
scopic phase separation. In particular, these structure
factors present a peak for the smallest non-zero k vec-
tor, and the intensity of this peak scales linearly with
the simulation volume. Percolation and double connec-
tivity of the microstructure become even more evident
for simulations performed for cB = 40%, as seen in Fig.
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FIG. 10. Cherry-pit structure formation affected by different
relocation distance. Power law fitting of the cherry-pit struc-
ture formation boundaries are provided in both plots. (a)
parameter set 1; (b) parameter set 2.

11(b). Notice that in this case, the cherry-pit structure
has evolved into a three dimensional bi-connected struc-
ture, with a finite characteristic length scale. As a re-
sult, the corresponding structure factor does display a
maximum for a finite k vector, with an intensity that
is independent of the system size, thus making it easy
again to distinguish macroscopic phase separation from
compositional patterning. In summary, the dynamical
stabilization of cherry-pit structures is best observed for
compositions ranging from cB ≈ 10% to 20%. These com-
position boundaries may of course vary with irradiation
conditions and with thermodynamic and kinetic param-
eters of the alloy of interest.

IV. DISCUSSION

The central result presented here is the dynamical sta-
bilization of novel non-equilibrium precipitate structures
in alloys subjected to energetic ion irradiation. These

FIG. 11. Effect of different concentrations on cherry-pit struc-
tures. (a) A75B25, Γ = 3.0s−1, (b) A60B40, Γ = 5.0s−1.

novel structures, which we referred to as cherry-pit struc-
tures, are observed in KMC simulations of A1−cBc bi-
nary model alloy systems where ballistic mixing com-
petes with thermally-activated decomposition. These
structures are observed near the dynamical transition
between the steady states of macroscopic phase separa-
tion and compositional patterning. In the compositional
patterning regime, the maximum pit size is bounded by
the steady-state precipitate size, which maximum size
is about 2πR,17,18 where R is the characteristic length
scale of the ballistic atomic relocations. Interestingly, a
similar size limitation is also measured for pit structures
forming in macroscopic B-rich precipitates. In addition,
simulations reveal that these cherry-pit structures dis-
play temporal organization, and that the pits go through
repeated cycles of nucleation, growth, and absorption by
the matrix, as illustrated in Fig. 3 and Fig. 4. Analysis of
these dynamical cycles suggests that they are nearly pe-
riodic, although a significant scattering is observed from
cycle to cycle within one precipitate, and from precipi-
tate to precipitate. This scattering results from the dis-
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persion introduced by variable incubation times for pit
nucleation, and from the dispersion of precipitate sizes
under steady-state conditions.
In order to investigate the processes controlling the ki-

netics of pit dynamics, we measured the average pit life-
time as a function of precipitate size. It was found that
the pit life-time increased nearly linearly with the precip-
itate size. A related characteristic of the kinetic evolution
of pits is that, after their nucleation, their volume tends
to grow nearly linearly in time. Since precipitate sizes
are largely constant at the short time scale relevant for
pit nucleation, growth and absorption, a linear growth
kinetics is consistent with a linear dependence of the pit
life-time with precipitate size. These dependencies can be
understood by assuming that pits, once nucleated, grow
by trapping the A atoms ballistically recoiled from the
matrix into the precipitates.
We have shown in Sections III B, III C and IIID that

the conditions required for the stabilization of cherry-
pit structures are strongly dependent on thermodynamic
and kinetic parameters of the alloy system, as well as
of the relocation range R. We propose here to ratio-
nalize these effects by extending the model introduced
by Frost and Russell13,14 for irradiation-induced compo-
sitional patterning. In that model, one considers pure
B precipitates of fixed radius rp to calculate the solute
concentration profile in the matrix in the presence of bal-
listic relocations of length R. One then solves a diffusion
equation for the solute atoms, here the B atoms, assum-
ing that their transport between precipitates is purely
controlled by thermally activated diffusion. The ballistic
mixing is reduced to a source term, resulting from the in-
jection of B atoms from the precipitate into the matrix.
This source term is a function of r, the distance to the
center of the precipitate:

G(r) =
Γ

4Rr

[

r2p − (r −R)2
]

(r > rp) (5)

The steady-state solution of this diffusion equation
yields the following expression for the steady-state solu-
bility of B atoms in the matrix forced by ballistic mixing:

cbalB =
ΓR2

12DB

(

1−
R

4rp

)

(6)

where DB is the impurity diffusion coefficient of B atoms
in a pure A matrix. As the above model does not include
thermal solubility or capillary (Gibbs-Thomson) effects,
Frost and Russell proposed to superimpose to the pre-
vious solubility the standard thermal contribution ex-
pected for a precipitate-matrix system. The resulting
total solubility limit under irradiation then writes

cirrB = ceq,∞B

(

1 +
2σVB

rpkBT

)

