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Recent studies of transition metal alloys with compositions that place them near their limits of
elastic stability (e.g. near the body-centered-cubic [BCC] to hexagonal-close-packed [HCP] transi-
tion) suggest interesting behavior for the dislocation cores. Specifically, the dislocation core size is
predicted to diverge as the stability limit is approached. Here a simple analysis rooted in elasticity
theory and the computation of ideal strength is used to analyze this divergence. This analysis indi-
cates that dislocation core radii should diverge as the elastic limits of stability are approached in the
BCC, HCP, and face-centered-cubic (FCC) structures. Moreover, external stresses and dislocation-
induced stresses also increase the core radii. Density functional theory based total energy calcula-
tions are combined with anisotropic elasticity theory to compute numerical estimates of dislocation
core radii.

PACS numbers:

I. INTRODUCTION

By now, the theoretical basis of plasticity in most metals is well in hand. Since the 1930s, the accepted mechanism
for plastic deformation of most metals is motion of dislocations that takes place at stresses orders of magnitude below
the ideal strength of the crystal1. The theoretical prediction of the plastic properties of metals, then, most often
becomes an exercise in understanding the dynamics of the dislocations contained within the metal.
However, in 2003 researchers at Toyota introduced an interesting TiNb based alloy that they called Gum Metal2.

This alloy displays a host of super properties including super-strength (yield strength of approximately 1.2 GPa) and
super-elasticity (elastic limit over 2%). In addition, the alloy is ductile, and displays elongations of over 10% in simple
tensile tests. Interestingly, the alloy displays no work hardening during those same tests. Even more interesting is
the fact that these “super” properties fully emerge only after extensive cold working.
Remarkably, post-deformation examination of the microstructure in Gum Metal reveals few (if any) lattice disloca-

tions. Instead, one observes “nano-disturbances,” localized nanoscale distortions in the crystal that can be modeled
as the strain field associated with non-lattice dislocations with small Burgers vectors3. The macroscopic plasticity
appears to be mediated by slip of so-called “giant” faults2, a mechanism similar to that envisioned in theories of
plasticity based on ideal strength4.
In fact, Gum Metal was designed to have an intrinsically low moduli difference, C11 − C12. Since this difference

governs the ideal shear strength of body-centered-cubic (BCC) metals, the ideal shear strength of Gum Metal is
expected to be quite low. This understanding, when combined with the above experimental observations led Saito et

al. to conclude that bulk Gum Metals deform at their ideal strength without the need to move dislocations2.
Later observations of the deformation of solution treated Gum Metal did reveal the presence of dislocation mediated

plasticity5. So there is no intrinsic materials property that prevents the formation of dislocations in these alloys.
However, a necessary condition for (cold-worked) Gum Metal to deform at ideal strength without the motion of
dislocations is that dislocations, if present, must be immobile, even under the influence of stresses as high as the ideal
shear strength.
There are extrinsic and intrinsic materials properties that influence dislocation mobility. The presence of obstacles

to dislocation glide can pin dislocations, and inhibit plasticity. Additionally, the structure of the dislocation core,
i. e. that region of the crystal near the dislocation that cannot be described by continuum elasticity theory, can
inhibit dislocation glide. For example, in BCC metals, it has been argued that a spread dislocation core leads to lower
dislocation mobility6.
Based on studies of a TiV approximant to Gum Metal, it has been argued that dislocations within Gum Metal are

easily pinned, even at stresses equal to predicted ideal shear strengths7. In addition, the dislocation cores within Gum
Metal are expected to be spread over large distances8. So large, in fact, that dislocation cores may overlap yielding
distortions similar to the experimentally observed “nanodisturbances,” and making it difficult to resolve individual
dislocations within transmission electron microscopy experiments. In the TiV approximants to Gum Metals, both the
extended dislocation core radii and the easy pinning of dislocations are the result of approaching the limits of elastic
stability of the BCC crystal structure.
This observation suggests an interesting avenue of exploration. If proximity to the elastic limit of the BCC phase

