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Recent theoretical and numerical evidence suggests that localization can survive in disordered
many-body systems with very high energy density, provided that interactions are sufficiently weak.
Stronger interactions can destroy localization, leading to a so-called many-body localization transi-
tion. This dynamical phase transition is relevant to questions of thermalization in extended quantum
systems far from the zero-temperature limit. It separates a many-body localized phase, in which
localization prevents transport and thermalization, from a conducting (“ergodic”) phase in which
the usual assumptions of quantum statistical mechanics hold. Here, we present numerical evidence
that many-body localization also occurs in models without disorder but rather a quasiperiodic po-
tential. In one dimension, these systems already have a single-particle localization transition, and
we show that this transition becomes a many-body localization transition upon the introduction
of interactions. We also comment on possible relevance of our results to experimental studies of
many-body dynamics of cold atoms and non-linear light in quasiperiodic potentials.

PACS numbers:

I. INTRODUCTION

In one-dimensional systems of non-interacting parti-
cles, an arbitrarily weak disordered potential generically
localizes all quantum eigenstates1,2. Such a system is
always an insulator, with a vanishing conductivity in
the thermodynamic limit. The question of how this pic-
ture is modified by interactions remained unclear in the
decades following Anderson’s original work on localiza-
tion3,4. Relatively recently, Basko, Aleiner, and Alt-
shuler have argued that an interacting many-body system
can undergo a so-called many-body localization (MBL)
transition in the presence of quenched disorder. At low
energy density and/or strong disorder, interactions are
insufficient to thermalize the system, so the system re-
mains a “perfect” insulator (i.e. with zero DC conduc-
tivity despited being excited); at higher energy density
and/or weaker disorder, the conductivity can become
nonzero and the system thermalizes, leading to a con-
ducting phase5,6.

The MBL transition is rather unique for several rea-
sons. First, in contrast to more conventional quantum
phase transitions7, this is not a transition in the ground
state. Instead, the MBL transition involves the local-
ization of highly excited states of a many-body system,
with finite energy density. This means that the transi-
tion differs from most metal-insulator transitions, which
are sharp only at zero temperature8. Furthermore, this
MBL transition is of fundamental interest in the context

of statistical mechanics. Local subsystems of interacting,
many-body systems are generically expected to equili-
brate with their surroundings, with statistical properties
of these subsystems reaching thermal values after suffi-
cient time. Studies of how this occurs in quantum sys-
tems have led to the so-called eigenstate thermalization
hypothesis (ETH), which states that individual eigen-
states of the interacting quantum system already encode
thermal distributions of local quantities9,10. However,
the many-body localized phase provides an example of a
situation in which the ETH is false, and the ergodic hy-
pothesis of quantum statistical mechanics is violated11,12.
Since the work of Basko et al., these intriguing aspects of
MBL have motivated many studies aimed at locating and
understanding this transition in disordered systems11–23.

On the other hand, it is important to note that single-
particle localization does not require disorder. In 1980,
Aubry and André studied a 1D single-particle tight-
binding model that omits disorder in favor of a potential
that is periodic, but with a period that is incommensu-
rate with the underlying lattice24. Harper had studied
a similar model much earlier, but he had focused on a
special ratio of hopping to potential strength25. Aubry
and André showed that this point actually lies at a local-
ization transition. It separates a weak potential phase,
where all single-particle eigenstates are extended, from
a strong potential phase, where all eigenstates are lo-
calized. In the 1980s and 1990s, physicists continued
to study this quasiperiodic localization transition for its
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own peculiarities and because it mimics the situation in
disordered systems in d ≥ 3, where there is also a single-
particle localization transition26–33. The AA model was
also actively investigated in the mathematical physics lit-
erature, because it involves a Schrödinger operator (i.e.
the “almost Mathieu” operator) with particularly rich
spectral properties. The contributions of mathematical
physicists put the initial work on Aubry and André on
more rigorous footing34–37. More recently, the AA model
has been directly experimentally realized in cold atom
experiments38,39 and also in photonic waveguides40. The
possibility of engineering quasiperiodic systems in the
laboratory has inspired new theoretical and numerical
work aimed at understanding the localization properties
of such systems and how they differ from those with true
disorder41–47.

1. Statement of the problem and summary of the results

In this paper, we ask whether there can be a MBL
transition in an interacting extension of the AA model.
More concretely, suppose we begin with a half-filled, one-
dimensional system of fermions or hardcore bosons in a
particular randomly chosen many-body Fock state, with
some sites occupied and others empty. Such a configu-
ration of particles is typically far from the ground state
of the system. Instead, by sampling the initial configu-
ration uniformly at random (i.e. without regard to its
energy content), we are actually working in the so-called
infinite temperature limit. If the particles are allowed to
hop and interact for a sufficiently long time, the standard
expectation is that the system should thermalize: that is,
all microscopic states that are consistent with conserva-
tion laws should become equally likely and local observ-
ables should thereby assume some thermal distribution48.
Can this expectation be violated in the presence of a
quasiperiodic potential? In other words, can the system
fail to serve as a good heat bath for itself? If so, can this
be traced to the persistence of localization even in the
presence of interactions?

The answer to both of these questions appears to be
“yes.” We use numerical simulations of unitary evolution
of a many-body quasiperiodic system to measure three
kinds of observables in the limit of very late times: the
correlation between the initial and time-evolved particle
density profiles, the many-body participation ratio, and
the Rényi entropy. Our observations are consistent with
the existence of two phases in the parameter space of our
model that differ qualitatively in ergodicity. At finite in-
terparticle interaction strength u and large hopping g,
there exists a phase in which the usual assumptions of
statistical mechanics appear to hold. The initial state
evolves into a superposition of a finite fraction of the total
number of possible configurations, and consequently, lo-
cal observables approximately assume their thermal val-
ues. This is the many-body ergodic phase. However, at
small hopping g, there is a phase in which particle trans-
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FIG. 1: The proposed phase diagram of our interacting
Aubry-André model at high energy density. Interactions con-
vert the localized and extended phases of the AA model into
many-body localized and ergodic phases and induce an expan-
sion of the many-body ergodic phase. The phases of the in-
teracting model differ qualitatively from their non-interacting
counterparts. The differences are explained in Section IV be-
low.

port away from the initial configuration is not strongly
enhanced by interactions. The system explores only an
exponentially small fraction of configuration space, and
local observables do not even approximately thermal-
ize. This is the many-body localized phase. Figure
1 presents a schematic illustration of the proposed phase
diagram. Although interactions induce an expansion of
the ergodic regime, the localized phase survives at finite
u, and consequently, there is evidence for a quasiperiodic
MBL transition58.

We should briefly comment on the novelty of our re-
sults. There has certainly been substantial previous work
on localization in many-body quasiperiodic systems. For
instance, Vidal et al.33 adapted the approach of Gia-
marchi and Schulz49 to study the effects of a perturbative
quasiperiodic potential on the low-energy physics of in-
teracting fermions in one dimension. Very recently, He
et al.45 studied the ground state Bose glass to super-
fluid transition for hardcore bosons in a 1D quasiperiodic
lattice. Our work differs fundamentally from these and
many other studies precisely because it focuses on non-
equilibrium behavior in the high-energy (infinite temper-
ature) limit and argues that a localization transition can
even occur in this regime.

