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ABSTRACT 

 Most standard models for the thermal boundary conductance (TBC) assume isotropic 

properties and thus are inappropriate for layered and chain-like materials such as graphite, Bi2Te3, 

and high density polyethylene (HDPE).  To model such anisotropic materials, here a framework 

is introduced whereby the first Brillouin zone and the iso-energy surfaces of the Debye 

dispersion relation are both generalized from spherical to ellipsoidal.  This model is checked by 

comparison with the experimental specific heat capacity of graphite and HDPE, as well as the 

phonon irradiation of graphite calculated from lattice dynamics.  The anisotropic TBC model 

performs at least six times better than the standard isotropic diffuse mismatch model at 

explaining the measured TBC between graphite and various metals reported by [Schmidt et al., J. 

Appl. Phys. 107, 104907 (2010).].  The model further reveals an unexpected guideline to 

engineer the TBC: due to phonon focusing effects, in many cases the TBC across an interface 

can be increased by reducing a phonon velocity component parallel to the plane of the interface. 

 

I.  INTRODUCTION 

 Understanding and engineering the thermal boundary conductance (TBC, also discussed 

as a thermal boundary resistance or thermal contact resistance) across atomically-intimate 

interfaces is becoming increasingly important as the characteristic lengths of modern devices 

continue shrinking to micro- and nano- scales.1  Nearly all models for the TBC, such as the 

widely-used diffuse mismatch model (DMM) and acoustic mismatch model (AMM),2 require 

that the materials have isotropic properties, and are most commonly based on an isotropic Debye 
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dispersion relation.  However, many important materials are highly anisotropic, including 

layered materials such as graphite, boron nitride, and Bi2Te3, and chain-like materials such as 

high density polyethylene (HDPE).   In such highly anisotropic materials, the conventional 

isotropic Debye model is no longer a good approximation.  For example, in graphite at 

intermediate temperatures the predictions of the isotropic Debye model deviate from the 

experimental data for the specific heat capacity by more than a factor of two,3-4 and, as will be 

shown below, compared to the measured TBC between graphite and metals,5 DMM calculations 

using an isotropic Debye model are typically in error by more than a factor of 10.   

 For the special case of interfaces involving graphite, recently two anisotropic TBC 

models were reported.  Prasher6 used the DMM to model the TBC between graphite and 

platinum below 100 K using the aniostropic graphite dispersion from Komatsu.7  Also using the 

DMM, Duda et al.8 modeled the TBC between graphite and aluminum by approximating 

graphite’s density of states (DOS) as two-dimensional (2D).  In both cases the modeled TBC was 

found to be lower for interfaces oriented parallel to graphite’s ab-planes (also called basal 

planes), which was attributed to the fact that the sound velocity is much lower in the c-axis 

direction than along the ab-planes.  Because these models6, 8 were developed specifically for 

graphite, they are difficult to generalize to other anisotropic materials. 

 Here we develop a general framework for the TBC using an anisotropic Debye phonon 

dispersion, whereby the first Brillouin zone and the iso-energy surfaces are both generalized 

from spherical to ellipsoidal.  We restrict the analysis to materials where only one of the three 

principle directions is anisotropic; that is, materials with tetragonal, trigonal, or hexagonal 
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symmetries.  This restriction is appropriate for a large number of layered and chain-like materials, 

including graphite, boron nitride, Bi2Te3, HDPE, and tellurium.  This paper is organized as 

follows.  In Section II we present the two basic assumptions of the framework and derive an 

expression for the TBC, include simple analytical expressions for several limiting cases.  The 

specific heat capacity is also discussed.  Then in Section III we compare the model to 

experimental results from the literature for the specific heat of a typical layered (graphite) and 

chain-like (HDPE) material, and for the TBC between graphite and various metals. 