leads to alloys with interesting “super” properties, can similar phenomena be observed at the limits of elastic stability
for other crystal symmetries? Kuramoto et al. have considered this possibility, and have demonstrated that a face-
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centered cubic (FCC) Fe-Ni-Co-Ti alloy engineered to be near the elastic limits of stability for the FCC structure
displays behavior very similar to Gum Metal9. This paper addresses the issue by exploring dislocation core radii
near the limits of elastic stability within the BCC, FCC and hexagonal-close-packed (HCP) phases. Remarkably, the
calculations suggest that as the elastic limit is approached, the cores of dislocations within all these structures will
spread, and potentially behave similarly to dislocations within Gum Metal.
The next section discusses the definition of the dislocation core radius. The sections following address estimates

for the dislocation core radii in various structures. More accurate estimates of dislocation core radii in specific
materials can be obtained by combining electronic structure based calculations of ideal strength with linear anisotropic
continuum elasticity theory. A formalism for doing so is presented in section VI, and applied to Mo (as a prototypical
BCC metal) in section VII. Section VIII presents the conclusions.

II. DISLOCATION CORE RADII

Dislocations are marked by long-ranged stress and strain fields and local changes in bonding. The long-ranged stress
and strain fields can be modeled very accurately using linear anisotropic continuum elasticity theory. (For the sake
of brevity, unless noted otherwise, we henceforth define the phrase “elasticity theory” to refer to linear anisotropic
continuum elasticity theory.) However, elasticity theory is fundamentally incapable of describing the dislocation near
its origin, precisely where the changes in bonding are found.
More specifically, the dislocation within the elasticity theory is a singularity within the elastic field: The predicted

stress and strain both diverge at the position of the dislocation. This singularity is, of course, nonphysical. Real
crystalline materials are simply not an elastic continuum, particularly when viewed on scales for which one can
resolve the individual atoms, and the stress and strain associated with a dislocation within a crystal does not diverge
at the position of the dislocation. Nevertheless, the bulk of the dislocation’s energy is stored in the long-ranged stress
and strain
field, and for this reason, elasticity theory forms the basis for much of our understanding of the properties of

dislocations.
In dislocation applications, elasticity theory is augmented with the introduction of a core radius. Nominally, the

core radius demarcates the boundary between the region of the crystal in which elasticity theory is applicable and
the region where elasticity theory is inapplicable, a region known as the dislocation core. In practice, there is no set
way to introduce the core radius. Hirth and Lothe suggest choosing the cutoff so that the computed elastic energy is
roughly equal to the total energy of the dislocation1. This definition is convenient, particularly if one wants to model
dislocation dynamics, as forces can be computed simply by considering changes in the elastic energy alone, but it does
not allow one to estimate the true extent of the dislocation core.
Other choices of dislocation core radii may prove useful in other circumstances. Consider, for example, the dynamics

of screw dislocations within BCC materials. Studies of these dislocations revealed that the bonding rearrangements
associated with the dislocation core can extend a substantial distance from the core region6. Since movement of
the dislocation requires reconfiguration of the bonding over extended regions of space in the spread dislocation core,
these spread cores limit the mobility of the dislocations. Thus while elasticity theory can predict the driving force
for dislocation motion, only an atomic scale theory can reveal the atomic scale motions that determine dislocation
mobilities. Consequently, dislocation core studies have become a significant tool in the study of mechanical properties
(see, for example,8,10–12).
The calculation of dislocation core structures, however, is considerably complex. The long-ranged stresses and

strains imply that boundary conditions impact atomic scale calculations13. Moreover, the small unit cells accessible
to computation using electronic structure based total energy methods rooted in density functional theory make
dislocation/dislocation interactions a prominent part of many first principles computational methods. As a result,
dislocation core studies are frequently confined to a specific material, and extracting physical trends regarding core
structures requires an expensive and painstaking computational approach.
There is reason, however, to seek a more rapid and general approach to ascertain the extent of the core region within

a dislocation. Such an approach enables the identification of trends within classes of materials. Moreover, a more
rapid general approach will enable a high throughput computational approach to discover materials with interesting
mechanical properties, such as Gum Metal.
To address this need, consider the following definition of a dislocation core radius. In what follows, the dislocation