2. Organization of the paper

We begin our study in Section II by introducing our
interacting extension of the standard AA model. Since
the MBL transition is a non-equilibrium phase transi-
tion, our goal is to follow the real-time dynamics. To
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simplify this task, we describe a method of modifying
the dynamics of our model, such that numerical integra-
tion of the new dynamics is somewhat easier than the
original problem. In Section III, we introduce the quan-
tities that we measure in our simulations and present the
numerical results. Then, in Section IV, we argue that
our data points to the existence of many-body localized
and many-body ergodic phases by proposing model late-
time states for each of these regimes and comparing to
the numerical results from Section III. Next, in Section
V, we extract estimates for the phase boundary from our
data, motivating the phase diagram in Figure 1. Finally,
we conclude in Section VI by summarizing our results,
drawing connections to theory and experiment, and sug-
gesting avenues for future extensions of our work.

We relegate two exact diagonalization studies to Ap-
pendix A. First, we examine the impact of our modified
dynamics upon the single-particle and many-body prob-
lems. Second, we study the many-body level statistics of
the interacting model. We find evidence for a crossover
between Poisson and Wigner-Dyson statistics, consistent
with the usual expectation in the presence of a localiza-
tion transition50.

II. MODEL AND METHODOLOGY

In this section, we motivate and introduce our model
and our numerical methodology for studying real-time
dynamics.

A. The “Parent” Model

We would like to consider one-dimensional lattice mod-
els of the following general form:

Ĥ =

L−1∑
j=0

[
hj n̂j + J(ĉ†j ĉj+1 + ĉ†j+1ĉj) + V n̂j n̂j+1

]
(1)

Here, ĉj is a fermion annihilation operator, and n̂j ≡ ĉ†j ĉj
is the corresponding fermion number operator. The three
terms in the Hamiltonian (1) then correspond to an on-
site potential, nearest-neighbor hopping, and nearest-
neighbor interaction respectively. For now, we leave the
boundary conditions unspecified. In 1D, the Hamiltoni-
ans (1) for hardcore bosons and fermions differ only in the
matrix elements describing hopping over the boundary.
With open boundary conditions, the Hamiltonians (and
consequently all properties of the spectra) are identical.

If we set V = 0 in the Hamiltonian (1) and take hj to
be genuinely disordered, we recover the non-interacting
Anderson Hamiltonian. If we then turn on a finite V = J ,
we obtain a model that is related to the spin models that
have been studied in the context of MBL12,19. Alterna-
tively, suppose we set V = 0 again and take:

hj = h cos(2πkj + δ) (2)

With a generic irrational wavenumber k and an arbitrary
offset δ, we obtain the non-interacting AA model24. For
our purposes, we would like to use an incommensurate
potential of the form (2), with h = 1 and g ≡ J

h and u ≡
V
h left as tuning parameters to explore different phases
of the model (1).

Before proceeding, we should briefly review what is
known about the single-particle AA model. With peri-
odic boundary conditions and δ = 0, this model is self-
dual24,41. The self-duality can be realized by switching
to Fourier space (cj = 1√

L

∑
q e

iqjcq) and then perform-

ing a rearrangement of the wavenumbers q such that the
real-space potential term looks like a nearest-neighbor
hopping in Fourier space and vice versa. On a finite lat-
tice of length L with periodic boundary conditions, such
a rearrangement is possible whenever the wavenumber
of the potential k = `

L such that ` and L are mutually
prime. The duality construction reveals that, if the AA
model has a transition, it must occur at g = 1

2 . In the
thermodynamic limit, there is indeed a transition at this
value for nearly all irrational wavenumbers k26. When
g > 1

2 , all single-particle eigenstates are spatially ex-
tended, and by duality, localized in momentum space;
when g < 1

2 , all single-particle eigenstates are spatially
localized, and by duality, extended in momentum space.
Exactly at g = 1

2 , the eigenstates are multifractal31,32.
The spatially extended phase of the AA model is charac-
terized by ballistic, not diffusive, transport24. Recently,
Albert and Leboeuf have argued that localization in the
AA model is a fundamentally more classical phenomenon
than disorder-induced Anderson localization, and that
the AA transition at g = 1

2 is most simply viewed as
the classical trapping that occurs when the maximum
eigenvalue of the kinetic (or hopping) term crosses the
amplitude of the incommensurate potential41.

B. Numerical Methodology and Modification of
the Quantum Dynamics

Probing the MBL transition necessarily involves study-
ing highly excited states of the system, and this precludes
the application of much of the extensive machinery that
has been developed for investigating low-energy physics.
Consequently, several studies of MBL have resorted to
exact diagonalization or other methods involving similar
numerical cost11,12,16. We too use a numerical method-
ology that scales exponentially in the size of the system.
However, in order to access longer evolution times in
larger lattices, we introduce a modification of the quan-
tum dynamics. This modification is inspired by a scheme
used previously by two of us in a study of classical spin
chains15. There, at any given time, either the even spins
in the chain were allowed to evolve under the influence
of the odd spins or vice versa. This provided access to
late times that would have been too difficult to access by
direct integration of the standard classical equations of
motion.
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By analogy, we propose allowing hopping on each bond
in turn. At any given time, the instantaneous Hamilto-
nian looks like:

Ĥm = LamJ(ĉ†mĉm+1 + ĉ†m+1ĉm)+

L−1∑
j=0

[hj n̂j + V n̂j n̂j+1]

(3)
We will specify the value of am in Section II.C below,
where we discuss our choice of boundary conditions. The
state of the system is allowed to evolve under this Hamil-
tonian for a time ∆t

L , and this evolution can be imple-
mented by applying the unitary operator:

Ûm = exp

(
−i∆t

L
Ĥm

)
(4)

One full time-step of duration ∆t consists of cycling
through all the bonds:

Û(∆t) =

L−1∏
m=0

Ûm (5)

Note that, in (3), the hopping is enhanced by L because
the hopping on any given bond is activated only once per
cycle, while the potential and interaction terms always
act. Therefore, the factor of L ensures that the average
Hamiltonian over a time ∆t has the form (1). The ad-
vantage of employing the modified dynamics is that the
Ĥm only couple pairs of configurations, so preparing the
Ûm reduces to exponentiating order VH two-by-two ma-
trices, where VH is the size of the Hilbert space. This is
a simpler task than exponentiating the original Hamilto-
nian (1), which can take time cubic in VH . This scheme
only constitutes a polynomial speedup over exact diag-
onalization, but that speedup can increase the range of
accessible lattice sizes by a few sites.

The modified dynamics raise several important is-
sues that should be discussed51. The periodic time-
dependence of the Hamiltonian induces so-called “multi-
photon” (or “energy umklapp”) transitions between
states of the “parent” model (1) that differ in energy by
ωH = 2π

∆t , reducing energy conservation to quasienergy
conservation modulo ωH . We need to question whether
this destroys the physics of interest: does the single-
particle Aubry-André transition survive, or do the multi-
photon processes destroy the localized phase?

We take up this question in Appendix A, where we
present a Floquet analysis of the single-particle and
many-body problems. We find that, for sufficiently
small ∆t, the universal behavior of the single-particle AA
model is preserved. At larger ∆t, multi-photon processes
can strongly mix eigenstates of the single-particle parent
model, increasing the single-particle density-of-states and
destroying the AA transition. In the spirit of the earlier
referenced work on classical spin chains15, our perspec-
tive in this paper is to identify whether MBL can occur
in a model qualitatively similar to our parent model (1).
Therefore, to explore dynamics on long time scales, we

avoid destroying the single-particle transition, but still
choose ∆t to be quite large within that constraint.

In Appendix A, we also examine the consequences
of our choice of ∆t for the quasienergy spectrum of
the many-body model. Our results suggest that multi-
photon processes do not, in fact, strongly modify the par-
ent model’s spectrum for much of the parameter range
that we explore in this paper59. This means that partial
energy conservation persists in our simulations despite
the introduction of a time-dependent Hamiltonian, and
we need to keep this fact in mind when we analyze our
numerical data below.