+
ΓR2

12DB

(

1−
R

4rp

)

(7)

where ceq,∞B is the B equilibrium solubility for a planar
interface, σ is the interfacial energy and VB the atomic
volume in the precipitate, which is assumed to be pure
B. As noted by Frost and Russell, two terms contribute
to the dependence of the solubility with the precipitate
radius, one due to the Gibbs-Thomson effect, and one
from ballistic mixing. Since these two terms have identi-
cal functional dependence, both scaling as 1/rp, they can
be grouped together, and recast into an effective Gibbs-
Thomson equation, with an effective capillary length.
As the ballistic frequency Γ increases, the effective cap-
illary length is reduced, and eventually becomes nega-
tive. Frost and Russell proposed to identify the Γ value
at which the capillary length becomes negative as the
boundary between equilibrium-like phase separation and
patterning. A similar but more detailed analysis of this
inverse coarsening can be found in the work of Heinig et
al.33This critical value for the transition between these
two steady states, ΓMPS−CP takes the following expres-
sion

ΓMPS−CP = ceq,∞B DB

(

96σVB

kBT

)

1

R3
(8)

We note that this model predicts that, in the (R, Γ)
parameter space, the boundary between the two steady
states is given a condition R3 × Γ = constant. This
functional dependence of the boundary with R and Γ is
in agreement with the analytical model of Enrique and
Bellon in the so-called “strong-segregation” regime,17,18

that is far from the critical point (Rc, γc) in Fig. 2. In
the context of the present simulations, two important
conclusions from the above equation are that the critical
ballistic frequency for the transition from macroscopic
phase separation to compositional patterning scales lin-
early with the B equilibrium solubility and with the B
impurity diffusion coefficient.
We propose now to extend Frost and Russell’s model to

atomic diffusion inside a precipitate.34 We need to con-
sider the flux of A atoms that are ballistically recoiled
from the matrix into the precipitate, which are again
assumed to be pure B. From simple geometric consider-
ations, we derive the corresponding source term

G(r) =
Γ

4Rr

[

(R + r)2 − r2p
]

(r < rp) (9)

Following the approach employed by Frost and Russell,
we calculate an expression for the steady-state solubility
of A in the precipitate, and add the expected Gibbs-
Thomson contribution, yielding the following expression
for the total A solubility

cirrA = ceq,∞A

(

1−
2σVA

rpkBT

)

+
ΓR2

12DA

(

1 +
R

4rp

)

(10)

Notice that this time, the signs of the two terms con-
tributing to capillary effects are opposite to the ones
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found when solving for B solubility in the matrix phase,
see Eq. (7). Again, one can define an effective capillary
length. As the ballistic frequency Γ increases, this ef-
fective capillary length decreases, then goes to zero, and
becomes negative. We propose that a negative capillary
length inside the precipitate corresponds to the onset of
precipitation of A atoms inside the B precipitate, and it
corresponds to the formation of a cherry-pit structure.
The critical ballistic frequency for the transition from no
cherry-pit to cherry-pits is given by

ΓCP = ceq,∞A DA

(

96σVA

kBT

)

1

R3
(11)

FIG. 12. Schematic A concentration profiles in a B-rich
precipitate, Cp(A), between an A-rich pit, in grey, and the
precipitate-matrix interface. The steady-state concentration
in local equilibrium with a flat interface under irradiation,
c
irr,∞

A , is shown as a horizontal dashed line. (a) positive ef-
fective capillary length; (b) negative effective capillary length.

The origin of the stabilization of the A-rich pits can
be understood by considering the A compositions in lo-
cal equilibrium with the relevant interfaces, as depicted
in Fig. 12. When the effective capillary length, deduced
from Eq. (11), is positive, the local A solubility in a B-
rich precipitate is larger at the pit-precipitate interface
than it is at the precipitate-matrix interface, as illus-
trated in Fig. 12(a). It is therefore expected that A
atoms will flow from the pit to the matrix, and thus
that pits are not stable. Note that this is also the case
for systems at thermodynamic equilibrium. In contrast,
when irradiation conditions are such that this effective
capillary length is negative, as in Fig. 12(b), the situ-
ation is reversed, and A atoms should now flow from
the precipitate-matrix interface to the pit-precipitate in-
terface, leading to the continuous growth of the pit, as
observed in the KMC simulations.
Returning to the model, one first notes the similarity

between Eq. (11) and the one derived by Frost and Rus-
sell for the onset of patterning, Eq. (8). In particular, the
functional dependence of the boundary with respect to R
and Γ is again given by R3 × Γ = constant = CCP . We
tested this functional dependence using the KMC simu-
lation results presented in Fig. 10 for parameter sets 1
and 2. As seen from the figure, the agreement is quite
good, with the best fit to the data giving a boundary for
Rn×Γ = constant with n = 3.52 for parameter set 1 and