core radius is defined as that radius for which the stress field of the dislocation that is predicted by elasticity theory
equals the ideal strength of the material under the identical stress loading condition. More specifically, at each point in
space (excepting the dislocation line itself), elasticity theory computes a stress tensor. If there is no crystal distortion
that gives rise to the predicted stress tensor, then clearly elasticity theory has failed. Additionally, the computed
stress is declared to exceed the ideal strength of the material. Conversely, if the predicted stress state can be attained
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through the imposition of some crystal distortion, the predictions of elasticity theory may well be accurate. The point
nearest to the dislocation core in a particular radial direction for which the distortion can be found is a strict lower
bound on the dislocation core radius, and for the purposes of this paper, is declared to be the dislocation core radius
in that radial direction. By considering all radial directions, one can construct a polar plot of the dislocation core
radius.
Consider, for example, the case of a pure screw dislocation within a BCC metal. The stress field is given by the

simple expression1,14 σzθ = Kb
2πr

, with b the Burgers vector. The stress field is cylindrically symmetric, with the
z-axis along the dislocation line, and only the zθ shear component is nonzero; the energy factor of the dislocation,
K, depends on the elastic properties of the material and on the orientation of the dislocation. For BCC metals, the
ideal strength may be regarded as a fraction of the shear modulus15, σideal = fG, with G in the direction of shear
and thus orientation dependent. (The shear modulus in the [111] direction of BCC alloys is independent of the shear
plane.) The fraction f is also orientation dependent, as for instance the easy and hard directions of shear in the same
plane will give very different ideal strengths. The core radius then is simply rcore such that σzθ(rcore) = fG, or

rcore =
b

2πf

K

G
. (1)

For the b = a
2
〈111〉 screw dislocation in BCC metals, one finds8:

rcore =
b

6πf

√

(C11 − C12 + 4C44)(2C2
11 + 2C11C12 − 4C2

12 + 13C11C44 − 7C12C44 + 2C2
44)

3C44(C11 − C12)(C11 + C12 + 2C44)
. (2)

Note that this core radius diverges as C11−C12 → 0 or as C44 → 0, two of the elastic stability limits of BCC crystals.
This means that as varying the composition, for instance, of a BCC crystal brings it close to these elastic stability
limits, the core radius defined here diverges. Interestingly, Gum Metals are designed to be near this limit. It is also
interesting to note that a simple analysis relates the elastic constants to the observed easy pinning and extended
dislocation core structures.

III. ESTIMATES OF DISLOCATION CORE RADII

A. Screw Dislocation in FCC

Following Hirth and Lothe, the energy coefficient for a screw dislocation in FCC1 is K =
√

c′44c
′
55 − c′45,where c′ij

denotes the components of the stiffness tensor rotated into a basis with its 3-axis along the dislocation line. The
Burgers vector and dislocation line for the most common screw dislocation are in a 〈110〉 direction, giving

K =

√

1

2
(C11 − C12)C44

in the coordinates of the cubic crystal axes. The shear modulus in this direction depends on the shear plane; as a
function of rotating the shear plane about the dislocation line (where θ = 0 is a {110} plane) is

G〈110〉 =
C44(C11 − C12)

2C44 cos2 θ + (C11 − C12) sin
2 θ

and the dislocation core radius in the sense of the ideal strength is

rcore =
b

2
√
2πf

2C44 cos
2 θ + (C11 − C12) sin

2 θ
√

(C11 − C12)C44

which diverges as C11−C12 → 0 or as C44 → 0. Unlike the expression for BCC, this depends strongly on angle around
the dislocation. For shear on the (001) plane, the core radius goes to zero instead of diverging as C11 −C12 → 0, and
on the (110) plane the radius goes to zero as C44 → 0. Discussion of these special planes will be deferred to section V.
The most common slip plane in FCC, {111}, is at about 35◦ in this scheme; the core radius on the slip plane diverges
for both criteria.
It should be noted that in real crystals, dislocations are often split into partials1; this effect has not been considered

in this work, but the core radii of partial dislocations could readily be calculated by the same means, using the
appropriate line direction and non-lattice Burgers vector.
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B. Screw Dislocation in HCP

The energy coefficient for an HCP screw dislocation1 is K =
√

c′44c
′
55 in coordinates with the 3-axis aligned with

a screw dislocation on the common slip system, a 〈1120〉 direction, and the 1-axis also in the basal plane. In the
standard coordinates, with the 3-axis perpendicular to the basal plane, this becomes K =

√
C44C66. The shear

modulus on 〈1120〉 depends on the shear plane,

G〈1120〉 =

(

cos2 θ

C44

+
sin2 θ

C66

)−1

where θ = 0 is shear on the basal plane. The dislocation core radius is

rcore =
b

2πf

C66 cos
2 θ + C44 sin

2 θ√
C44C66

.