Finally, we note in passing that several recent stud-
ies have focused on the localization properties of time-
dependent models52–54, including one on the quasiperi-
odic Harper model55, but that the intricate details of this
topic are somewhat peripheral to our main focus.

C. Details of the Numerical Calculations

In studies of the 1D AA model, it is conventional to
approach the thermodynamic limit by choosing lattice
sizes according to the Fibonacci series (L = . . . 5, 8, 13,
21, 34 . . .) and wavenumbers for the potential (2) as ra-
tios of successive terms in the series26. These values of k
respect periodic boundary conditions while converging to
the inverse of the golden ratio 1

φ = 0.618033 . . .. For any

finite lattice, the potential is only commensurate with the
entire lattice (since successive terms in the Fibonacci se-
ries are mutually prime), and the duality mapping of the
AA model is always exactly preserved. For our purposes
however, this approach offers too few accessible system
sizes and complicates matters by generating odd values
of L.

Instead, we found empirically that finite-size effects are
least problematic if we use exclusively even L, always
keep the wavenumber of the potential fixed at k = 1

φ ,

and set:

am = 1− δm,L−1 (6)

in equation (3), thereby forbidding hopping over the
boundary60. Note that, with these boundary conditions,
our model describes hardcore bosons as well as fermions.
The bosonic language maintains closer contact with cold
atom experiments38; the fermionic language is more in
keeping with the MBL literature5,11.

Using the approach described above, we have simu-
lated systems up to size L = 20 at half-filling. Our
simulations always begin with a randomly chosen con-
figuration (or Fock) state, so that the initial state has no
entanglement across any spatial bond in the lattice (i.e.
each site is occupied or empty with probability 1). Ex-
cept in the exact diagonalization studies of Appendix A,
we always set ∆t = 1. We integrate out to tf = 9999 and
ultimately average the evolution of measurable quantities
over several samples, where a sample is specified by the
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L N VH samples

8 4 70 500

10 5 252 500

12 6 924 500

14 7 3432 250

16 8 12870 250

18 9 48620 250

20 10 184756 50

TABLE I: For the various simulated lattice sizes L, the parti-
cle number N , the configuration space size VH , and the num-
ber of samples used in the numerics. Note that we always
work at half-filling.

choice of the initial configuration and offset phase to the
potential (2). The sample counts used in the numerics
are provided in Table I.

III. NUMERICAL MEASUREMENTS

We now introduce the quantities that we measure to
characterize the different regimes of our model. We
also present the numerical data along with some qual-
itative remarks about the observed behavior. However,
we largely defer quantitative phenomenology and mod-
elling of the data to Section IV.

A. Temporal Autocorrelation Function

One signature of localization is the system’s retention
of memory of its initial state. Since we simulate the re-
versible evolution of a closed system, the quantum state
of the entire system retains full memory of its past. Nev-
ertheless, we may still ask if the information needed to
deduce the initial state is preserved locally or if it prop-
agates to distant parts of the system. A diagnostic mea-
sure with which to pose this “local memory” question is
the temporal autocorrelator of site j:

χj(t) ≡ (2〈n̂j〉(t)− 1)(2〈n̂j〉(0)− 1) (7)

Here, the angular brackets refer to an expectation value
in the quantum state. This single-site autocorrelator may
be averaged over sites and then over samples (as defined
in Section II.C) to obtain:

χ(t;L) ≡

 1

L

L−1∑
j=0

χj(t)

 (8)

The sample average is indicated here with the large
square brackets. Typically, to reduce the effects of noise,
we also average over a few time steps within each sam-
ple (i.e. perform time binning) before taking the sample
average.

We can discriminate three qualitatively different be-
haviors of χ vs. t in our interacting model. Figure 2
shows examples of each of these behaviors at interac-
tion strength u = 0.32. Panel (a) is characteristic of
the low g regime, where the autocorrelator stays invari-
ant over several orders-of-magnitude of time, and there is
no statistically significant difference between time series
for different L. At higher g, as in panel (b), the time
series show approximately power-law decay culminating
in saturation to a late-time asymptote. For the largest
systems, the power law is roughly consistent with the dif-
fusive expectation of t−

1
2 decay. The late-time asymptote

decays with L (as expected from energy conservation61 )
suggesting that the power-law decay may continue indef-
initely in the thermodynamic limit. Surprisingly, at still
larger g, there is a third behavior, exemplified by panel
(c). For the largest lattice sizes, the power-law era is not
followed by saturation but by an extremely rapid decay.
The rapid decay is most evident in the large g, large u
regime, where the energy density of the parent model (1)
is relatively large. This implies that this behavior might
be tied to the multi-photon processes induced by peri-
odic modulation of the Hamiltonian; correspondingly, it
also implies that, for fixed g and u, we might be able to
induce the appearance of the rapid decay by increasing
∆t. We have tested this numerically, and the results sup-
port the connection to the energy non-conserving multi-
photon processes. This suggests that there are only two
distinct regimes of the parent model represented in Fig-
ure 2, differentiated by the L dependence of the asymp-
totic value of the autocorrelator. We will proceed under
this working assumption.

The difference between these two regimes is brought
out more clearly in Figure 3. We focus on a late time t =
ttest and probe χ(ttest;L) as a function of g for different
lattice sizes. Panels (a)-(c) show data for u = 0, 0.04,
and 0.64 respectively. All the panels show a “splaying”
point of the χ vs. L curves, separating a high g regime
in which χ(ttest;L) decays with L from a low g regime in
which it does not. The value of g at this feature decreases
monotonically with u. Most importantly, in each case,
this value is robust to changing ttest; if we halve ttest from
the value that appears in Figure 3, the feature appears
at approximately the same value of g. This property
of the data is very fortunate: in Section IV.C below,
we will use the splaying feature in these plots to put a
numerical lower bound on the transition value of g for
different interaction strengths. Since time scales get very
long near the transition, it is difficult to simulate out to
convergence in this regime. Nevertheless, the fact that
the value of g at the splaying feature remains fixed in time
implies that we can deduce the phase structure from our
finite-time observations.
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FIG. 2: Three characteristic time series for the temporal auto-
correlator with u = 0.32 and ∆t = 1. In each panel, we show
time series for a particular value of the hopping g. Only a
few representative error bars are displayed in each time series.
The legend refers to different lattice sizes L. The reference

lines in panels (b) and (c) show diffusive t−
1
2 decay.

B. Normalized participation ratio

One of the commonly used diagnostics for studying
single-particle localization is the inverse participation ra-
tio (IPR). This quantity is intended to probe whether
quantum states explore the entire volume of the system
and is often defined as the sum over sites of the amplitude
of the state to the fourth power:

∑
j |ψj |4. Typically, the

IPR is inversely proportional to the localization length in
a single-particle localized phase and decays to zero as the
inverse of system volume in an extended phase.

We now describe how this quantity can be fruitfully
exploited in the many-body context. Let c denote some
specific configuration of N particles in L sites. Then,
we can write the state of the system in the configuration
basis as:

|Ψ(t)〉 =
∑
{c}

ψc(t) |c〉 (9)
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FIG. 3: The value of χ in the latest time bin (t =
9980 . . . 9999) plotted against g. In panels (a)-(c), u = 0,
0.04, and 0.64 respectively. The legend refers to different lat-
tice sizes L.

The configuration-basis IPR is simply:

P (t;L) ≡

[∑
c

|ψc(t)|4
]

(10)

where the square brackets, as usual, denote a sample av-
erage. Interpreting P (t;L) as the inverse of the number
of configurations on which |Ψ(t)〉 has support, we now
define the normalized participation ratio (NPR):

η(t;L) ≡ 1

P (t;L)VH
(11)

The quantity η(t;L) then represents the fraction of con-
figuration space that the system explores. We expect
η(t;L) to be independent of L at late times in the er-
godic phase. In the many-body localized phase, we ex-
pect η(t;L) to decay exponentially with L.

