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While the coherent potential approximation (CPA) is the prevalent method for the study of
disordered electronic systems, it fails to capture non-local correlations and Anderson localization.
To incorporate such effects, we extend the dual fermion approach to disordered systems using the
replica method. The developed method utilizes the exact mapping to the dual fermion variables,
and includes inter-site scattering via diagrammatic perturbation theory in the dual variables. The
CPA is recovered as a zeroth-order approximation. Results for single- and two- particle quantities
show good agreement with a cluster extension of the CPA; moreover, weak localization is captured.
As a natural extension of the CPA, our method presents an alternative to existing non-local cluster
theories for disordered systems, and has potential applications in the study of disordered systems
with electronic interactions.

PACS numbers: 72.15.-v, 71.30.+h, 71.23.-k

I. INTRODUCTION

Disorder, due to doping, impurities or structural de-
fects, is universally present in electronic materials1–9. It
introduces scattering of charge carriers and significantly
affects their motion, and often plays a crucial role in
determining the transport properties of materials. The
most prominent example of such effects is the Ander-
son localization transition1, where the scattering of elec-
trons from random impurities prevents their propagation
across the sample. To properly describe this phenom-
ena, one needs to take into account quantum coherent
multiple scattering effects of the charge carriers.

The simplest and the most commonly used theoreti-
cal method to study disordered systems is the coherent
potential approximation (CPA)10–12. It is a single-site
self-consistent mean field approximation, in which the
real system is replaced by an effective medium described
by a local coherent potential (momentum independent
self-energy) which comprises the effects of the random
potential on the motion of the electrons. While the CPA
is a successful effective medium theory for the description
of one-electron properties, especially in realistic calcula-
tions of random alloys11–14, it is far from a complete the-
ory for disordered systems. For example, its single-site
nature leaves out disorder-induced non-local correlation
effects involving different scatterers, which are respon-
sible for finer details in the density of states. The most
significant drawback of the CPA is, however, its failure to
capture backscattering effects on the electron transport,
and hence, electron localization.

A natural extension of a single-site theory is to use a
finite sized cluster self-consistently embedded in the av-
eraged effective medium. Cluster extensions of the CPA
such as the Molecular CPA15 or the Dynamical Clus-
ter Approximation (DCA)16 provide systematic improve-
ments to the CPA, by capturing non-local correlations
within the cluster14. For example, in the DCA, the self-

energy acquires momentum dependence by taking into
account multiple scattering effects within the cluster. As
a result, the DCA captures fine structures and band tails
in the density of states. It systematically restores some
set of the maximally crossed diagrams known to be re-
sponsible for Anderson localization; however, it does not
capture the transition itself16.

The goal of this paper is to provide a systematic im-
provement upon the existing effective medium theories
for disordered electronic systems, which will satisfy the
following criteria: it recovers the CPA as a limiting case;
like the DCA, it provides systematic non-local correction
to the CPA; it properly describes the single-particle quan-
tities with detailed structures in the density of states;
unlike the CPA, it can provide finite vertex corrections
from backscattering processes to the conductivity in low
dimensions (d ≤ 2); and it can also be used to study
interacting disordered systems17.

The method we pursue here is the Dual Fermion (DF)
formalism 18–20, originally developed for interacting sys-
tems without disorder. It is complementary to existing
non-local cluster approaches. It treats local correlations
explicitly in the “impurity” solver, and non-local corre-
lations perturbatively. So, if a geometric series of rele-
vant diagrams is included, it has a potential to capture
localization. Here we present such a DF method for dis-
ordered non-interacting systems, as an alternative effec-
tive medium theory which provides important non-local
physics beyond the CPA.