Since in the hexagonal crystal C66 = 1
2
(C11 − C12), this expression is the same as the FCC case, and diverges as

C11 − C12 → 0 or as C44 → 0. The same special planes are observed; C11 − C12 → 0 doesn’t lead to divergence on
the basal plane, and C44 → 0 doesn’t cause a divergence perpendicular to the basal plane.

IV. EDGE AND MIXED DISLOCATIONS

In edge and mixed dislocations, the stress has both tensile and shear components, and a tensor version of the energy
coefficient is needed to describe the stress state14,

σrθ = [(K11b1 +K12b2 +K13b3) cos θ + (K21b1 +K22b2 +K23b3) sin θ]/2πr

σθθ = [(K21b1 +K22b2 +K23b3) cos θ − (K11b1 +K12b2 +K13b3) sin θ]/2πr

σzθ = (K31b1 +K32b2 +K33b3)/2πr.

where K and b are referred to rectilinear axes with the 3-axis along the dislocation, and (r, θ, z) are cylindrical
coordinates with z aligned with the dislocation line and θ = 0 at the 1-axis. These three stress components must
be compared to the relevant (shear or tensile) ideal strength, which depends on the dislocation orientation and on θ.
This leads to multiple core radii at each angle; the outer envelope of these core radii as a function of angle gives the
effective core radius.
Although for some high-symmetry directions an analytical form of K can be found, a simple expression does not

generally exist, so it is more practical to solve for the core radius numerically. K can be found for an arbitrary
dislocation using the Stroh theory16. Following the method laid out by Hirth and Lothe1, in brief, a parenthesis
operator

(ab)jk = aiCijklbl

is introduced, where a and b are any vectors, and C is the stiffness tensor. Two vectors m and n are introduced
which form a right-handed coordinate system with the dislocation line, and a matrix

N =

{

−(nn)−1(nm) −(nn)−1

−[(mn)(nn)−1(nm)− (mm)] −(mn)(nn)−1

}

is constructed, where each entry is a three-by-three block. This matrix has six eigenvalues pα and eigenvectors
ζα ≡ {A1,α, A2,α, A3,α, L1,α, L2,α, L3,α}, normalized such that 2Aα · Lα = 1. The energy tensor is then

K = i
6

∑

α=1

±Lα ⊗ Lα

where the sign of each term in the sum is chosen to be the same as the sign of the imaginary part of the corresponding
eignevalue. The resulting K tensor is referred to the same basis as the elastic constants used, meaning it must be
rotated into the dislocation basis used in the stress expressions given above.
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FIG. 1: Polar plots illustrating the dislocation core region as the elastic constants approach critical values. The dislocation
line (and Burgers vector) is at the origin and perpendicular to the page. The b = 1

2
[111] screw dislocation in BCC as a)

C11 − C12 → 0 and b) C44 → 0, and the b = 1

2
[110] screw dislocation in FCC as c) C11 − C12 → 0 and d) C44 → 0. The ideal

strength used here is set to 0.11G at all angles for illustration purposes, f = 0.11 having been found by Krenn et al.15 for the
easy directions of shear in BCC metals. The horizontal axis shows the dependence on angle around the dislocation, which is
notably absent in BCC due to the high symmetry of the modulus in the [111] direction. For a) and c), C44/C11 = 0.5, while
for b) and d), C12/C11 = 0.3.

