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For certain crystalline systems, most notably the organic compound EtMe3Sb[Pd(dmit)2]2, ex-
perimental evidence has accumulated of an insulating state with a high density of gapless neutral
excitations that produce Fermi-liquid-like power laws in thermodynamic quantities and thermal
transport. This has been taken as evidence of a fractionalized spin liquid state. In this paper, we
argue that if the experiments are taken at face value, the most promising spin liquid candidates are
a Z4 spin liquid with a spinon-Fermi surface and no broken symmetries, or a Z2 spin-liquid with a
spinon-Fermi surface and at least one of the following spontaneously broken: (a) time-reversal and
inversion, (b) translation, or (c) certain point-group symmetries. We present a solvable model on
the triangular lattice with an (a) type Z2 spin liquid groundstate.

The notion of a “spin-liquid phase” – a quantum dis-
ordered insulating phase which is not adiabatically con-
nected to a band insulator – has captured the imagina-
tion of theorists for decades [1, 2]. In recent years, several
developments have increased interest in this subject [4],
including a number of exact results for solvable models
which prove the existence of spin liquids as theoretically
stable quantum states of matter [5–9], numerical studies
[10–12] of more physically realistic models, increasingly
sophisticated field theoretic analyses [3, 13], and, impor-
tantly, recent experimental results. Specifically, a num-
ber of quasi-two-dimensional (2D) insulating materials
have been found to exhibit highly unusual low tempera-
ture thermodynamic and transport properties which are
unlike those expected of conventional phases [4, 14–16].

One of the most notable examples is the organic mate-
rial EtMe3Sb[Pd(dmit)2]2 (referred to as “dmit”), which
provides a physical realization of a frustrated spin-1/2
system on a (anisotropic) triangular lattice. Although
dmit has an odd number of electrons per unit cell, the
charge response (conductivity) is insulating and NMR
studies indicate that no magnetic ordering occurs down
to the lowest achievable temperatures (∼ 20mK), which
are much smaller than the scale of the characteristic ex-
change coupling, J ≈ 250K [18]. The specific heat, C,
uniform susceptibility, χ, and thermal conductivity, κxx,
exhibit T dependencies consistent with Fermi-liquid-like
power laws, C ∼ k2BρT , χ ∼ ρµ2

B, and κxx ∼ C, with
an apparent density of states, ρ ∼ 0.1J−1 per unit cell
[16, 19]. This is suggestive of the existence of a spin-
liquid with a charge gap, and neutral, fermionic spinon
excitations with a nonzero density of states at zero en-
ergy and an estimated mean free path ∼ 0.5 µm [16].
Similar observations in a closely related compound, κ-
(ET)2Cu2(CN)3 (referred to as κ-ET)[17], led to the
proposal of a candidate spin liquid, with a “pseudo
Fermi surface” of spinons and an emergent U(1) gauge
field[20, 21]. Eventually it was found that κ-ET has a
gap to mobile excitations,[22] unlike the case in dmit.

In this paper, we assume that dmit realizes a fraction-

alized spin liquid state, and we address the problem of
identifying the most promising candidates to explain the
experiments. In particular, we assume that the exper-
imental claims summarized above can be taken at face
value, and we also consider the possibility that quenched
disorder plays no fundamental role. In agreement with
previous discussions [20], we argue that under these as-
sumptions the U(1) spin liquid is not a viable candidate.

We introduce a Z2 spin liquid phase with a stable

spinon-Fermi surface and spontaneously broken time-
reversal and inversion symmetry as a promising candi-
date state for dmit. Other attractive candidates with
spinon-Fermi surfaces which are only marginally unsta-
ble are a Z4 spin liquid with no necessary broken sym-
metries, or a Z2 spin liquid which spontaneously breaks
translation symmetry [21], or certain point-group sym-
metries [45]. For the Z4 spin liquid, we provide a phys-
ical mechanism by which it can arise, through quantum
melting a spinon pair-density wave state. Interestingly,
we find that a marginally unstable featureless Z2 spin liq-
uid with a spinon-Fermi surface can exist on the square
lattice, but apparently not on the triangular lattice.