 

II.  DESCRIPTION OF MODEL 

A.  Basic assumptions and justifications 

 The first key assumption of this model is that a material’s anisotropic phonon dispersion 

can be well approximated by the anisotropic Debye dispersion, 2 2 2 2 2 2 2
a a b b c cv k v k v kω = + + , where 

av , bv  and cv  are the sound velocities along the a-, b- and c-axis directions respectively, and 

( , ,a b ck k k ) is the wavevector.  This dispersion has ellipsoidal iso-energy surfaces in k-space [Fig. 

1 (a)].  Because in this work we focus on materials with a b abv v v= = , this simplifies to  

 2 2 2 2 2
ab ab c cv k v kω = + , (1) 

where 2 2 2
ab a bk k k= + . 

 The other key assumption is that an anisotropic material’s first Brillouin zone (FBZ) can 

be adequately approximated by an ellipsoid [Fig. 1 (b)], an obvious generalization of the 
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spherical FBZ used in the classic isotropic Debye model.  Here the FBZ ellipsoid is defined as 

the surface satisfying  
2 2 2

2 2 2
, , ,

1a b c

a m b m c m

k k k
k k k

+ + = , where ,a mk , ,b mk , and ,c mk  are wavevector cutoffs.  

Because we focus on materials with restricted symmetries such that , , ,a m b m ab mk k k= = , this can 

be written 

 
2 2

2 2
, ,

1ab c

ab m c m

k k
k k

+ = . (2) 

To ensure the correct total number of acoustic modes, these wavevector cutoffs are constrained 

by the number density of primitive unit cells, pucη , through  

 2
21

, ,6puc ab m c mk k
π

η = . (3) 

The number of optical modes is given by . 3( 1)opt pucmη η= − , where m is the number of atoms in 

the crystal basis.  For simplicity we approximate them as Einstein modes, making their 

contributions to heat transfer vanish. 

 We now comment briefly on the validity of this anisotropic Debye approximation.  The 

form of Eq. (1) is motivated by an exact result from continuum elasticity,9-11 in which the 

dispersion relation for the pure transverse acoustic (pure-TA) branch of materials with hexagonal 

symmetry can be written as 

 2 2 2
66 44ab cC k C kρω = + , (4) 
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where ρ  is the mass density and ijC  is stiffness constant.  Although the dispersion relations for 

both the quasi-longitudinal acoustic (quasi-LA) and the quasi-transverse acoustic (quasi-TA) 

branches have more complicated angular dependencies,11 under certain conditions they also are 

well approximated by the form of Eq. (4) using different ijC  (details in Section III.A).  Graphite 

is a typical example satisfying these conditions.  However, this anisotropic Debye approximation 

cannot capture the variation of the phase velocity with the magnitude of the wavevector in real 

materials, which arises purely from atomistic effects.12  For example, the present model cannot 

capture the curvature of the well known flexural (ZA, also called TA⊥ 13 or oTA14) branch in 

graphite, which has been given by Lifshitz as12, 15 

 2 2 2 4
44 33ab c ab

BC k C k k
d

ρω = + + , (5) 

where B is related to the bond-bending stiffness of an isolated graphene layer and d is the 

interlayer distance.  The last term in Eq. (5) is a subcontinuum effect, which can be formally  

neglected if BdCkab /44
2 << .  Similar considerations apply to chain-like materials and the bond-

bending stiffness of individual atomic chains.12   

 Comparing the anisotropic Debye model of Eq. (1) to the real dispersion of a typical 

layered material, graphite,16 we estimate that for all three acoustic branches (LA, TA, ZA) the 

present model is in error by typically tens of percent for variations in ω with the magnitude of k  

in any fixed direction.  This shortcoming is offset, however, by the merit of the model in 

capturing the large variations of ω with the direction of k , which is the emphasis of the present 
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work.  These directional variations can be substantial: for example gv  in graphite changes by a 

factor of approximately 5 to 10 as estimated by comparing the sound velocity in the ab-plane to 

that along the c-axis.  Section III will show this anisotropic Debye approximation compares 

favorably with experimental values of the specific heat and a more detailed lattice dynamics 

calculation of phonon irradiation, typically to within ±10% over the temperature range 200 to 

2,000 K.  