The DF formalism is based on a set of auxiliary vari-
ables (dual fermions) which are introduced into the path
integral representation of the lattice partition function
via a canonical transformation18,21,22. It maps the lattice
onto an impurity embedded in a self-consistently deter-
mined DF lattice. The DF lattice problem is treated via
a perturbation theory involving the DF bare Green func-
tion, which is the difference between the lattice and impu-
rity Green functions, and the impurity full vertex as the
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effective bare DF interaction23. For systems with disor-
der, the DF mapping has to be done differently. In partic-
ular, as observables are calculated by taking derivatives
of the free energy, the DF formalism for the disordered
case needs to be constructed from the disorder-averaged
free energy 〈lnZ〉av instead of from the partition function
Z as in References 18,19.
In this paper we employ the replica method 24 to deal

with such averaging. We extend the DF method to
systems with disorder, and construct the DF mapping
directly on the Green function. We demonstrate that
our method shows remarkable agreement for the single-
particle Green function with the results obtained from
large-cluster DCA calculations. It successfully accounts
for weak localization in the conductivity with finite ver-
tex corrections. The developed scheme presents a power-
ful non-local alternative to the existing cluster extensions
of the CPA, with a broad venue of applications, including
the possibility of treating both electron-electron interac-
tions and disorder on equal footing, or even replacing the
CPA in electronic structure calculations.
This paper is organized as follows. Section II out-

lines the model and the details of the replica based dual
fermion formalism. Here we also discuss constraints the
replica limit introduces on the topology of the single and
two-particle diagrams. In section III we present and dis-
cuss our numerical results for the single-particle Green
function, which are benchmarked with the CPA and DCA
data. We then provide a conductivity calculation with
finite v ertex corrections to the CPA. In section IV we
present our conclusions and future perspectives.

II. FORMALISM

A. Replica method

We consider the Anderson model of non-interacting
electrons subjected to a random diagonal disorder po-
tential. It is described by the Hamiltonian

H = −
∑

<ij>

tij(c
†
i cj + h.c.) +

∑

i

vini, (1)

where tij is the electronic hopping probability (4t = 1

sets the unit of energy), c†i (ci) is the creation (annihi-
lation) operator for an electron on site i. The disor-
der is modeled by the local random potential vi, a site-
dependent random quantity, with a uniform (“box”) dis-

order distribution, p(vi) =
1

W
Θ(

W

2
− |vi|), where W

measures the strength of the disorder. We emphasize
that the DF formalism developed here can be equally
applied to other disorder distributions P (v).
The disorder averaged lattice Green function is given

by

〈Gk(wn)〉av = −
δ

δηwk

〈lnZ(vi, ηwk)〉av |ηwk=0, (2)

with 〈(...)〉av =
∫

dvp(v)(...) indicating a disorder aver-
aged quantity, and ηwk is a source field.
In the replica method, the relation

lnZ = limm→0
Zm − 1

m
is employed, with m being

the number of replicas16,25,26. Hence, the disorder-
averaged Green function of Eq. (2) can be rewritten in
terms of the m-th power of Z instead of a logarithm.
As discussed in References 16,25, taking the replica
limit, m → 0, eliminates closed loop diagrams in the
perturbation series expansion for the disorder averaged
Green function. As a result, it properly accounts for the
effect of the partition function in the denominator of the
unreplicated theory.
Using Grassmann functional integrals for quantum av-

eraging, and the replica method for disorder averaging,
we rewrite Eq. (2) as

〈Gk(w)〉av = − lim
m→0

1

m

δ

δηwk

〈
∫

Dc̄Dce−S[cα,c̄α]

〉

av

|
ηwk=0

,

(3)
where Dc ≡

∏

wkα dcαwk, and α is the replica index. The
lattice action

S =
∑

wkα

c̄αwk(−iwn+εk−µ+ηwk)c
α
wk+

∑

iα

vi

∫ β

0

dτnα
i (τ),

(4)
where wn = (2n + 1)πT are the Matsubara frequencies,
εk is the lattice bare disperssion, and µ is the chemical
potential. Averaging over the distribution p(v) in Eq. (4),
we obtain

S =
∑

wkα

c̄αwk(−iwn + εk −µ+ ηwk)c
α
wk +

∑

i

W (ñi), (5)

where W (ñi) is the elastic, effective interaction between
electrons of different replicas. It is local in space and non-
local in time, and may be expressed through cumulants
< vl >c as16

e−W (ñi) =

∫

dvip(vi)e
−vi

∑

α

∫

dτnα
i (τ)

= e
−
∑

∞

l=2

1

l!
<vl>c

(
∑

α

∫

dτnα
i (τ)

)l

. (6)