V. DIVERGENCE CRITERIA

BCC, FCC and HCP crystals all have divergences as C11 − C12 → 0 and as C44 → 0 for both screw (see figure
1) and edge dislocations. These two conditions for divergence are two of the criteria for elastic stability which arise
from the energy condition δE = δ

(

1
2
V0Cijεiεj

)

> 0. Cubic crystals have the additional criterion that C11+2C12 > 0,

and hexagonal crystals that (C11 + C12)C33 − 2C2
13 > 0. Although these other criteria do not lead to divergences in

the core radius for screw dislocations, they do for edge dislocations: FCC and BCC edge dislocations have divergent
core radii as C11 + 2C12 → 0 and HCP edge dislocations diverge as (C11 + C12)C33 − 2C2

13 → 0. These results are
summarized in table I.
Except for the screw dislocation in BCC, all core radii depend strongly on the angle. Figure 1 shows the angle-

dependence in FCC, including planes on which the core radius goes to zero. All dislocations in FCC and HCP, and
one of the common BCC edge dislocations, have special planes for which the core radius goes to zero or remains
finite at the instabilities. These special planes are all low-index planes, and several are the slip planes of the crystal,
including all the special planes as C11 + 2C12 → 0 or (C11 + C12)C33 − 2C2

13 → 0. The significance of these planes
is not entirely clear; in principle, elasticity theory works until very close to the dislocation on these planes. On the
other hand, if the core of the dislocation undergoes reconstruction, the displacement of nearby off-plane atoms will
likely create stresses on the atoms on the special planes.
Not all dislocations in a material will be pure screw or lowest-energy edge dislocations; all mixed and edge dis-

locations with the same Burgers vector have been analyzed. All edge and mixed dislocations in BCC, FCC and
HCP structures have divergent dislocation core radii at all three stability criteria; special planes appear in some
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Structure BCC FCC HCP

Type Screw Edge Screw Edge Screw Edge

b 1

2
[111] 1

2
[111] 1

2
[111] 1

2
[110] 1

2
[110] [1120] [1120]

ξ [111] [112] [541], [110] [110] [112] [1120] [1100]

C11 − C12 → 0 Yes Yes Yes Yes Yes Yes Yes

Special planes None (111) None (110) None (1100) (0001)

C44 → 0 Yes Yes Yes Yes Yes Yes Yes

Special planes None None None (001) None (0001) (1100)

C11 + 2C12 → 0* No Yes Yes No Yes No* Yes*

Special planes N/A (110) None N/A (111) N/A (0001)

TABLE I: Summary of results for edge and screw dislocations in three crystal structures. Rows labeled with a stability criterion
indicate whether the core radius diverges at that criterion. Rows labeled “Special planes” indicate any planes for which the
radius remains finite. *For HCP, this is not a stability criterion; instead the analogous (C11 +C12)C33 − 2C2

13 → 0 is used.

high-symmetry directions. In BCC, the group of edge and mixed dislocations with b = a
2
[111] and ξ = [11l], where l

is any constant, all have finite core radii on the slip plane (110) as C11 + 2C12 → 0. Two special mixed dislocations
in this group are ξ = [001], which also has a finite core radius on (110) as C44 → 0, and ξ = [110], which has a finite
core radius on (110) as C11 + 2C12 → 0 and on (001) as C44 → 0.
In FCC, three similar groups exist with b = a

2
[110] and ξ = [11l], ξ = [11l] or ξ = [hk0]; these dislocations have

finite radii as C11+2C12 → 0 on (110), (11 2
l
), or (001) respectively. This includes the most common edge dislocation,

with ξ = [112], on the (111) slip plane. Other special dislocations within these groups are ξ = [001], which also has
a finite core radius on (110) as C44 → 0; ξ = [110], which is finite on (001) as C11 − C12 → 0; and ξ = [100], which
remains finite on (001) as C11 − C12 → 0 and on (010) as C44 → 0.

In HCP, with b = a
2
[1120], the group ξ = [110l] has special planes on (110 2

l
) as (C11 + C12)C33 − 2C2

13 → 0 and

on (1120) as C44 → 0. The group ξ = [hk(h+ k)0] has special planes on (0001) as (C11 + C12)C33 − 2C2
13 → 0. The

prismatic edge dislocation, with ξ = [0001], cannot be calculated by the numeric method given above, but the energy
coefficient Ke is given by Hirth and Lothe1 as

Ke =
C2

11 − C2
12

2C11

which leads to stresses

σrθ =
Keb cos θ

2πr

σθθ =
Keb sin θ

2πr
,

while the relevant moduli are G =
(

2
C11−C12

)−1

for shear and

E =

( −C2
13 + C11C33

(C11 − C12) (−2C2
13 + (C11 + C12)C33)

)−1

for tension. Thus the core radius is the maximum of the radii given by the shear and tensile criteria,

rcore,shear =
b cos θ

2πf

C11 + C12

C11

rcore,tensile =
b sin θ

4πf

(C11 + C12)(C11C33 − C2
13)

C11 ((C11 + C12)C33 − 2C2
13)

.