 

B.  Characteristic frequencies and temperatures 

 Based on the ellipsoidal dispersion relation and FBZ, we define the characteristic Debye 

frequencies of the ab-plane and c-axis directions, 

 , ,

, ,

D ab ab ab m

D c c c m

v k
v k

ω
ω

=
=

, (6) 

with corresponding Debye temperatures 

 , ,

, ,

D ab D ab B

D c D c B

k
k

θ ω
θ ω

=
=

, (7) 

where  is the reduced Planck’s constant and Bk  is the Boltzmann constant.  It will also prove 

convenient to define the anisotropy ratio 

 , ,

, ,

D ab D ab

D c D c

r
ω θ
ω θ

= = . (8) 
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We refer to materials with r > 1 as “layered,” and r < 1 as “chain-like.”  Thus graphite (r >> 1) is 

strongly layered, while HDPE is strongly chain-like (r << 1). 

 The definitions of Eqs. (6)-(8) facilitate the upcoming analysis by distinguishing between 

two different frequency regimes, as shown in Fig. 2.  First, for those modes with 

( ), ,min ,D c D abω ω ω< , the iso-energy surface has not reached the FBZ boundary, so all of those 

states are allowed as indicated by orange shading in Fig. 2 (a).  Second, for those modes with 

( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < , part of the iso-energy surface lies outside of the FBZ, 

so only the part inside the FBZ is allowed [orange shading in Fig. 2 (b)]. 

 

C.  Specific heat 

 The phonon specific heat is given by  

 ( )BE

pol

fC D d
T

ω ω ω∂=
∂∑∫ , (9) 

where the sum runs over all polarizations, BEf  is the Bose-Einstein distribution function, and 

( )D ω  is the DOS which for an arbitrary dispersion relation is given by17 

 3
1

8
( )

g

dSD ω
π

ω = ∫∫ v , (10) 

where dSω  is an elemental area on an iso-energy surface in k-space [Fig. 1 (a)].  For the 

anisotropic Debye model defined by Eqs. (1) and (2), the analytical expression of DOS is 
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conveniently evaluated in two regimes depending on the anisotropy ratio r (details in Appendix 

A). 

 In Fig. 3, we plot the dimensionless density of states ( ) ( )
1
32

, ,
ˆ 3D ab D c pucD D ω ω η=  as a 

function of the dimensionless frequency 
1
32

, ,ˆ ( )D ab D cω ω ω ω=  for a single polarization.  The key 

feature is the range of power laws describing D̂  versus ω̂ .  The isotropic “control” case (r = 1) 

follows the well-known quadratic power law over the entire frequency range.  Layered materials 

(r >> 1) show a transition from a quadratic to a linear power law with increasing ω , which can 

be interpreted by the scenario depicted in Fig. 2(b).  This transition indicates a dimensionality 

crossover from 3D to 2D as the c-axis modes become fully saturated at large ω .  Chain-like 

materials (r << 1), on the other hand, show a transition from a quadratic power law to a constant 

value with increasing ω , indicating a dimensionality crossover from 3D to 1D. 

 Substituting Eqs. (A4) and (A5) into Eq. (9), we obtain two integral expressions for the 

specific heat in terms of Bx k Tω= .  For r > 1,  

 
( ) ( )

( ), ,

,

224 3 4 2 3
,2

,2 22 2 3 2 2
, ,02 1 1

D c D ab

D c

x xx x
D abB

D cx xpol ab c D ab D cx

Txk T x e T x eC dx dx
v v e e

θ
θ

π θ θ

⎡ ⎤−⎢ ⎥= +
⎢ ⎥−− −⎣ ⎦

∑ ∫ ∫ , (11a) 

while for r < 1, 

 
( ) ( ) ( )

( ), ,

,

2 24 3 4 3 4 2 3
,2

,2 2 22 2 3 2 2
, ,02 1 1 1

D ab D c

D ab

x xx x x
D abB

D cx x xpol ab c D c D abx

Txk T x e T x e T x eC dx dx
v v e e e

θ
θ

π θ θ

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= + −⎨ ⎬⎢ ⎥−− − −⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∫ ∫ .(11b) 
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 In both Eqs. (11a) and (11b), the first integral is the exact result for a traditional isotropic 