B. Dual fermion mapping

To construct the DF formalism for disordered elec-
tronic systems, we follow the original DF procedure18.
The DF mapping is performed in three major steps.
First, we introduce an effective single-site impurity ref-

erence problem by formally rewriting the original action
as

S =
∑

i

Simp[c
α, c̄α]−

∑

wkα

c̄αwk(∆w − εk − ηwk)c
α
wk, (7)

with an effective impurity action (containing the disorder
vertex, W (ñi))

Simp =
∑

αw

c̄αiw(−iw − µ+∆w)c
α
iw +W (ñi). (8)
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Here ∆w is a local, and yet unknown, hybridization func-
tion describing the interaction of the impurity with the
effective medium. As in the original DF formalism18, it is
assumed that all the properties of the impurity problem,
i.e., the single-particle Green function

gimp(w) = − lim
m→0

1

m

m
∑

α=1

∫

Dc̄Dc e−Simpcαw c̄
α
w, (9)

and the two-particle Green functions

χimp(w,w
′) = − lim

m→0

1

m

m
∑

α,β=1

∫

Dc̄Dc e−Simp×cαwc
β
w′ c̄

β
w′ c̄

α
w

(10)
can be calculated. In our case, these are local CPA quan-
tities. Our task is to express the original lattice Green
function and other properties via such quantities of the
CPA impurity problem. What has been accomplished so
far in Eq. (7) is that the local part of the lattice action
has been moved to the effective impurity.
In the second step of the DF procedure, we introduce

the auxiliary (“dual” fermions) degrees of freedom. In
doing so, we transfer the non-local part of the action in
Eq. (7) to the dual variables. As a result, the original real
fermions carry information about the local part only. The
transformation to dual fermions is done via a Gaussian
transformation of the non-local part of Eq. (7),

ec̄
α
wkA

2

wkc
α
wk =

A2
wk

λ2
w

∫

Df̄Dfe
−λw(c̄αwkf

α
wk+f̄α

wkc
α
wk)−

λ2
w

A2

wk

f̄α
wkf

α
wk

(11)
with A2

wk = (∆w − εk − ηwk), and λw yet to be specified.
With such a transformation, the lattice Green function

of Eq. (3) can be rewritten as

〈Gk(w)〉av = − lim
m→0

1

m

δ

δηwk

(∆w − εk − ηwk)

λ2
w

×

∫

Df̄Df e−
∑

wkα
λ2

w f̄α
wk(∆w−εk−ηwk)

−1fα
wk

×

∫

Dc̄Dc e−
∑

i
Si
site[c̄

α
i ,cαi ;f̄

α
i ,fα

i ]|
ηwk=0

.

(12)

in which the replicated action for site i is of the form

Si
site = Simp +

∑

αw

λw

(

c̄αiwf
α
iw + f̄α

iwc
α
iw

)

. (13)

In Eq. (12) the inter-site coupling is transferred to a cou-
pling between dual fermions.
In the third step of the DF mapping, we integrate out

the real fermions from the local site action Si
site for each

site i separately, i.e.,

∫

∏

αw

dc̄αi dc
α
i e

−Ssite[c̄
α
i ,c

α
i ;f̄α

i ,fα
i ]

= Zimpe
−
∑

wα
λ2

wgimp(w)f̄α
iwfα

iw−V
α,β

d,i
[f̄α

i ,f
β

i
], (14)

in which Zimp is the partition function for the replicated
impurity system. As in the clean case 18–20, formally
this can be done up to infinite order, which makes the
mapping to the DF variables exact. Choosing for conve-
nience λw = g−1

imp(w), the lowest-order of the replicated

DF potential V α,β
d,i [f̄α

i , f
β
i ] (non-antisymmetrized) reads

as

V α,β
d,i [f̄α

i , f
β
i ] =

1

2
γ(w,w′)f̄α

iw f̄
β
iw′f

β
iw′f

α
iw, (15)

where the CPA full vertex

γ(w,w′) = −
χimp(w,w

′)− χ0,imp(w,w
′)

gimp(w)2gimp(w′)2
, (16)

with χ0,imp(w,w
′) = gimp(w)gimp(w

′). In general 18–20,

the DF vertex V α,β
d,i [f̄α

i , f
β
i ] contains n-body correlation

terms introduced by disorder, but in the following discus-
sion we will limit ourselves to the leading quartic term
with four external DF fields only.
After taking the derivative with respect to the source

field ηwk, the Green function of Eq. (12) reads as

〈Gk(w)〉av = (∆w − εk)
−1+

〈Gd,k(w)〉av
(∆w − εk)