This leads to divergence in the core radius as C11 → 0 from both shear and tension, so there are no special planes.
When (C11 +C12)C33 − 2C2

13 → 0, the core diverges due to the tensile criterion only and the radius on the slip plane
remains finite.
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VI. IDEAL STRENGTH

The premise of the approach presented here is that if continuum linear elasticity theory predicts that the stress
at a point exceeds the ideal strength of the material, then that point must be, by definition, within the dislocation
core. In the discussion above, we used simple empirical relations between the ideal strength and the elastic moduli
to argue that dislocation core radii diverge as one approaches the elastic stability limits of a given structure. This
approximate discussion can be improved by computing more accurately the ideal strength entering the comparison.
More specifically, we can compute the dislocation core radii as follows. We begin by computing the stress state

for a given point predicted by anisotropic linear continuum elasticity theory. We then use density functional theory
based electronic structure total energy calculations to determine if it is possible for a uniformly strained crystal to
attain the predicted stress state. If a uniformly strained crystal can attain the predicted stress state, the point in
question is outside of the dislocation core. Otherwise, the point is within the dislocation core. Polar plots of the
dislocation core radius can be obtained by considering points along rays emanating from the core position normal to
the dislocation line direction. Starting far from the core, one can easily find the necessary strain state using elasticity
theory. As one approaches the core, nonlinear elastic effects, fully reflected in the electronic structure based total
energy calculation, become more important. Eventually one finds the point nearest to the core along this ray for
which the uniformly applied stress can be sustained, and this is defined to be the dislocation core radius along the
direction of the considered ray. Note that there is no need to compute the structure of the dislocation core, nor are
there any artifacts of periodic boundary conditions to consider. The detailed numerical procedure is described below.
Molybdenum was chosen as a test material because it is an elemental BCC metal with fairly high strength. Calcu-

lations are performed using the Quantum Espresso package17 and the pseudopotential Mo.pw91-n-van.UPF from
http://www.quantum-espresso.org for molybdenum. The plane-wave energy cutoff used is 450 eV, a 9× 9× 9 unsym-
metrized k-point mesh is used, and the smearing scheme is Fermi-Dirac with a smearing constant of 0.01 Ry. These
parameters converge the total energy to within 30 meV/atom. The elastic parameters and lattice constant are some-
what sensitive to the simulation parameters, so instead of using literature values, these are calculated using the same
cutoff, smearing and k-point grid. The calculated values are C11 = 430GPa, C12 = 154GPa, and C44 = 90GPa, and
the lattice parameter is 3.1885Å. These are reasonably close to the values of 460, 176, and 110 GPa respectively given
by Hirth and Lothe1. The elastic constants are calculated by applying strains between -2% and 2%, calculating the
total energy, and fitting a parabola to the result, following the method of Fast et al.18 adapted to cubic crystals. The
stress cannot be directly imposed in simulation; instead, a strain is imposed, and the stress is calculated by Quantum

Espresso. The strain is then adjusted to minimize the difference between the calculated stress and the desired stress
calculated by continuum elasticity theory. This is equivalent to stress control, as the strain is changed until the stress
reaches the desired value. Minimization is performed with respect to the independent components of the strain using
a standard Nelder-Mead simplex search19. The metric used for minimization is f =

∑6

i=1(σQE,i − σel,i)
2, where

σQE is the stress calculated by Quantum Espresso and σel is the stress predicted by linear elasticity theory. The
minimized error in the stress is calculated for several test radii, chosen such that at least three or four test points are
expected to be within the core region. Outside the core region, the minimization routine is expected to find a strain
configuration that produces the predicted stress, and the error will be a small random value independent of radius.
Inside the core radius, the minimization routine will find the maximum stress the crystal can sustain, independent of
radius; since the predicted stress is proportional to 1/r,