In Figure 4, we plot η(ttest;L) vs. g for u = 0, 0.04, and
0.64. The figure reveals an important difference between
the non-interacting and interacting models. At low g,
both with and without interactions, η decays exponen-
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FIG. 4: The value of η in the latest time bin (t =
9980 . . . 9999) plotted against g. In panels (a)-(c), u = 0,
0.04, and 0.64 respectively. The legend refers to different lat-
tice sizes L. See equation (11) for the definition of η. In the
ergodic phase η ≈ 0.5.

0.2 0.4 0.6 0.8
−0.5

0

0.5

g

g

tbin = 9980−9999

0 200 400 600 800 1000

0.35

0.4

0.45

0.5

0.55

g

<r
n>

 

 

0
0.04
0.16
0.32
0.64

FIG. 5: Estimates of κ from a fit of η ∝ e−κL in the latest
time bin (tbin = 9980 − 9999). The legend refers to different
values of the interaction strength u.

tially with L:

η ∝ exp(−κL) (12)

with κ > 0. More surprisingly, η also decays with L at
large g in the non-interacting case; all that happens is
that κ becomes essentially independent of g. With even
small interactions however, η becomes system-size inde-
pendent in the large g regime, following our ansatz for an
ergodic phase. We bring out this point more clearly in
Figure 5, in which we extract estimates for the decay co-
efficient κ for various values of the interaction strength.
Thus, the extended phase of the non-interacting AA
model appears to be a special, non-ergodic limit.

Before proceeding, we should caution that, in panels
(b) and (c) of Figure 4, the collapse at high g looks very
appealing because of the use of a semilog plot and would
not be so striking on a normal scale. The axes have
been chosen to highlight the exponential scaling at low
g, which would not be as apparent if we simply plotted
η vs. g. However, regarding the absence of perfect col-
lapse at high g, note that the raw data for the IPR differ
by several orders-of-magnitude for different values of the
lattice size L. Given this, the coincidence of the order-of-
magnitude of η for different values of L is already a good
indication of the proposed scaling, and some corrections
to this scaling should be expected given the modest ac-
cessible system sizes.

C. Rényi Entanglement Entropy

Unlike the normalized participation ratio, which pro-
vides a global characterization of the time-evolved state,
bipartite entanglement is arguably a better proxy for
whether a part of the system can act as a good heat
bath for the rest. In the many-body ergodic phase, we
expect the bipartite entanglement entropy to be a faith-
ful reflection of the thermodynamic entropy. This im-
plies an extensive entropy, pinned to its thermal infinite
temperature value throughout the phase62. In contrast,
in the many-body localized phase, we expect an exten-
sive but subthermal entanglement entropy. This expec-
tation is consistent with the results of three recent papers
that focus on the behavior of entanglement measures in
the many-body localized phase of the disordered prob-
lem13,19,20 . These papers also study the time dependence
of the entropy beginning from an unentangled product
state. In the many-body localized phase, this growth is
found to be slow, generically logarithmic in time. Since
our model lacks disorder altogether, it may be interest-
ing to explore the entanglement dynamics here as well.
In what follows, we comment on the dynamics, but we
primarily use the late-time entanglement entropy as yet
another tool to help distinguish between the many-body
localized and ergodic phases.

Let subsystem A refer to lattice sites 0, 1, . . . L2 − 1,
and let subsystem B refer to the remaining sites in the
chain. We can compute the reduced density matrix of
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subsystem A by beginning with the full density matrix
ρ̂(t) = |Ψ(t)〉 〈Ψ(t)| and tracing out the degrees of free-
dom associated with subsystem B:

ρ̂A(t) ≡ TrB{ρ̂(t)} (13)

The sample-averaged order-2 Rényi entropy of subsystem
A is then given by:

S2(t;L) ≡
[
− log2

(
TrA{ρ̂A(t)2}

)]
(14)

Both S2 and the standard von Neumann entropy are ex-
pected to attain the same values in the ergodic phase;
we choose to focus on the former to save on the compu-
tational cost of diagonalizing the reduced density matrix
(13).

Our first task is to examine whether the putative local-
ized phase of our model exhibits the same behavior that
was observed with tDMRG13,19. In panel (a) of Figure
6, we focus on a low value of g and plot S2 vs. ln(t)
for L = 10 lattices. At very early times, the time series
all tend to coincide, reflecting the formation of short-
range entanglement at the cut between the subsystems.
Afterwards, the non-interacting time series saturates for
several orders-of-magnitude of time, while the interacting
time series show behavior that is consistent with logarith-
mic growth. In order to clearly establish the saturation
that follows the slow growth, we have had to focus on
small lattices. Panel (b) of Figure 6 shows data for large
g. Here, the most striking difference between the non-
interacting and interacting models lies in the saturation
value of the entropy: the interacting model is substan-
tially more entangled, but the saturation value does not
appear to depend on the value of u. We will see below
that this is another indication that thermalization only
occurs in the interacting, large g regime.

Figure 7 shows late-time values of the Rényi entropy
density plotted against the tuning parameter g. We first
focus on the high g regime. In panel (a), u = 0, and
S2(ttest;L) ∝ L for large g. However, the entropy den-
sity is less than 1

2 , which is the thermal result when the
system has ergodic access to all configurations consistent
with particle number conservation. The situation is dra-
matically different in panels (b) and (c), where u = 0.04
and 0.64 respectively. At high g, the entropy actually
looks superextensive. This is just a finite-size effect, be-
cause the entropy is well fit to a linear growth of the
form:

S2(ttest;L) = mL− Sdef (15)

where Sdef is a constant deficit, typically around 1.15 −
1.3. In Figure 8, we show that the slope m ≈ 1

2 at large g
in the interacting problem. This implies that the entropy
is thermal in the L → ∞ limit, where the deficit Sdef is
negligible.

Now, we turn to the low g regime, where all entangle-
ment formation is local to the cut between the subsys-
tems. Without interactions, the off-diagonal elements in
the reduced density matrix (13) typically contain only a
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(b)
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FIG. 6: Example time series of the Rényi entropy for two val-
ues of the tuning parameter g. The legend refers to different
values of the interaction strength u. Panel (a) shows data for
L = 10 lattices at g = 0.2. Panel (b) shows data for L = 20
lattices at g = 1.1. In the localized regime, we need to use
smaller lattices to see convergence Renyi entropy.

few frequencies originating from localized single particle
orbitals immediately adjacent to the cut. The number
of relevant orbitals is finite in L. As a result, the off-
diagonal elements cannot fully vanish, and the reduced
density matrix never thermalizes. The resulting entan-
glement entropy is independent of L as shown in the inset
of panel (a). In the interacting problem, while the or-
bitals immediately adjacent to the cut still have roughly
the same frequencies, the “spectral drift” (i.e. the spread
of these lines due to sensitivity to the configuration of dis-
tant particles) allows for a much larger number of distinct
and mutually incoherent contributions to offdiagonal ele-
ments of the reduced density matrix. These off-diagonal
elements can dephase more efficiently, leading to a par-
tial thermalization. This is the mechanism that likely
underlies the extensive but subthermal entropy observed
by Bardarson et al.19. For small L, our numerical results
in the low g regime agree well with this expectation. For
larger L, the slow dynamics of the entropy formation
makes it difficult to observe saturation, both in our work
and in the tDMRG study of Bardarson et al.