Debye solid, while the second integral captures the effects of anisotropy.  Figure 4 shows the 

dimensionless specific heat ( )ˆ 3 puc BC C kη=  versus the dimensionless temperature 

( )
1
32

, ,
ˆ

D ab D cT T θ θ= , calculated by numerical integration of Eqs. (11a) and (11b).  Layered 

materials (r >> 1) exhibit a transition from T3 T2 T0 behavior with increasing T, while chain-

like materials with r << 1 exhibit a transition from T3 T1 T0.  We will come back to these 

transitions in Section III.B when comparing this model to the experimental specific heat of 

graphite and prior models. 

 To gain further physical insight, in Table I we simplify Eqs. (11a) and (11b) in several 

limiting cases.  First, in the low temperature limit [ , ,min( , )D c D abT θ θ ], only low energy 

phonons are activated, in which case the FBZ boundaries are far away from the iso-energy 

surfaces [Fig. 1(a)].  Therefore the analytical expression recovers the classic Debye T3 law and 

depends on the two sound velocities, but not the two wavevector cutoffs because the phonon 

wavelengths are insensitive to the granularity of the lattice in this limit.  On the other hand, in the 

high temperature limit [ , ,max( , )D c D abT θ θ ], all of the phonons are full activated and obey 

equipartition of energy, and thus the analytical expression recovers the Dulong and Petit result, 

and depends on the two wavevector cutoffs (related to the total number of phonon modes) but 

not the sound velocities. 

 At intermediate temperatures [ , , , ,min( , ) max( , )D c D ab D c D abTθ θ θ θ ], Table I shows that 

strongly anisotropic materials exhibit a mixture of the high-T and low-T behaviors just described.  
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At intermediate T, the populated iso-energy surfaces reach the FBZ boundary along the crystal 

direction of low sound velocity, while remaining far from the FBZ boundary along the direction 

of fast sound velocity [Fig. 1(b)].  Therefore the slow-velocity direction is saturated in its high-T 

regime while the fast-velocity direction is still in its low-T regime.  Thus the limiting analytical 

expression for a layered material at intermediate temperature follows a T2 power law, and 

depends on vab and kc,m but not vc or kab,m.  Conversely, a chain-like material follows a T1 law, 

and depends on vc and kab,m but not vab or kc,m.  These intermediate T behaviors are further 

justified in Appendix B through an alternative derivation using simplified 2D and 1D phonon gas 

models. 

 

D.  Phonon irradiation 

 We calculate the irradiation and TBC using the close analogy between phonon transport 

and photon radiation.  We restrict the analysis to interfaces oriented normal to the material’s c-

axis, the configuration of highest symmetry, because this simplifies the analysis and it is also a 

common configuration in applications and experiments.5  For materials with isotropic properties, 

the “incident radiation” [Eq. (6) of Ref. 18] is a convenient quantity for evaluating the TBC.  

However, to accommodate materials with anisotropic properties, the phonon “irradiation” is a 

better choice.  A general expression for the irradiation along the c-axis is 

 3

ˆ 0

ˆ ˆ  c
pol

H I d
⋅ <

= ⋅∑ ∫∫∫
k c

s c k , (12) 
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 where ˆ (0,0,1)=c  is the unit vector along the c-axis, ŝ  is a unit vector parallel to the group 

velocity, ˆ 0⋅ <k c  denotes integration over the incident half-space, and the intensity 

3
1

8 g BEI f
π

ω= v  at wavevector k travels in the ŝ  direction. 

 It is helpful to convert Eq. (12) to an integral over frequency, 

  c c BE
pol

H h f d
ω

ω ω=∑∫ , (13) 

where we introduce a new quantity, ch , which can be understood as the density of states [Eq. 