We have studied the magnetic field response of these
spin liquids, and conclude that these states are compat-
ible with existing magneto-thermal transport measure-
ments. As we will discuss, an attractive feature of our
proposals, as compared with some existing ones, is that
they do not require an extremely small scale for spinon
pairing. The broken symmetries of the candidate Z2 spin
liquids with spinon-Fermi surfaces imply the existence of
at least one thermal phase transition.

All known spin liquids are fractionalized phases de-
scribed, at low energies, by an effective theory consisting
of matter (“spinons”) coupled to an emergent gauge field.
An interesting subset of these states can be thought of as
derived from an underlying theory of a fermionic spinon
metal interacting with an emergent U(1) gauge field. In
analogy with superconductors, the spinons can condense
in pairs or clusters, breaking the U(1) gauge symme-
try to a discrete subgroup and gapping the gauge-field
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fluctuations via the Anderson-Higgs mechanism. Re-
cently, it has been recognized [29, 32] that exotic su-
perconducting states can exist with appropriate broken
symmetries which support a Fermi surface of Bogoliubov
quasi-particles, while still exhibiting the standard Meiss-
ner effect; the spin-liquid analogue of these states have
a gap to all gauge-field fluctuations in the presence of a
robust spinon Fermi surface, and are therefore promising
candidates to explain the dmit phenomenology.
“Parent” U(1) spin liquid – The U(1) spin liquid can

be understood [3] by representing the spin operator as
~S = Ψ†~τΨ, where Ψ is a two-component spinor field
(corresponding to the two polarizations of a spin-1/2
fermion), and τα are the Pauli matrices. This leads to a
minimal model of a sea of spinons coupled to an emergent
U(1) gauge field, given by the Euclidean Lagrangian:

L = Ψ†
[

∂t − ia0 − ǫ(−i~∇− ~a)
]

Ψ+ |f |2/(2g) + . . . ,(1)

ǫ = ǫ01+
∑

α Jατα is a 2×2 matrix; time reversal symme-

try implies that ǫ0(~k) = ǫ0(−~k) and Jα(~k) = −Jα(−~k),
and, in the absence of spin-orbit coupling, spin-rotational
symmetry implies Jα = 0. Here, ~k signifies the Bloch
wave-vector and, where there are multiple spinon bands,
it is implicitly assumed to include a band index. fµν is
the field strength corresponding to the emergent gauge
field, aµ, and . . . represents gauge-invariant four-fermion
and higher order interaction terms. L is proposed to de-
scribe physics at energies small compared to the charge-
gap, so the remaining degrees of freedom carry zero
electro-magnetic charge.
The weak-coupling (g → 0) fixed point is unstable.

One possible result is a strong-coupling non-Fermi-liquid
phase which does not break any symmetries, does not
have any well defined quasiparticles, but which preserves
the Fermi surface [25]. However, even assuming this to
be a stable phase, it cannot be responsible for the ex-
perimental claims summarized above. It would exhibit
power-laws (for example, C ∼ T 2/3) that are substan-
tially different from those of a Fermi-liquid, unless a
broad intermediate finite-temperature regime is assumed
that is governed by the unstable (g → 0) fixed point.
Given that the gauge coupling is strongly relevant and
there are no naturally small parameters in the problem,
we consider such a broad intermediate regime unlikely.
Additional issues that cast doubt on the U(1) spin liquid
below 1 K on the basis of the thermal Hall data were
presented in Refs. [16, 26].
Breaking U(1) to Z2 – The gauge symmetry in Eq. (1)

can be spontaneously broken due to pairing of spinons,
gapping the gauge fluctuations and leaving a residual Z2

gauge symmetry. Because a Z2 gauge theory has no finite
temperature transition in two dimensions [27], spinon
pairing defines a crossover rather than a phase transition.
The discreteness of the residual gauge symmetry implies
there are gapped, vortex-like excitations (“visons”[28])

(a) (b) (c)

FIG. 1. (a) Loop order on the triangular lattice where φ
represents the phase accumulated in circling the plaquette.