2
gimp(w)2

, (17)

where we define the averaged DF Green function as

〈Gd,k(w)〉av = − lim
m→0

1

m

m
∑

α′=1

∫

Df̄Df e−
∑

wkα
S0

d

× e
−
∑

iαβw
V

α,β

d,i
[f̄α

i ,f
β

i
]
fα′

wkf̄
α′

wk, (18)

and S0
d = f̄α

wk

[

−
(∆w − εk)

−1 + gimp(w)

g2imp(w)

]

fα
wk is the

non-interacting DF action.
Notice, that for the case of non-interacting dual

fermions when dual potential is zero, Eq. (17) reduces
to the CPA solution for the lattice Green function with
〈Gk(w)〉av = 1

g
−1

imp
+∆w−εk

. Hence, the CPA is the zeroth

order approximation within our framework.

C. Dual fermion diagrammatics

While the local CPA solution is recovered as a zero-
order approximation of the dual fermion potential, non-
local corrections to the CPA self-energy require higher or-

der corrections in V α,β
d,i . This is achieved with a standard

diagrammatic perturbation expansion of the interacting
part of the DF action in Eq. (18). The DF diagrams
are constructed similarly to the standard Matsubara di-
agrams, except that now the lines are renormalized DF
Green functions, and the vertex is approximated by the
full CPA vertex.
Notice that a non-trivial and crucial difference between

the disordered and clean cases is that here the interaction
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FIG. 1: (color online) The dual fermion self-energy diagrams
up to the third order in the perturbation series. The replica
limit imposes a constraint on the topology of the diagrams,
i.e., all diagrams with closed electron loops, e.g., diagrams
a′), b′) and c′ of Fig. 1) vanish in the replica limit. Here, γ
is the CPA full vertex. Diagram a) is local, and vanishes to
satisfy the DF self-consistency condition for determining the
hybridization function ∆w.

between replicas is off-diagonal, which puts certain con-
straints on the topology of the Green function graphs. In
particular, all diagrams with closed fermion loops vanish
(e.g., diagram a′), b′) and c′) of Fig. 1). This is because
each closed fermion loop contains one free replica sum-
mation which gives an extra factor of m in Eq. (18), and
thus equals to zero when m → 0 25.

III. RESULTS

A. Calculation procedure.

The calculation procedure we use here is similar to
the clean DF case18. It is composed of two ma-
jor steps. First, after solving the impurity (CPA)
part, we obtain the averaged impurity Green func-

tion gimp(w) =

∫

dvp(v)
1

iwn + µ−∆(w) − v
and cor-

responding impurity vertex γ. These quantities are used
in the second step to construct the input for the DF dia-
grammatic expansion. Here the DF self-energy is calcu-
lated self-consistently using standard diagrammatic per-
turbation theory. After this, the real lattice Green func-
tion from Eq. (17) is recalculated such that the non-local
correlations are now included. Next, the new hybridiza-
tion function ∆(w) is constructed to parametrize the im-
purity problem. This is repeated until self-consistency is
reached, namely

∑

k Gd,k(w) = 0, with all local diagrams
(e.g., diagram a) in Fig. 1) being zero.

B. Single-particle properties.

This section presents our main results. The di-
agram b) of Fig. 1 is the lowest non-vanishing
contribution to the dual self-energy, with

Σd(wn, k) = − T 2

N2
c

∑

q,k′ γ2
wn,wn

Gd(wn, k+q)Gd(wn, k
′+q)