n = 3.46 for parameter set 2. We note that these values
are between the values identified by Enrique et al.17 of
n = 3 for the strong segregation regime (i.e., far from γc)
and n = 4 for the weak segregation regime (i.e., close to
γc). Another important result from Eq. (11) is that the
critical ballistic jump frequency for the stabilization of
cherry-pits scales linearly with the A equilibrium solubil-
ity and with the A impurity diffusion coefficient. Note
that in the Frost and Russell model, and in its extension
proposed here, all ballistic events have the exact same
relocation distance. Heinig et al.33 showed however that
an exponential distribution of relocation distances leads
to results identical to Eqs. (6, 7, 8), except for different
numerical coefficients. These differences do not affect
the functional dependences of the transition from macro-
scopic phase separation to compositional patterning, and
those of the stability boundary of the cherry-pit regime.
It is therefore meaningful to compare these analytical
functional dependences with our KMC data.

We can now compare the steady states identified in
the KMC simulations with those predicted by this ex-
tended patterning model. First, in the case of a fully
symmetric alloy system, as for parameter set 1, the equi-
librium solubilities and the impurity diffusion coefficients
are identical for A and B atoms. We thus expect that, as
Γ is increased, the onset of compositional patterning (the
boundary labeled γ1 in Fig. 2) coincides with the onset
of the formation of cherry-pit structures. This is indeed
what was found for parameter set 1, see Section IIIA. We
turn then to the case of alloy systems that have asym-
metric solubilities but symmetric diffusion properties, pa-
rameter set 2. When the B equilibrium solubility in A
is lower than that of A in B, that is for positive values
of ǫAAB, the extended patterning model predicts that,
as Γ is increased, the system will first undergo a transi-
tion from macroscopic phase separation to compositional
patterning before entering the domain of cherry-pit for-
mation. This is also in agreement with the KMC results
summarized in Fig. 6(a-c). Conversely, when the B equi-
librium solubility is larger than that of the A solubility,
that is for negative values of ǫAAB, the extended pattern-
ing model predicts that cherry-pit structures will become
stable while the system is still in the macroscopic phase
separation steady state, again in qualitative agreement
with our simulation results, see Fig. 6(d). In both cases,
however, the quantitative agreement with the model is
limited in the sense that the model predicts that for pos-
itive ǫAAB values the domain over which compositional
patterning would be stabilized without cherry-pit struc-
tures should cover three decades in Γ according to Eqs.
(8), (11), in contrast to the one decade found in the KMC
simulations. We believe that this overestimation is due
to the approximations made in the model, in particular
the assumption that the matrix and precipitate phases
are pure A and pure B phases, respectively, and the fact
that the ballistic and thermal solubilities are derived sep-
arately.

We turn now to the case of alloy systems that have
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symmetric thermodynamic interactions but asymmetric
impurity diffusion coefficients, as in parameter sets 3 and
4. In this case again, the sequence of steady states pre-
dicted by the extended patterning model is in agreement
with the simulation results reported in Section III C. For
instance, an increase of A atom diffusivity over that of
B atoms is expected to shift the onset of cherry-pit for-
mation to larger Γ values than those required for com-
positional patterning. In this case, the agreement be-
tween the KMC simulations and the model is even semi-
quantitative, as the ratio of Γ values for the transition
from macroscopic phase separation to compositional pat-
terning, Γ ≈ 0.1s−1, to the transition for no cherry-pit
to cherry-pit, Γ ≈ 2.0s−1, is in the ratio of DB(A) over
DA(B), as expected from Eqs. (8), (11). For parameter
set 4, this shift is expected to be very large since the A
and B diffusivities differ by 5 orders of magnitude. The
fact that no cherry-pit structures are observed for param-
eter set 4 can then simply be understood as a case where
the very large diffusional asymmetry shifted the possible
cherry-pit formation to Γ values larger than the boundary
between the compositional patterning and solid solution
steady states, the boundary labeled γ2 in Fig. 2.