This leads to the dispersion relation ǫ̃(~k) = −t[cos(kx) +
cos(k+) + cos(k−)] − δ[sin(kx) + sin(k+) + sin(k−)] where
k± = −kx/2 ±

√
3ky/2 and δ/t = tan(φ/3). (b) The Fermi

surface with φ = π/2 (solid line) and the same curve with
~k → −~k (dashed line). (c) The residual Fermi surface in the
presence of a small pairing term.

which carry half a quantum of gauge flux.
At energies low compared to the vison creation energy

the resulting effective field theory is of the form:

L = Ψ†
[

∂t + ǫ(−i~∇) + δ(−i~∇)
]

Ψ

+ Ψ†∆(−i~∇)Ψ† +Ψ∆†(−i~∇)Ψ + · · · . (2)

The induced changes in the dispersion, δ(~k), can be ab-

sorbed into a redefined spinon “band structure,” ǫ̃(~k) =

ǫ(~k) + δ(~k).
Z2 spin-liquids with a spinon-Fermi surface – In the

U(1) spinon Fermi surface state, arbitrary pairing terms
cannot appear in the theory as they are forbidden by the
U(1) gauge symmetry. However once the U(1) is broken
to Z2, the spinon number is only conserved mod 2, so
any pairing terms can generically appear. Addition of a
small s-wave pairing term would open a gap everywhere,
while p-wave or d-wave pairing terms will gap the Fermi
surface everywhere but at isolated nodal points.
The instability inherent in a state with a spinon Fermi

surface with a Z2 gauge field is removed if the system
in question breaks both time-reversal and inversion sym-
metry. In this case, the degeneracy of states at ~k and
−~k is lifted. (See Fig. 1.) If we draw the Fermi sur-

face corresponding to ǫ̃(−~k), (dashed line in Fig. 1b) a
small pairing term will open gaps only in the neighbor-
hood of the points at which the two copies of the Fermi
surface happen to cross. The rest of the Fermi surface is
perturbatively stable!
Therefore, if both time-reversal and inversion symme-

try are broken, it is possible to stabilize a Z2 spin liquid
with a spinon-Fermi surface. Such a state was found
[9] in a Γ-matrix model on the Kagome lattice with ex-
plicit time-reversal and inversion symmetry breaking. A
related result was obtained in another context: in [29]
it was shown that a Fermi surface occurs in a state
with coexisting d-wave superconducting and orbital loop
order.[30] An example of such a state on a triangular
lattice is shown in Fig. 1. A subtle point is the possibil-
ity that the spinon band structure violates time-reversal
and inversion, while physical (gauge invariant) quantities
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preserve these symmetries [31]. However such states are
believed to be marginally unstable to translation symme-
try breaking that gaps the Fermi surface.
To affirm the possibility of a stable Z2 state with a

spinon-Fermi surface, we introduce (in the Supplemen-
tal Material) an exactly solvable version of the Γ-matrix
model on the triangular lattice. The model itself is not
inversion symmetric. We find that for a range of parame-
ters, the ground-state spontaneously breaks time-reversal
symmetry and supports a stable spinon Fermi surface
coupled to a Z2 gauge field. This proves the existence of
this state as a quantum phase of matter.
Another possibility is a pair density wave (PDW) state

for the spinons. A specific version of this was proposed
in [21]. The essential feature [32] of this state which pre-
vents it from fully gapping the spinon-Fermi surface is
that the gap parameter changes sign, ∆(r) = −∆(r +
êλ/2) under translation by 1/2 the PDW period, λ, so
that the spatial averaged gap vanishes. (Q = (2π/λ)ê is
the PDW ordering vector.) In the special case where the
period is two lattice spacings, the PDW does not actu-
ally break translation symmetry, since translation by one
lattice constant is equivalent to a uniform gauge trans-
formation. On the triangular lattice such a state does,
however, break the C6 rotational symmetry. However,
on a square lattice, a PDW state of Q = (π, π) does not
break any symmetries. In these cases, the spinon-Fermi
surface has a marginally relevant Cooper instability.
Z4 spin liquids – We can also imagine cases where

spinon quartets condense but not pairs, leaving a Z4

gauge theory with a richer collection of vortex-like modes.
While quartet condensation is relatively unnatural for
electrons, with their strong repulsive interactions, there
is no particular reason to rule out condensation of higher
multiplets in the case of spinons. It is, for example, pos-
sible to construct model electron problems with strong,
spin-dependent attractions which exhibit a charge 4e su-
perconducting phase [33].
If the quartet binding energy ∆4e is large enough, the

fermion spectrum will be fully gapped. However if ∆4e is
much less than the Fermi energy, it is possible instead for
a stable Fermi surface to coexist with the quartet con-
densate. Treated perturbatively about the Fermi liquid
fixed point, a quartet condensate simply introduces four-
fermion interactions that conserve charge modulo four;
these can only introduce a marginal instability, similar
to the usual Cooper instability of the Fermi liquid (see
Supplemental Materials for additional details).
One physical way for a charge-4e condensate with