(10)]  weighted by the c-axis projected velocity: 

 ( ) ( )
3

1
8

ˆ ˆ 0

ˆg
c

g

h dSωπ
ω

⋅ <

⋅
= ∫∫

s c

v c
v

. (14) 

Thus, ch  represents the product of the phonon velocity component along the direction of heat 

transfer (here, ĉ ) and the number of phonon modes per unit frequency between ω  and dω ω+ , 

integrated over the incident half-FBZ.  We refer to ch  as the vDOS (v indicating velocity-

weighted), and its role in the irradiation [Eq. (13)] is analogous to the role of the DOS in the 

specific heat [Eq. (9)].  Analytical expressions for the vDOS are given in Appendix A. 

 Figure 5 shows the dimensionless vDOS, ( ),
ˆ 3 4c c D c puc ch h vω η= , versus the 

dimensionless frequency, ,ˆ D cω ω ω= , for a single polarization.  Both layered and chain-like 

materials show a transition from a 2ω̂  dependence at low frequency to a constant value at high 

frequency.  The low frequency behavior is straightforward from Eqs. (A6) and (A7) of Appendix 
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A, and the high frequency behavior can be understood from the definition of ch  [Eq. (14)]: an 

averaged product of DOS [Eq. (10)] and the c-axis component of the group velocity.  For layered 

materials, the high frequency DOS is 2D and thus proportional to ω (Fig. 3), and as shown in 

Appendix B the frequency-dependent c-axis component of the group velocity scales as 

1
, ,2g c Dv ω−∝ .  However, for chain-like materials, the high frequency DOS is 1D and thus 

constant while 0
, ,1g c Dv ω∝  (Appendix B). 

 Substituting Eqs. (A6) and (A7) into Eq. (13), we obtain expressions for the irradiation.  

For r > 1, 

 
, ,

,

2 2 24 4 3 2 4 3
, , ,

2 2 3 2 2 2 2
, , , ,08 1 1 1

D c D ab

D c

x x
D ab D c D cB

c x x x
pol ab D ab D c D ab D cx

k T x T x T xH dx dx
v e e e

θ θ θ
π θ θ θ θ

⎧ ⎫⎡ ⎤⎪ ⎪= + −⎢ ⎥⎨ ⎬− − − − −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∫ ∫ , (15a) 

while for r < 1, 

 
, ,

,

2 2 24 4 3 2 4 3
, , ,

2 2 3 2 2 2 2
, , , ,08 1 1 1

D ab D c

D ab

x x
D c D ab D abB

c x x x
pol ab D c D ab D c D abx

k T x T x T xH dx dx
v e e e

θ θ θ
π θ θ θ θ

⎧ ⎫⎡ ⎤⎪ ⎪= + −⎢ ⎥⎨ ⎬− − − − −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ ∫ ∫ . (15b) 

 The first integral of Eqs. (15a) and (15b) is the exact result for a traditional isotropic 

Debye solid, while the second integral captures the effects of anisotropy.  In Fig. 6 we plot the 

dimensionless irradiation ( ),
ˆ 3 4c c puc B c D cH H k vη θ=  versus the dimensionless temperature 

,
ˆ

D cT T θ= .  Both layered (r >> 1) and chain-like (r << 1) materials show a T4 T2 T1 transition 

with increasing T. 
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 For further physical insight, Table II presents simplifications of Eqs. (15a) and (15b) for 

several limiting cases.  In the low temperature limit, regardless of r Eqs. (15a) and (15b) reduce 

to the well-known blackbody emissive power law with a phonon Stephen-Boltzmann constant 

( )2 4 2 3120phonon B ab
pol

k vσ π −⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ .19  In the limit of strongly anisotropic materials at intermediate 

temperatures, Table II shows that both layered and chain-like materials follow a T2 power law, 

which arises from the power law ˆ ˆch ω∝  (Fig. 5).  These intermediate temperature behaviors are 

further justified in Appendix B using simplified 2D and 1D phonon gas models. 