√

fin =
c1
r

− c2

where c1 and c2 are radius-independent constants, related to K and the ideal strength, which can be discovered by a
least-squares fit of the test data. Because it is not known a priori which data points fall within the core and which
do not, an additional fitting parameter is used,

√
f = max(c3,

c1
r
− c2), where c3 represents the small random error

outside the core. The core radius is r such that
√

fin(r) = 0, rcore = c1
c2
. This process is then repeated for several

angles around the dislocation, since the ideal strength is in general anisotropic. Crystalline symmetries, such as the
threefold symmetry around a 〈111〉 direction in BCC, may be used to reduce the number of angles which must be
calculated separately.
In addition to the properties of the core of a single dislocation isolated in an infinite medium, dislocations under

various applied stresses are of interest and are accessible to this calculation method. The predicted stress simply
becomes the sum of the stress due to the dislocation and the externally applied stress, whatever that may be.
One case of particular interest is a uniform applied stress, which simulates the effect for instance of performing
macroscopic mechanical tests on the dislocation-containing sample. Another interesting case is simulating the effects
of nearby dislocations by adding the stresses they produce. This procedure will lend insight into the case of very high
dislocation density, which may be expected for instance in gum metal, which must be heavily cold-worked before its
most interesting properties emerge2.
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FIG. 2: Polar plot of the dislocation core region in molybdenum. Dotted lines serve only as a guide for the eye. The circles (blue
online) show the dislocation core with no applied stress. The squares (red online) are under a uniform applied stress of 5GPa
on the (211) plane in the [111] direction. The triangles (green online) are under a stress of 10GPa in the same configuration.
As the uniform applied stress increases, the core expands and shifts towards the side where the applied stress and stress due
to the dislocation have the same sign.

VII. CORE RADII IN REAL MATERIALS

The calculated elastic constants for molybdenum are C11 = 430GPa, C12 = 154GPa, and C44 = 90GPa, and the
lattice parameter is 3.1885Å. For a screw dislocation, this leads to K = 119GPa and G = 117GPa, and a core radius of
4.0539Åusing the easy-direction ideal strengh σideal = 0.11G found by Krenn et al.15. The ratio K/G, which Chrzan
et al. propose as a measure of the elastic anisotropy, is 1.01, very close to the isotropic value of one.
The calculated core structure is shown in figure 2. The core radius on the easy directions of shear on {110} and

{112} planes is between 3.29 and 3.38Å. In the hard direction on {112}, the radius is smaller, as expected, at 2.90Å.
On planes other than the {110} and {112} slip planes, the radius is close to that on the easy directions. These
calculations correspond to an ideal strength in the easy directions of roughly 0.13G, and in the hard direction on
{112} σideal ≈ 0.15G. Error estimated from varying the starting point of the simplex search is roughly ±0.2Å.
Figure 2 also shows the effect of applying a homogeneous external shear stress. In general, homogeneous applied

stresses serve to shift the dislocation core and expand it due to the 1/r dependence of the predicted stress. For a single
dislocation embedded in an infinite crystal, the core expands with applied shear stress until, at the ideal strength
applied, half the crystal can be considered core; at still higher applied stresses the only non-core region would be a
small oblong where the applied stress and the stress from the dislocation cancel out. Of course, a real crystal would
fail well before this point, either by moving the dislocation or some other mechanism.
Figure 3 shows the effect of adding the stress due to an adjacent dislocation with either the same or opposite sign.

The second dislocation is placed 10Å away; this would represent an unreasonably high dislocation density, but was
chosen to give a large effect for illustration purposes. Screw dislocations of the same sign create stresses of opposite
sign between them, causing the stress to cancel out and the cores to shrink in this region. On the far side of each
dislocation, the stresses add and the core expands; the net area of the dislocation core increases. On the other hand,
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FIG. 3: Polar plot of the dislocation core region in molybdenum. Dotted lines serve only as a guide for the eye. The circles
(blue online) show the dislocation core with no applied stress. The squares (green online) are calculated under the influence of
a nearby dislocation with the same Burgers vector, and the triangles (red online) with the opposite Burgers vector (or opposite
line sense). The other dislocation in both cases is placed 10Å away, parallel to the first dislocation, on the right-hand side of
the (211) plane in the figure.