Fermi surface to occur is the following. Consider starting
with a pair-density wave (PDW) or FFLO state, which
are known to support stable Fermi surfaces. If such a
state is quantum or thermally melted by the prolifera-
tion of double dislocations, then the pair order parame-
ter will be disordered, leaving a residual charge-4e super-
conducting order [34–36]. At the quantum critical point,

the melting of the order parameter only affects the Fermi
surface at “hot spots” – points on the Fermi surface that
can be connected by integer multiples of the PDW wave
vector. Therefore it is clear that most of the Fermi sur-
face will survive the melting transition intact and persist
in the presence of the quartet condensate. In the spin-
liquid context, such a state would be a Z4 spin-liquid
with a spinon Fermi surface.

A Z4 spin liquid is an attractive candidate for account-
ing for the experiments - in contrast to the Z2 spin liq-
uid, it does not necessitate time-reversal and inversion,
translational, or certain point group symmetry breaking
to ensure the stability of the spinon-Fermi surface over a
broad intermediate energy scale.

Response to magnetic field – Experiments on dmit have
reported no measurable thermal Hall angle up to an ap-
plied field of 12 T [16], and an interesting upturn in
κxx(T = 0) starting at an applied field of 2 T.

The orbital coupling to charge fluctuations leads to a
linear coupling between the magnetic field and the spin
chirality [38]. The spin chirality is proportional to the
magnetic flux of the emergent gauge field [3]. However,
the visons of Z2 spin liquids typically are even under
time-reversal, due to tunneling between φ0/2 and −φ0/2
vortices. For strong enough tunneling, vortices are there-
fore not induced by a magnetic field, even if it is larger
than the vison gap. If the tunneling amplitude is suf-
ficiently small, an applied magnetic field could mix the
symmetric and antisymmetric states, stabilizing vortices
relative to anti-vortices.

If the effective penetration length of the spinon con-
densate is small (i.e. if it forms a Type I superconduc-
tor), then we expect that a magnetic field will not in-
duce a finite density of vortices, and therefore there is no
mechanism for modifying the thermal Hall effect. If the
spinon condensate forms a Type II superconductor, then
a magnetic-field dependent thermal Hall effect is possi-
ble in principle, although at present we do not have a
theoretical estimate of its magnitude.

Assuming the Type I scenario, the only response of
the spin liquid to the magnetic field is through the Zee-
man coupling. For the spinon-Fermi surface states dis-
cussed in this paper, this will change the density of
states and will not modify the Hall response. How-
ever, for the Z2 spin liquid with a stable spinon-Fermi
surface with spontaneously broken time-reversal and in-
version symmetry, there will be a zero-field anoma-
lous thermal Hall response.In the clean limit, the only
contribution to the thermal Hall conductivity comes
from[40] the Berry curvature of the Bloch states of the

spinons: κxy = π2

3

k2

B
T

h
1
2π

∫

d2kfxy(~k)n(~k), where fxy(~k)

is the Berry curvature, and n(~k) is the occupation num-
ber of the partially filled bands. Generically, we ex-
pect: 1

2π

∫

d2kfxy(~k)n(~k) ∼ 1. Therefore, we estimate:

κxy/T ∼ π2

3

k2

B

h ≈ 10−12 W/K2 .
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In order to compare with the experimental results in
dmit, consider κxy/T per layer, where the layer spacing
is d ≈ 1.5 nm: κxy/Td ≈ 6 · 10−4 W/K2m. Using the
zero temperature intercept of the longitudinal thermal
conductivity, limT→0 κxx/Td = 0.2W/K2m, we predict a
Hall angle tan θH = κxy/κxx ≈ 0.003. The experimental
error bars on the Hall angle were reported to be ≈ 0.05 at
0.23 K, ≈ 0.02 at 0.70 K, and 0.003 at 1 K and 12 T [16].
Our prediction is over an order of magnitude less than
the experimental error bars on the low temperature data
and therefore appears to be consistent with experiment.