If the entropy eventually becomes extensive for all L,
then the “crossing” feature that is present in panels (b)
and (c) of Figure 7 would become a “splaying” feature,
with the entropy density independent of L at small g. In
any case, an interesting property of the data is that the
values of g at the crossing features of the S2(ttest;L) vs.
g plots are consistent with the locations of the splaying
features in the corresponding χ(ttest;L) vs. g plots of
Figure 3. This seems to be the case for all u. Thus, these
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FIG. 7: The value of S2
L

at t = 9999 plotted against g. In
panels (a)-(c), u = 0, 0.04, and 0.64 respectively. The legend
refers to different lattice sizes L. In panel (a), the inset plot
shows S2 vs. g in the low g regime. In panels (b) and (c), the
insets show S2

L
vs. g for low L in the low g regime.
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FIG. 8: The estimated slope of S2 vs. L at late times as
a function of g. The legend refers to different values of the
interaction strength u.

features may be useful in locating the transition.

IV. MODELING THE MANY-BODY ERGODIC
AND LOCALIZED PHASES

Above, we presented numerical evidence that our in-
teracting AA model contains two regimes that show qual-
itatively distinct behavior of the autocorrelator, normal-
ized participation ratio, and Rényi entropy. Next, we
will propose and characterize model quantum states that
qualitatively (and sometimes quantitatively) reproduce
the numerically observed late-time behavior in the two
regimes. These model states expose more clearly why
the two regimes of our model are appropriately identified
as many-body ergodic and localized phases.

A. The Many-Body Ergodic Phase

To model the behavior of the putative ergodic phase,
we begin by writing down a generic model state in the
configuration basis:

|Φ〉 =
∑
{c}

φc |c〉 =

L
2∑

n=0

∑
{cA,cB}

φ
(n)
AB

∣∣∣c(n)
A , c

(n)
B

〉
(16)

Here, the c refer to configurations of the full chain,
whereas the cA and cB refer to configurations of the sub-
systems A and B, as defined in Section III.C above. The
superscripts on the configurations and expansion coeffi-
cients refer to the number of particles in subsystem A.
Writing the state in terms of the subsystem configura-
tions will be useful shortly, but for now we focus on the
statistical properties of the amplitude φc. We assume
that this amplitude is distributed as a complex Gaussian
random variable:

p(φ) =
1

2πσ2
exp

(
−|φ|

2

2σ2

)
(17)

Within this distribution, 〈|φ|2〉 = 2σ2 and 〈|φ|4〉 = 8σ4.
From these average values, it is possible to deduce that:

σ =
1√
2VH

(18)

for normalization and that the IPR is PΦ = 2
VH

. This, in
turn, implies:

ηΦ =
1

2
(19)

This result is reproduced quantitatively in the numerics
in Figure 4.

Next, suppose we compute the reduced density matrix
of subsystem A in the state |Φ〉:

ρ̂A =
∑
n

∑
{cA,cA′ ,cB}

φ
∗(n)
AB φ

(n)
A′B

∣∣∣c(n)
A

〉〈
c
(n)
A′

∣∣∣ (20)
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To find the Rényi entropy, we need to compute the trace
of the square of this operator:

TrA{ρ̂2
A} =

∑
n

∑
{cA,cA′ ,cB ,cB′}

φ
∗(n)
AB φ

(n)
A′Bφ

∗(n)
AB′φ

(n)
A′B′

(21)
When we average over our distribution of amplitudes
(17), only the coherent terms survive63:

TrA{ρ̂2
A} ≈

∑
n

∑
{cA,cB ,cB′}

〈|φ(n)
AB |

2|φ(n)
AB′ |2〉

+
∑
n

∑
{cA,cA′ ,cB}

〈|φ(n)
AB |

2|φ(n)
A′B |

2〉

−
∑
n

∑
{cA,cB}

〈|φ(n)
AB |

4〉 (22)

The final term accounts for the double counting of terms
where cA = cA′ and cB = cB′ simultaneously. We now
introduce the notation:

γ(P,Q) =
P !

Q!(P −Q)!
(23)

and evaluate the expectation values in equation (21) to
obtain:

TrA{ρ̂2
A} ≈

2

V 2
H

∑
n

γ

(
L

2
, n

)3

(24)

Finally, using a Stirling approximation to the combina-
tion function and a saddle-point approximation for the
sum, we find the entropy:

S2,Φ ≈
L

2
− log2

(
4√
3

)
≈ L

2
− 1.2 (25)

This is the same form observed in the numerics (15), and
the deficit Sdef lies in the observed range. Asymptotically
in L, the entropy (25) is maximal, and this is exactly the
expected behavior when the particle number thermalizes.

There is an important caveat to note here: we have ar-
gued above that, if multi-photon processes do not com-
pletely destroy energy conservation, then this can lead
to relic autocorrelations at late times. This implies that
the assumption of independent random amplitudes can-
not be exactly correct on a finite lattice. However, the
numerically-observed relic autocorrelations decay with L,
suggesting that our assumptions get better as the system
size grows. Therefore, in the thermodynamic limit, this
phase is truly thermal.

B. The Many-Body Localized Phase

Our model for the time-evolved state in the localized
regime is founded upon the following intuition: there ex-
ists a length scale ξ, which is analogous to the single-
particle localization length and beyond which particles

are unlikely to stray from their positions in the initial
state. Then, if we partition our lattice of length L into
blocks of size ξ, exchange of particles between blocks
is less important than rearrangements of the particles
within each block. Consequently, the total number of
configurations accessed by the state of the full system
is approximately the product of the number of configu-
rations accessed within each block. This multiplicative
assumption should be very safe in a localized phase. We
additionally assume that, within each block, the dynam-
ics completely scramble the particle configuration. If a
certain block of length ξ contains n particles in the initial
state, then the time-evolved state contains equal ampli-
tude for each of the possible ways of arranging n particles
in those ξ sites. In keeping with our numerical protocol,
we randomly select the initial state from the space of all
possible Fock states of a certain global particle number.
Then, a block of ξ sites contains n particles with proba-
bility:

w(ξ, n) =
γ(ξ, n)

2ξ

[
1 +O

(
ξ2

L

)]
(26)

We will consider the limit L � ξ � 1, where we can
approximate the probability by the first term. The as-
sumptions proposed above motivate writing down a state
of the form:

|Λ〉 =
1√
M

∼∑
{c1,...cL

ξ
}

z
(
c1, . . . cL

ξ

) ∣∣∣c1, . . . cL
ξ

〉
(27)

where the tilde on the sum indicates that it should only
run over configurations that are consistent with the initial
distribution of particles among the blocks. The factors z
are complex phases which depend upon the configuration,
and M is a normalization which is equal to the total
number of configurations represented in the state |Λ〉.

Before beginning our analysis of the state |Λ〉, we
should note that, in contrast to our calculations in the
ergodic phase, our goal in the localized regime will be
to qualitatively tie the numerically observed large L be-
havior to the existence of the length scale ξ. Unfortu-
nately, we cannot achieve the quantitative accuracy of
the ergodic model state |Φ〉 with the localized toy-model
described above.