two dislocations of the opposite sign create stresses that add in the region between them, and cancel on the far side
of either dislocation. This leads to a shift and stretching of the core towards the other dislocation, and an overall
increase in the core area. At this close spacing, the two dislocation cores would overlap on the line between them,
creating one large dislocation core region. In both cases–same sign or opposite sign dislocations–the dislocation cores
expand.
These results suggest two ways to increase the core size extrinsically; both applying a stress and increasing the

dislocation density will cause cores to expand. At high enough applied stresses and dislocation densities, cores overlap;
at still higher stresses or dislocation densities, these overlapping core regions spread throughout the crystal. Both
of these methods assume stationary dislocations; mobile dislocations will move or annihilate and reduce their core
area. However, a high K/G ratio leads to effective pinning of dislocations7, as well as larger cores. Raising the K/G
ratio by manipulating the elastic constants, applying stresses, and/or raising the dislocation density work together to
increase the dislocation core size.

VIII. CONCLUSIONS

Using continuum linear elasticity theory and atomistic simulations, we have identified three methods of increasing
the dislocation core size in metals. The first is to modify the elastic constants via alloying or other methods; as crystals
of BCC, FCC or HCP structures approach the elastic stability limits, their dislocation cores grow. The second is to
apply an external stress, which results in net growth of the cores. The third is to increase the dislocation density
via cold-working or other methods; adjacent dislocations increase each other’s core size whether they are the same
or opposite-sign dislocations. Because large dislocation cores are found in Gum Metal, and are linked to some of the
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super properties7,8, it is hoped that driving other materials towards larger core sizes will produce new materials with
similar properties.

IX. ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under Grant No. DMR-1105081.



11

1 J. P. Hirth and J. Lothe. Theory of Dislocations. Krieger Publishing Co., second edition, 1982.
2 T. Saito, T. Furuta, J.-H. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka,
H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma. Science, 300:464, 2003.

3 Mikhail Yu. Gutkin, Toshitaka Ishizaki, Shigeru Kuramoto, and Ilya A. Ovid’ko. Acta Materialia, 54:2489–2499, 2006.
4 J. Frenkel. Z. Physik, 37, 1926.
5 E. Withey, M. Jin, A. Minor, S. Kuramoto, D. C. Chrzan, and J. W. Morris, Jr. Materials Science and Engineering A,
493:26–32, 2008.

6 V. Vitek, R. C. Perrin, and D. K. Bowen. Philosophical Magazine, 21, 1970.
7 T. Li, J. W. Morris Jr., N. Nagasako, S. Kuramoto, and D. C. Chrzan. Phys. Rev. Lett., 98:105503, 2007.
8 D. C. Chrzan, M. P. Sherburne, Y. Hanlumyang, T. Li, and J. W. Morris Jr. Phys. Rev. B, 82:184202, 2010.
9 S. Kuramoto, T. Furuta, N. Nagasako, and Z. Horita. Applied Physics Letters, 95:211901, 2009.

10 Sohrab Ismail-Beigi and T. A. Arias. Physical Review Letters, 84:1499–1502, 2000.
11 X. Xu, S. P. Beckman, P. Specht, D. C. Chrzan, R. P. Erni, I. Arslan, N. Browning, A. Bleloch, and C. Kisielowski. Physical

Review Letters, 95, 2005.
12 S. P. Beckman and D. C. Chrzan. Physica B: Condensed Matter, 2003.
13 M. S. Daw. Computational Materials Science, 38:293–297, 2006.
14 A. K. Head. Phys. Stat. Sol., 6:461, 1964.
15 C. R. Krenn, D. Roundy, J. W. Morris Jr., and M. L. Cohen. Mat. Sci. and Eng. A, 319-321:111, 2001.
16 A. N. Stroh. Phil. Mag., 3:625, 1958.
17 P. Giannozzi et al. Journal of Physics: Condensed Matter, 21(39):395502, 2009.
18 L. Fast, J. M. Wills, B. Johansson, and O. Eriksson. Phys. Rev. B, 51:17431, 1995.
19 J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Siam J. Optim., 9:112, 1998.