The other observed feature in the magneto-thermal
transport in dmit is a rapid upturn in κxx(T = 0) at
2 T. One possible explanation is that the tunnel splitting
in the vison state is small, so that the gap to vortex for-
mation is approximately 1K, and hence magnetic fields
in excess of 1 T lead to vortex proliferation. However,
the vortex state would be expected to exhibit a thermal
Hall effect due to scattering of the spinons from vortices,
and this has not been observed. It is possible that the
experimental error bars are still too large to observe this
effect. An alternative possibility is that the upturn in
κxx/T is simply due to variations of the density of states
in the spinon band structure.

Since the Z4 spin liquid with a spinon-Fermi surface
need not break time-reversal symmetry, its anomalous
thermal Hall response can be exactly zero. The structure
of its vortices is richer; the Z4 visons are not all time-
reversal symmetric and will therefore couple linearly to
a magnetic field, leading to the possibility of a non-zero
thermal Hall effect. However, the same quantitive issues
discussed in the Z2 context apply here, as well.

Discussion – All known spin liquids can be classified in
terms of a spectrum of gapless spinons (or their absence)
and the nature of the emergent gauge fields to which
they couple. In addition to a spinon Fermi surface, nodal
fermions, with dispersion ǫ(k) ∼ kα are another possibil-
ity. The familiar case of α = 1 has a vanishing density
of states at zero energy, and so, it is not a candidate to
explain the experiments if the effects of disorder are neg-
ligible. It has been noted, however, that weak disorder
broadens the nodes, resulting in a constant density of
states at zero energy proportional to the spinon scatter-
ing rate, 1/τ . Thus, only if the disorder plays a signifi-
cant role in the thermodynamics can a nodal spin-liquid
be a candidate to explain the experiments. Moreover,
in this case the thermal conductivity is theoretically ex-
pected to be “universal” in the sense that it does not
depend on τ , although it does depend on the anisotropy
of the nodal dispersion; as we will show in the Supple-
mental material, to account for the magnitude of the
observed thermal conductivity, one must assume an ex-
tremely large anisotropy corresponding to a pairing scale
that is roughly 500 times smaller than J . In contrast,
none of the proposed states with spinon-Fermi surfaces
require the existence of such an unnaturally small pair-

ing scale. The case of α = 2 (“quadratic band touching”)
[41] would produce a finite density of states, although at
the expense of rendering the state marginally unstable
in the presence of interactions [42]. More importantly in
the present context, naive scaling suggests a thermal con-
ductivity κxx ∼ C vl ∼ T 3/2, where the mean-squared
velocity, v2 ∼ T . An interesting possibility is given in
[24], which consists of both a spinon-Fermi surface of
spin-1 fermionic excitations and a node with dispersion
ǫ(k) ∼ k3. This state also breaks time-reversal and in-
version, and it further requires weak disorder to exhibit
power-laws consistent with experiment.
As we have discussed, the spinon-Fermi surface is sta-

ble in the Z2 case only if time-reversal and inversion
are broken, and marginally unstable if only translation
and/or rotational symmetry is broken.[46] Otherwise,
even achieving marginal stability requires a larger gauge
group, such as Z4 [47].
One experimental signature of a chiral Z2 state is that

the breaking of time-reversal symmetry must occur at a
finite T transition (presumably in the Ising universality
class) [43], and such a transition should be observable in
any thermodynamic quantity. Existing specific heat data
show no sharp anomaly, but other thermodynamic quan-
tities, such as elastic moduli, might be more sensitive. In
the time-reversal breaking phase, various anomalous re-
sponse functions should be non-zero. For example, as we
have discussed, one expects a non-zero anomalous ther-
mal Hall effect, although it may be small. One also ex-
pects a spontaneous Kerr effect, which can be measured
with exquisite sensitivity [44]. When spin-orbit coupling
is taken into account, there should be small magnetic
fields which might be detectable in NMR or µSR, al-
though since these fields are proportional both to the
magnitude of the time-reversal symmetry breaking order
parameter and to the spin-orbit coupling, they may be
quite small.
The marginal instability of the time-reversal invariant

spin liquids with spinon-Fermi surfaces has possibly in-
teresting experimental implications; it could account for
the existence of small energy scales in the problem which
could depend sensitively on minor differences between
materials. For instance, it might account for the low
temperature gap inferred from thermal transport in κ-
ET [22] but not in dmit.
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