We begin by estimating the autocorrelator between the
initial state and the model time-evolved state |Λ〉. A non-
zero autocorrelator emerges, because each block is only
at half-filling on average. Fluctuations away from half-
filling (in either direction) yield a positive typical value of
the autocorrelator within a block. Indicating an average
over the distribution (26) with an overline, we find the
block value χblock ≈ 1

L . This is also the average value for
the whole system when L� ξ:

χΛ ≈
1

ξ
(28)

Next, to estimate the IPR, we need to compute the nor-
malization factor M . We begin by estimating the number
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of explored configurations in each block. The average of
the logarithm of the number of explored configurations
within a block is:

ln(Mblock) ≈ ln

(√
2

πξ
2ξ
)
− 1

2
(29)

Then, using lnM ≈ L
ξ lnMblock, we can estimate M itself

as:

M ≈ elnM ≈ 2L
(
πeξ

2

)− L
2ξ

(30)

Using this normalization, we can estimate the NPR ηΛ:

ln ηΛ ≈ −
L

2ξ
ln

(
πeξ

2

)
+

1

2
lnL+

1

2
ln
(π

2

)
(31)

This qualitatively agrees with the numerically observed
behavior (12) up to subleading corrections, and in the
large-L limit:

κ ≈ 1

2ξ
ln

(
πeξ

2

)
(32)

Note that equations (28) and (32) imply a relationship
between the scaling behaviors of χ and κ in the localized
regime. This relationship is not reflected in our numerical
data, in part because we cannot truly attain the limit
L � ξ � 1. The numerically computed value of κ, for

example, can contain finite-size corrections of order ln(L)
L

or ξ2

L . Also, we must keep in mind that the state |Λ〉
is just a toy model that does not capture fine details of
the time-evolved states in this regime. Thus, we must be
content with reproducing the qualitative behavior of each
measurable quantity individually, without expecting the
relationships between these quantities in |Λ〉 to be exactly
reproduced in the data.

We now turn to the Rényi entropy, the quantity which
most strikingly distinguishes between the non-interacting
and interacting localized phases. To examine this quan-
tity, we revert to partitioning the system in half, instead
of into blocks of size ξ. As long as ξ � L

2 , the assump-
tions that we made above about the blocks of size ξ hold
even better for the subsystems A and B. For example, we
can assume that there are “explored sets” of MA config-
urations in subsystem A and MB configurations in sub-
system B respectively, with M = MAMB . We consider
computing the reduced density matrix ρ̂A, exactly as in
equation (20) above. If the off-diagonal elements of this
density matrix remain perfectly phase-coherent, it can
easily be shown that Scoh

2,Λ = 0. In reality, there will be a
local contribution to the entropy from particles straying
over the cut between subsystems A and B. This mim-
ics the situation in non-interacting localized phases. Al-
ternatively, suppose that dephasing is sufficiently strong
that we can proceed by analogy with the ergodic phase,
beginning with equation (21) and keeping only coherent
terms as in equation (22). Thereafter, the calculation for

the model localized state |Λ〉 differs from the calculation
for |Φ〉. We need to consider the statistics of the con-
figuration probabilities |λAB |2. For |λAB |2 6= 0, we need
the configurations on both subsystems to lie within their
respective explored sets; this occurs in subsystem A, for
example, with probability MA

γ(L2 ,n)
. This reasoning leads

to the “dephased” entropy:

Sdp
2,Λ ≈ − log2

(
1

MA
+

1

MB
− 1

MAMB

)
≈ − log2

(
2√
M
− 1

M

)
≈ 1

2

[
1− 1

2ξ
log2

(
πeξ

2

)]
L− 1 (33)

where we have additionally made the approximation that
typically MA ≈MB ≈

√
M . With only partial loss of co-

herence, the entropy would lie between these two limiting

cases: Scoh
2,Λ ≤ S2,Λ ≤ Sdp

2,Λ. Thus, dephasing alone, with-
out additional particle transport, can induce an extensive
entropy.

Indeed, our numerics support the view that the main
difference between the non-interacting and many-body
localized phases is the amount of dephasing. There does
not seem to be a qualitative difference in particle trans-
port. The particle configuration stays trapped near its
initial state, even with interactions, and the system does
not thermalize.

V. TRACING THE PHASE BOUNDARY

in this section, we use the data from Section III to
extract estimates of the phase boundary between the lo-
calized and ergodic phases. Estimating the location of
the MBL transition is extremely challenging. Given the
numerically accessible lattice sizes, satisfying finite-size
scaling analyses are difficult to perform. Nevertheless,
rough estimates have been made in the disordered prob-
lem11,12,16,21, so we will now attempt to extract an ap-
proximate phase boundary for our model.

We first consider the autocorrelator. Above, we noted
the “splaying” feature in the late-time plots of the auto-
correlator vs. g. The value of g at this feature can be
taken as a lower bound for the transition. For g slightly
greater than this value, it is possible that χ only decays
with L because ξ > L for accessible lattice sizes. Consid-
ering two lattice sizes (L = 16 and 20) and finding when
their values of χ deviate, we find the values reported in
the first column of Table II.

Next, we consider the fitting parameter κ in equation
(12). In Figure 5, we see that there is a region where
κ < 0 for finite interaction strength. Since η ≤ 1, finite-
size effects are clearly dominating the estimate in this
region. We can use the value of g where κ is minimal to
track how this region moves as u is varied. This yields
the second column of the table.
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u χ κ m

0.04 0.35 0.45 0.45

0.16 0.30 0.40 0.40

0.32 0.25 0.40 0.40

0.64 0.25 0.40 0.35

TABLE II: Bounds or estimates of the transition value of gc at
various values of u and based on various measured quantities.
The column titled χ gives a lower bound on the transition
value of g based on the autocorrellator. The remaining two
columns give estimates of gc based on κ and m, as defined in
Sections III.B and III.C respectively. See Section V for the
reasoning behind the estimates. All values carry implicit error
bars of ±0.05 as that is the discretization of our simulated
values of g. This error bar should be interpreted, for instance,
as the error on our estimate of the location of the maximum
value of m. The error on our estimate of gc is, of course, much
larger.

Finally, a similar approach can be applied to extract
estimates of gc from the fits (15). There exists a region
where m > 1

2 , but this is mathematically inconsistent in
the thermodynamic limit. Therefore, if we find the value
of g that maximizesm, we can again estimate the location
of the region dominated by finite-size effects, yielding the
final column of Table II.

The estimates of the transition value gc in Table II
were obtained using data for the latest time that we sim-
ulated (the time bin tbin = 9980 . . . 9999 for χ and κ and
t = 9999 for m). However, we have also estimated gc for
data obtained at a half and a quarter of this integration
time, finding consistent results. Thus, the general phase
structure of the model is invariant to changing the obser-
vation time, even though not all measurable quantities
have converged to their asymptotic values. Consolidat-
ing the information from the estimates in Table II, we
propose that the phase diagram qualitatively resembles
Figure 1.

Before proceeding, it is worth noting that our rough
estimates of the phase boundary do not make assump-
tions regarding the character of the MBL transition (i.e.
whether it is continuous or first order). In fact, some of
our plots (e.g. panel (c) of Figure 7) hint at the possi-
bility of a discontinuous change in S2 as a function of g
in the thermodynamic limit. We are not aware of any
results that rule out a first-order MBL transition, so we
must keep this possibility in mind.

VI. CONCLUSION

Recently, evidence has accumulated that Ander-
son localization can survive the introduction of suffi-
ciently weak interparticle interactions, giving rise to
a many-body localization transition in disordered sys-
tems5,6,11,12,21. The MBL transition appears to be a
thermalization transition: in the proposed many-body
localized phase, the fundamental assumption of statisti-

cal mechanics breaks down, and the system fails to serve
as its own heat bath11,12. We have presented numeri-
cal evidence that this type of transition can also occur
in systems lacking true disorder if they instead exhibit
“pseudodisorder” in the form of a quasiperiodic poten-
tial.

From one perspective, this may be an unsurprising
claim. For g < 1

2 the localized single-particle eigenstates
of the quasiperiodic Aubry-André model have the same
qualitative structure as those of the Anderson model, so
the effects of introducing interactions ought to be similar.
By this reasoning, perhaps it is even possible to guess the
phase structure of an interacting AA model using knowl-
edge of an interacting Anderson model: we simply match
lines of the two phase diagrams that correspond to the
same non-interacting, single-particle localization length.