The stabilization of cherry-pit structures is reminiscent
of the transient formation of small clusters around a pre-
cipitate undergoing dissolution, under irradiation.33,35

Cherry-pit structures are also reminiscent of the stabi-
lization of similar inverted structures in equilibrium sys-
tems with competing interactions. Indeed, following ap-
proaches introduced by Martin36, Vaks and coworkers37

and Garrido and coworkers38, Enrique and Bellon39

showed that the dynamical steady states reached under
irradiation can be described as thermodynamic equilib-
rium states in systems with effective interactions. Specif-
ically, for the alloy systems considered here, the effective
interactions between like atoms would be comprised of
short-range attractive interactions, due to the thermo-
dynamics of the systems, and long range repulsive inter-
actions, resulting from the finite-range ballistic mixing.
Such a competition can be found in physical systems, for
instance in the two-phase phospholipid systems studied
by McConnell and coworkers.40–42 In these thin film sys-
tems, a solid-liquid phase co-existence results from a com-
petition between short-range attractive chemical interac-
tions with long-range repulsive dipolar interactions. As
shown analytically,42 and observed experimentally40,43,
this competition generates morphological instabilities of
lipid domains, and in particular, above a critical size,
spherical domains undergo a first-order transition from
a disc to a torus, which is the two-dimensional equiva-
lent of the transition from compact sphere to cherry-pit
structures in three-dimensions.

One remarkable characteristics of the cherry-pit struc-
tures reported here is their near periodic cyclic evolution.
This can be rationalized by considering the three charac-
teristic time scales relevant for these evolutions, namely
the pit nucleation time, the pit growth time, and the
precipitate life time. For the parameters employed in

this study, KMC simulations reveal that the three time
scales are well separated. As a consequence, in the pit
formation regime, starting from a pristine precipitate, a
pit nucleates quickly, then grows relatively slowly, and
is finally absorbed by the matrix when it intercepts the
precipitate-matrix interface, which has barely changed
over this one cycle. Furthermore, for a given precipitate
size, the pit growth rate is nearly identical from one cycle
to the next, since this growth rate is controlled by the re-
coil of A atoms from the matrix into the precipitate. As a
consequence, the pit evolution cycles are nearly periodic.

Finally, we point out that in recent experiments on
Cu1−xFex and Cu1−xVx (with x ≈ 10 at%) thin films
subjected to 1.8MeV Kr ion irradiation, Stumphy et al.8

observed by atom probe tomography inner precipitate
structures similar to the cherry-pit structures reported
here from KMC simulations, as illustrated by compar-
ing Fig. 1 with Fig. 7. Interestingly, these inner precipi-
tate structures are observed in Cu-Fe in the macroscopic
phase separation regime as well as in the compositional
patterning regime, where as in Cu-V they are only ob-
served in the patterning regime. Our present study indi-
cates that thermodynamic and kinetic asymmetries can
be responsible for these differences. It is not yet known
whether the nanostructures observed experimentally are
dynamical, cyclic structures, as the ones revealed by the
KMC simulations. A detailed comparison between exper-
imental results and the present simulations and modeling
will be offered elsewhere.44

V. CONCLUSION

We investigate by kinetic Monte Carlo simulations in
binary A-B alloys the possible stabilization by irradiation
of precipitate-within-precipitate structures, which we re-
fer to as cherry-pit structures. The simulations indicate
that these structures should be stable for a broad range
of thermodynamic and kinetic parameters, and that
the asymmetry of these parameters influence greatly
the domain of stability of the cherry-pit structures.
Moreover, in the simulations, these structures display
a dynamical, near-periodic, behavior, going through
cycles of pit nucleation, growth, and absorption by the
matrix/precipitate interface. An analytical model is
proposed by extending the model previously introduced
by Frost and Russell13,14 to include the dynamics of
pit formation and stability inside precipitates. The
effect of thermodynamic and kinetic alloy asymmetry
on cherry-pit stabilization is in very good qualitative
agreement with the KMC simulations. The simulations
also offer a framework to rationalize the formation of
nanostructures within precipitates recently reported by
atom probe tomography in ion-irradiated Cu-Fe and
Cu-V alloys.
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W. Möller, Appl. Phys. A 77, 1725 (2003).
34 Although the more complete theory of Enrique and Bellon

should be applied, this geometry of precipitates within a
sphere does not lend itself to an analytical solution.

35 K. Russell, J. Nucl. Mater. 206, 129 (1993).
36 G. Martin, Phys. Rev. B 30, 1424 (1984).
37 V. Vaks and V. Kamyshenko, Phys. Lett. A 177, 269

(1993).
38 P. L. Garrido and J. Marro, Phys. Rev. Lett. 62, 1929

(1989).
39 R. A. Enrique and P. Bellon, Phys. Rev. B 70, 224106

(2004).
40 R. Weis and H. McConnell, J. Phys. Chem. 89, 4453

(1985).
41 D. Keller, J. Korb, and H. McConnell, J. Phys. Chem. 91,

6417 (1987).
42 H. McConnell and V. Moy, J. Phys. Chem. 92, 4520 (1988).
43 H. McConnell, Annu. Rev. Phys. Chem. 42, 171 (1991).
44 B. Stumphy, R. S. Averback, and P. Bellon, “in prepara-

tion,” (2013).