× G(wn, k
′) It already provides some non-local correc-

tions to the CPA solution. However, for our analysis
we consider an infinite ladder diagram summation
to capture quantum coherence effects from multiple
impurity scatterings. In Fig. 2 we present results for the
imaginary part of the local single-particle Green function
of Matsubara frequency ImGloc(wn) obtained from a
fully self-consistent infinite ladder diagram summation,
in both the particle-hole (p-h) and the particle-particle
(p-p) channels for the DF self-energy.
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FIG. 2: (color online) The imaginary part of the local Mat-
subara Green function ImGr=0(wn) in d = 1 at T = 0.02
(left panel) and the total density of states (right panel) for
different disorder strengths: W = 0.25, 1.25, 2.0 (4t = 1). For
comparison, we present data obtained with the CPA, a finite
cluster DCA (Nc = 20) and the DF methods. Inclusion of
inter-site correlations leads to corrections to the CPA Green
function (left panel) and the appearance of additional struc-
tures at larger disorder in the total density of states (right
panel). In each case, the DF method captures the features of
the DCA density of states and is in nearly exact agreement
with DCA Green function.

To benchmark our results for the effect of non-local cor-
relations to the CPA, we compare our DF data with CPA
results and DCA results for cluster size Nc = 20. The
DCA method has been extensively described in the liter-
ature, so here we only briefly outline its the main points.
As mentioned already in the introduction, the DCA16,27

is a non-local mean-field theory where the original lat-
tice is mapped to the periodic cluster of size Nc = Ld

c
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= +

k + q

Γd

iωn

iωn
′

k

k′
+ q

k′

++
Γd

F d

F d

Γd

Γd,pp F d,pp

γ

FIG. 3: (color online) Irreducible DF p-h horizontal vertex
Γd calculated using the parquet equation with crossing con-
tributions from the p-h “vertical” and p-p channels. The fully
irreducible vertex is approximated by γ. Γd,pp and F d,pp are
the irreducible and full p-p vertices, respectively.

embedded in a self-consistently determined host. As a
result, the coarse-grained lattice Green function and self-
energy acquire a cluster resolved momentum dependence.
Hence, in the DCA, multiple inter-site scattering effects
which contribute nonlocal corrections to the self-energy
are treated explicitly within the cluster, while the long-
range effects are treated on a mean-field level. Notice,
that for Nc = 1, the DCA reduces to the local CPA.

Our results for the local Matsubara Green function
(left panel) and the local density of states (DOS) (right
panel) calculated at T = 0.02 in one-dimension d = 1
with real and dual fermion lattice size L = 100 (large
enough to reflect the thermodynamic limit) at various
values of disorder strength W = 0.25, 1.25, 2.0 are shown
in Fig. 2. The data for the local Matsubara Green func-
tion (left panel) of Fig. 2 show that inclusion of inter-site
correlations leads to corrections to the CPA Green func-
tion. Both the DF and DCA results show good agree-
ment at small and large disorder strength and differ from
the CPA data in qualitatively the same way. The local
DOS (right panel) also displays satisfactory agreement
between the DF and DCA results. Indeed, for weak dis-
order (W = 0.25), the results from the CPA, DCA and
DF calculations are practically the same. As the disor-
der strength increases, the non-local corrections become
important (with finite momentum dependence of the self-
energy) and the differences between the CPA and the DF
density of states are more pronounced. The DF success-
fully captures such correlations by producing additional
features14 which are also in good agreement with the
fully converged DCA result, especially for large disorder
strength (W = 2.0).

C. Two-particle properties: nonlocal vertex

corrections beyond CPA.

While the CPA provides a good qualitative description
of the one-electron properties, it fails to capture backscat-
tering effects on the transport of electrons23,28. In the
CPA, the two-particle vertex is local and does not de-
pend on the transfer momentum between incoming and
outgoing particles. Hence, the CPA conductivity has con-
tributions from the bare p-h bubble only. However, the
vertex corrections are crucial for a proper calculation of
the conductivity. In low dimensions, they lead to An-
derson localization23,28. Thus, for a proper description
of the disordered transport one needs to go beyond the
CPA level in order to incorporate these backscattering
contributions and spatial quantum coherence effects.
In our scheme, the full vertex is non-local, so we expect

to obtain finite vertex corrections describing “weak” lo-
calization effects3. As our formalism is best converged on
Matsubara frequencies, we calculate the low temperature
dc conductivity σdc as29,30

σdc =
β2

π
Λxx

(

q = 0, τ =
β

2

)

, (19)

where β = 1/kBT , the current-current correlation func-
tion Λxx(q = 0, τ) =< jx(q, τ)jx(−q, 0) > in x direction
with the current density operator j =