However, this perspective misses important effects in
all regions of the phase diagram. Most obviously, the AA
model has a transition at u = 0, and it is interesting to
see how this transition gets modified as it presumably
evolves into the MBL transition at finite u. It is also
important to remember that quasiperiodic potentials are
completely spatially correlated. This means that the AA
model lacks rare-regions (Griffiths) effects, and this may
have subtle consequences for the dynamics. Finally, the
AA model contains a phase that is absent in the one-
dimensional Anderson model, the g > 1

2 extended phase,
and we have seen above that interactions have a profound
effect upon this regime.

Understanding MBL in the quasiperiodic context is es-
pecially pertinent given the current experimental situa-
tion. Some experiments that probe localization physics
in cold atom systems use quasiperiodic potentials, con-
structed from the superposition of incommensurate opti-
cal lattices, in place of genuine disorder. The group of In-
guscio, in particular, has recently explored particle trans-
port for interacting bosons within this setup38,39. Mean-
while, the AA model has also been realized in photonic
waveguides, and experimentalists have studied the effects
of weak interactions on light propagation through these
systems. They have also investigated “quantum walks”
of two interacting photons in disordered waveguides40,56.
This protocol resembles the one we have implemented nu-
merically, so similar physics may arise. Finally, we note
that Basko et al. have predicted experimental manifes-
tations of MBL in solid-state materials. In such systems,
there is always coupling to a phononic bath, so the MBL
transition is expected to become a crossover that nev-
ertheless retains interesting manifestations of the MBL
phenomena57. Whether there exist quasiperiodic solid-
state systems to which the predictions of Basko et al.
apply remains to be understood.

Given the current experimental relevance of localiza-
tion phenomena in quasiperiodic systems, we hope that
our study will motivate further attempts to understand
these issues. Unfortunately, our ability to definitively
identify and analyze the MBL transition is limited by
the modest lattice sizes and evolution times that we can
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simulate. Vosk and Altman recently developed a strong-
disorder renormalization group for dynamics in the disor-
dered problem20, but the reliability of such an approach
in the quasiperiodic context is unclear. A time-dependent
density matrix renormalization (tDMRG) group study
of this problem would be a valuable next step. Tezuka
and Garćıa-Garćıa have published tDMRG results on lo-
calization in an interacting AA model, but their focus
was not on the thermalization questions of many-body
localization44. It would be worthwhile to pose these ques-
tions using a methodology that allows access to much
larger lattices. However, even tDMRG may have diffi-
culty capturing the highly-entangled ergodic phase13,19,
so an effective numerical approach for definitively char-
acterizing the transition remains elusive.
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Appendix A: Exact Diagonalization Results for the
Single-Particle and Many-Body Problems

This appendix collects exact diagonalization results
that supplement the real-time dynamics study in the
main body of the paper.

1. Floquet Analysis of the Modified Dynamics

The goal of the first part of this appendix is to exam-
ine the consequences of the modifications to the quantum
dynamics described in Section II.B above. We first ver-
ify that the AA transition survives by diagonalizing the
single-particle AA Hamiltonian (i.e. the Hamiltonian (1)
with u = V

h = 0) and the single-particle unitary evolu-
tion operators (5) for various choices of the time step ∆t.
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FIG. 9: Collapse of single-particle IPR vs. g, using the scaling
hypothesis (A2). The legend refers to different lattice sizes L.
In panel (a), we show data for the usual AA Hamiltonian (1).
In panel (b), we show data obtained from diagonalizing the
unitary evolution operator for one time step in the modified
dynamics (5). We use potential wavenumber k = 1

φ
and 50

samples for all lattice sizes. The insets show magnified views
of the curves for the three largest lattice sizes in the vicinity
of the transition.

Subsequently, we employ the same approach to examine
how varying ∆t impacts the quasienergy spectrum of the
interacting, many-body model.

a. Robustness of the Single-Particle Aubry-André
Transition

To study the single-particle transition, we focus on the
inverse participation ratio:

Psp(g;L) =

L−1∑
j=0

|ψj |4
 (A1)

Here, ψj denotes the amplitude of the wave function at
site j of an L site lattice. We enclose the sum in equation
(A1) in parentheses to indicate important differences in
the averaging procedure with respect to the many-body
inverse participation ratio (10). In the many-body case,
we computed the IPR as a sum over configurations in the
quantum state at a particular time in the real-time evo-
lution. Then, we averaged over samples, where a sample
was specified by a choice of the offset phase to the po-
tential (2) and an initial configuration. Throughout this
appendix, we instead specify a “sample” solely by the off-
set phase δ, and we average over eigenstates within each
sample before averaging over samples.
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As noted previously, the usual AA model has a tran-
sition that must occur, by duality, at gc = 1

2 . Near the
transition, the localization length is known to diverge
with exponent ν = 126. Our exact diagonalization re-
sults indicate that, at the transition, Psp(gc, L) ∼ L−

1
2 .

Hence, we can make the following scaling hypothesis for
the IPR:

Psp = L−
1
2 f((g − gc)L) (A2)

In panel (a) of Figure 9, we show that we can use this
scaling hypothesis to collapse data for the standard AA
model. We show data for L = 8 to L = 512, with poten-
tial wavenumber k = 1

φ and open boundary conditions.

For all lattice sizes, we average over 50 samples.
To establish the stability of the AA transition to the

modified dynamics, we must ask: can the IPR obtained
from diagonalizing the unitary evolution operators (5) be
described using the scaling hypothesis (A2)? Panel (b)
of Figure 9 shows that this is indeed the case for ∆t = 1.
The only parameter that needs to be changed is gc, which
decreases slightly as ∆t is raised. This implies that there
is a transition in the Floquet spectrum of the system that
can be tuned by varying ∆t. It would be a worthwhile
exercise to map out the phase diagram of this single-
particle problem in the (g,∆t) plane. We leave this for
future work.

b. Properties of the Many-Body Quasienergy Spectrum

We now turn our attention back to the effects of the
modified dynamics upon the full, many-body model.
In Section II.B above, we emphasized that our time-
dependent model lacks energy conservation, with multi-
photon processes inducing transitions between states of
the parent model (1) that differ in energy by ωH = 2π

∆t .
In this part of the appendix, we will examine how vary-
ing ∆t impacts the quasienergy spectrum of the time-
dependent model, using the approach that we applied to
the single-particle case above: we diagonalize the time-
independent Hamiltonian as well as the unitary evolution
operator for one time step of the time-dependent model.

In Figure 10, we plot the density-of-states d(∆t, E)
in quasienergy space of the parent model and time-
dependent models for different values of ∆t. We focus
on L = 12 systems at half-filling with fermions (or, since
we continue to use the boundary conditions described
in Section II.C, hardcore bosons). We fix the interac-
tion strength to u = 0.16 and tune g to explore different
regimes of the model. In panels (a)-(c), we plot data for
g = 0.25, 0.4, and 0.9. According to Table II, these val-
ues of g put the system in the localized phase, near the
transition, and in the ergodic phase respectively.

We first consider the consequences of varying ∆t while
holding the other parameters fixed. For sufficiently small
∆t, the quasienergy spectrum faithfully reproduces all
the structure of the energy spectrum of the parent model.
This is unsurprising, because if ωH is greater than the

(a)

−5 0 50

0.02

0.04

0.06

0.08

E

d(
E)

L = 12, g = 0.25, u = 0.16

0 200 400 600 800 10000

0.02

0.04

0.06

0.08

E

P(
E)

L = 8, g = 0.25, u = 0.16

 

 

0.125
0.25
0.5
1
2
4
PM

(b)

−5 0 50

0.02

0.04

0.06

0.08

E

d(
E)

L = 12, g = 0.4, u = 0.16

(c)

−5 0 50

0.02

0.04

0.06

0.08

E

d(
E)

L = 12, g = 0.9, u = 0.16

FIG. 10: The density-of-states vs. quasienergy for L = 12
systems at half-filling with interaction strength u = 0.16. The
legend refers to different values of ∆t; the time-independent,
parent model is referred to as “PM.” In panels (a)-(c), g =
0.25, 0.4, and 0.9 respectively.

bandwidth of the parent model’s spectrum, direct multi-
photon processes will not take place. If we now tune ωH
so that it is less than this bandwidth, the quasienergy
spectrum begins to deviate from the parent model’s spec-
trum at its edges. This effect can be seen, for instance, by
examining the trace for ∆t = 1 in panels (a) or (b). For
even higher values of ∆t (i.e. lower values of ωH), multi-
photon processes strongly mix the states of the parent
model, resulting in a flat quasienergy spectrum.

The effect of multi-photon processes can also be en-
hanced by broadening the parent model’s spectrum,
which can be achieved by raising g or u. In panel (c) of
Figure 10 for instance, multi-photon processes have sig-
nificantly flattened the spectrum for ∆t = 1, and devia-
tions from the parent model are even visible for ∆t = 0.5.
Since we always use ∆t = 1 in our real-time dynamics
simulations, it is perhaps fortunate that g = 0.9 is well
within the proposed ergodic phase for u = 0.16 and that,
near the critical point (i.e. in panel (b)), the quasienergy
spectrum for ∆t = 1 still retains much of the structure
of the parent model’s spectrum.

However, there is one more caveat to keep in mind:
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the energy content of the system also grows with L. At
fixed g, u, and ∆t, the properties of the parent and
time-dependent models deviate from one another as the
system size grows. If we truly want to faithfully repro-
duce the dynamics of the parent model with the modified
dynamics, it may be necessary to scale ∆t down as we
raise L. However, recall that our goal is simply to find
MBL in a model qualitatively similar to the parent model
(1). Even with this more modest goal in mind, there is
still the danger that, on sufficiently large lattices, multi-
photon processes might couple a very large number of
localized states and thereby destroy the many-body lo-
calized phase of the parent model. Our numerical obser-
vations indicate that this does not happen for the sys-
tem sizes that we can simulate. We can keep ∆t fixed at
unity for L ≤ 20 without issues, accepting the possibility
that the sequence of models that we would in principle
simulate on still larger lattices may require progressively
smaller values of ∆t.

2. Level Statistics of the Many-Body Parent Model

Localization transitions are often characterized by
transitions in the level statistics of the energy
spectrum50. Two of us previously looked at the level
statistics of the disordered problem and identified a
crossover from Poisson statistics in the many-body lo-
calized phase to Wigner-Dyson statistics in the many-
body ergodic phase11. The intuition that underlies this
crossover is the following: in a localized phase, particle
configurations that have similar potential energy are too
far apart in configuration space to be efficiently mixed
by the kinetic energy term in the Hamiltonian. There-
fore, level repulsion is strongly suppressed, and Poisson
statistics hold. Conversely, in an ergodic phase, there is
strong level repulsion which lifts degeneracies, leading to
Wigner-Dyson (i.e. random matrix) statistics.

Along the lines of the aforementioned study of the dis-
ordered problem, we focus on the gaps between succes-
sive eigenstates of the spectrum of the many-body parent
model (1):

δn ≡ En+1 − En (A3)

and a dimensionless parameter that captures the corre-
lations between successive gaps in the spectrum:

rn ≡
min(δn, δn+1)

max(δn, δn+1)
(A4)

For a Poisson spectrum, the rn are distributed as 2
(1+r)2

with mean 2 ln(2) − 1 ≈ 0.386; meanwhile, when ran-
dom matrix statistics hold, the mean value of r has been
numerically determined to be approximately 0.5295 ±
0.000611.

In Figure 11, we present exact diagonalization results
for L = 12 lattices at half-filling with potential wavenum-
ber k = 1

φ and the boundary conditions described in Sec-

tion II.C above. We show data for the same parameter
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FIG. 11: The mean of the ratio between adjacent gaps in
the spectrum, defined in (A4). This data was obtained by
exact diagonalization of the parent model (1) for L = 12
systems. All data points have been averaged over 50 samples,
and the legend refers to different values of the interaction
strength u. The mean value of 〈rn〉 shows a crossover from
Poisson statistics (indicated by the bottom reference line) to
Wigner-Dyson statistics (indicated by the top reference line),
for the largest values of u. Representative error bars have
been included in the plot; the absent error bars have roughly
the same size.

range examined in the body of this paper and average
over 50 samples for each value of g and u. For the largest
value of u, the mean value of rn interpolates between the
expected values as g is raised, consistent with the exis-
tence of a localization transition. We have also checked
that the distributions of rn have the expected forms in
the small and large g limits in this regime. For smaller
values of u, we can speculate that 〈rn〉 grows with L at
large g and approaches the expected value for very large
L. To argue for a MBL transition on the basis of exact
diagonalization, we would need to study this sharpening
of the crossover as L is raised. This would indeed be an
interesting avenue for future work. For our present pur-
poses however, we only want to check consistency with
our real-time dynamics data, as we have done in Figure
11.
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59 There is an exception to this statement: multi-photon pro-
cesses do seem to play an important role deep in the er-
godic phase, where the energy content of the system is
especially high. See Appendix A and the discussion of the
time-dependence of the autocorrelator χ in Section III.A
for more details.

60 To appropriately realize open boundary conditions, we
should also turn off interactions over the boundary. When
exploring different options for the boundary conditions, we
varied J over the boundary and neglected to vary V . This is
unfortunate in that it makes the model somewhat stranger.
However, our boundary conditions are chosen for conve-
nience anyway, and the numerics suggest that the choice of
boundary conditions does not impact the essential physics
discussed in this paper.

61 The statistical fluctuation of the total energy of the ran-
domly chosen initial configuration is of order

√
L. Suppose

the total energy is conserved by the dynamics. We can
write E/

√
L = x0 + hA0 cos θ0 = x∞ + hA∞ cos θ∞. Here,

the subscripts 0 and ∞ refer to the initial and late-time
states, x0 and x∞ are bounded random numbers capturing
the expectation value of interactions (and hopping at late-
times), h is the non-random amplitude of the quasiperiodic
potential, and A0 and A∞ are positive bounded ampli-
tudes of the Fourier components at the wavevector k of the
quasiperiodic potential. This ansatz implies a finite correla-
tion between the random phases θ0 and θ∞. Therefore, one
of the Fourier modes of χ remains correlated as L → ∞,

and we expect χ ∼ 1
L

in the ergodic phase. Note that this
argument truly applies only to the energy-conserving par-
ent model. In fact, in our numerics, there is only partial
energy conservation, and energy non-conserving events be-
come more prevalent as u, g, or L is raised. This means
that χ will generically decay faster than 1

L
at large L in

the ergodic phase.
62 This statement should be interpreted with some care.

Quantum entanglement entropy measures, such as the
Rényi entropy that we define in equation (14), carry in-
formation about the off-diagonal elements in the reduced
density matrix. These terms have no classical analogue and
would not be considered in a thermodynamic calculation.
This difference can result in discrepancies in the sublead-
ing behavior. For instance, consider our calculation of the
bipartite Rényi entropy of the model state |Φ〉 in Section
IV.A: the quantum Rényi entropy is one bit lower than
the Rényi entropy calculated by classical counting of con-
figurations. A more precise analogue of the classical en-
tropy would thus be a “diagonal” entropy in which all
off-diagonal elements of the reduced density matrix were
neglected.

63 Only the first term on the right-hand side of equation (22)
would appear in a “classical counting” derivation of the
thermodynamic entropy. The other two terms account for
off-diagonal elements in the reduced density matrix (20).
Please see footnote 53 for more details.