∑

k enkvx(k), and
the electron group velocity vx = ∂ε(k)/∂kx is obtained
from the bare dispersion ε(k). To get such lattice density-
density correlation functions, we need to calculate the DF
two-particle Green function 18,20 χd = −χd

0 − χd
0F

dχd
0,

with χd
0 = GdGd. For the disordered case, one has to re-

member that in the DF vertex F d all diagrams containing
closed loops are zero due to the replica constraint.
As usual, the full dual fermion vertex F d is ob-

tained from the Bethe-Salpeter equation20,23,31

F d = Γd + Γdχd
0F

d, where Γd is the irreducible
DF vertex in the p-h horizontal channel (c.f. Fig. 3).
To calculate this quantity, we use the parquet equation
which accounts for the crossing contributions from the
p-p and the “vertical” p-h channels23. Here, the fully
irreducible vertex is approximated by the impurity full
vertex γ. This procedure allows us to incorporate the
important maximally-crossed diagrams28 in our analysis.
The resulting full conductivity can be decomposed into
two parts, σ = σ0 + ∆σ, where σ0 is the mean-field
Drude conductivity coming from the bare bubble χ0,
and the second (two-particle contribution) part ∆σ
incorporates the vertex corrections.
Our results for the CPA and DF dc conductivity σdc

in dimensions d = 1 and d = 2 are presented in Fig. 4.
Including finite vertex corrections, which vanish in the
CPA, the data show that the disorder DF method is able
to capture weak localization effects leading to a net de-
crease of the conductivity. In d = 1, as the disorder
strength increases, the DF vertex corrections are more
pronounced, while in d = 2 they are much weaker, as
expected3. Hence, our disorder DF formalism is able to
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improve upon another drawback of the CPA, i.e., it can
incorporate the quantum coherence and backscattering
effects in the transport properties.

0 0.5 1 1.5 2 2.5
disorder strength, W

0

0.5

1

1.5

2

σ dc

CPA
DF

0 0.5 1 1.5 2
disorder strength, W

0

0.5

1

1.5

σ dc

CPA
DF

d=1 d=2

FIG. 4: (color online) Conductivity as function of the disorder
strength using the CPA and DF methods. Results are shown
for d = 1 and d = 2 at T = 0.02. Our results show that
vertex corrections incorporated in the DF approach allow one
to capture weak localization leading to the decrease of the
conductivity.

IV. CONCLUSIONS

We present and extension of the dual fermion ap-
proach18 for studying disordered electronic systems us-
ing the replica method. The developed disorder DF for-
malism is a non-local alternative to the existing cluster
effective-medium theories beyond the local CPA level.
In our approach, the nonlocal inter-site correlations are
treated via diagrammatic perturbation theory of dual
fermion system, and the CPA is recovered as a zero-
order approximation for the DF potential. Our results
for the single-particle Green function show that the dis-
order DF formalism provides significant corrections to
the CPA results. Comparing our data with finite-cluster
DCA results we find a rather good agreement. In par-
ticular, the disorder DF and DCA methods modify the

CPA single-particle Green function in qualitatively the
same fashion, and they both capture detailed structures
in the local density of states. While in the DCA the mul-
tiple inter-site scattering effects are treated only within
a finite cluster, our method allows one to treat spatial
correlations on all length scales by summing a geomet-
ric series of dual fermion diagrams in the perturbation
expansion.

Analysis of the two-particle quantities shows that our
disorder DF formalism can successfully capture nonlo-
cal vertex corrections, which are completely missed in
the CPA scheme. Hence, the presented DF formalism is
more appropriate for a proper description of transport in
disordered electronic systems. In particular, we find that
our method incorporates finite weak localization correc-
tions from backscattering and spatial quantum coherence
effects to the conductivity, the precursor effect of Ander-
son localization.
With all these findings, we believe that our DF disorder

scheme is a promising tool for studying a wide variety of
physical phenomena, including the interplay of weak lo-
calization effects and strong electron interactions, which
may be treated on equal footing in our method. Work in
this direction 17 and generalization to cluster cases32 is in
progress. As a possible candidate to replace CPA, its ap-
plication to study non-local effects in electronic structure
calculations is also envisioned.
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