 Table II reveals the unexpected result that the c-axis irradiation Hc is generally increased 

by reducing the ab-plane sound velocity vab  (the only exception being chain-like materials at 

intermediate T, for which cH  has no velocity dependence at all).  This abv  dependence of cH  

can be understood as a consequence of phonon focusing.20-22  As can be seen from Fig. 1(a), 

reducing abv  elongates the iso-energy surfaces (“slowness surfaces” in Ref. 20) along the ab-

plane, thus increasing the component of the group velocity along the c-axis direction and 

correspondingly increasing cH .  This suggests a surprising guideline for materials engineering to 

increase TBC: the heat transfer along the c-axis direction can be increased by reducing a phonon 

velocity, as long as it is a velocity component perpendicular to the c-axis.  The analogous effect 

on the thermal conductivity of highly anisotropic materials has also been reported.23-25  For 

example, a hybrid model22 (lattice dynamics + molecular dynamics) confirmed that the thermal 

conductivity in the c-axis direction of a graphite-like material is also increased by reducing the 

ab-plane phonon velocity, caused in part by the same phonon focusing effects of interest here.  In 
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Section III, we will examine this anticipated Hc dependence of the TBC further for two particular 

models of transmission coefficient. 

 

E.  Thermal boundary conductance 

 From traditional radiative heat transfer,26 the net heat flux across an interface between  

materials A and B can be expressed as 

 [ ]1 1 2 2( ) ( ) ( ) ( )A AB B BAq H T t T H T t Tτ= − , (16) 

where ABt  is an average (with respect to direction, position, energy, and polarization) 

transmission coefficient from A to B, T1 and T2 are the local equilibrium temperatures on either 

side of the interface, and the pre-factor 

 
( ) ( )1

1 22

1
1 AB BAt T t T

τ =
− +⎡ ⎤⎣ ⎦

 (17) 

arises because we work in terms of equilibrium rather than emitted temperatures (Appendix C).18, 

27  

 When the system is at equilibrium at temperature T, the 2nd Law of Thermodynamics 

requires 0q =  and thus2, 18, 28 from Eq. (16) 

 ( ) ( ) ( ) ( )A AB B BAH T t T H T t T= . (18) 



16 

 

 Substituting Eq. (18) into Eq. (16), and expanding q as a Taylor series in 1 2T T TΔ = − , we 

obtain an expression for the thermal boundary conductance defined as ( )0lim /TG q TΔ →= Δ : 

 iji
ij i

tHG t H
T T

τ
∂⎡ ⎤∂= +⎢ ⎥∂ ∂⎣ ⎦

, (19) 

where i, j = A, B or equivalently B, A. 

 We note in passing that the TBC obtained from the limit 0TΔ →  must be always 

symmetric upon exchanging the labels A and B.  Thus, there cannot be any rectification in this 

low-bias regime, regardless of the model of the transmission coefficient.  Although some 

analyses may neglect the second term of Eq. (19), such an approximation can have the side effect 

of incorrectly implying thermal rectification.29 

 

III.  COMPARISON WITH EXPERIMENTS 

A.  Specifying input parameters 

1.  Wavevector cutoffs: kab,m and kc,m 

 Given pucη  for a real material, Eq. (3) sets the first constraint for the two wavevector 

cutoffs, and as the second constraint we choose to fix the anisotropy ratio: 

 

, , .,

, , , .

ab m expab m

c m c m exp

kk
k k

= , (20) 
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where , , .ab m expk  and , , .c m expk  are wavevector cutoffs consistent with the experimentally-determined 

crystallographic structure.  For example, one simple way to fix the , .m expk  values is from the 

reported extents of the FBZ in the [100], [010], and/or [001] directions. 

2.  Sound velocities 

 We have used two different approaches to obtain the six sound velocities (3 polarizations 

each of abv  and cv ).  The first and easiest approach is to use experimentally-measured values 

along suitable high symmetry directions in the ab-plane and along the c-axis.  For materials for 

which the full phonon dispersion relation is available a second approach is a “secant” method, in 

which case the sound velocity for a specified branch and direction is set to be equal to the slope 

of the secant that connects the Γ  point and the end point of that branch at the FBZ boundary. 

 Although we could easily calculate the specific heat by summing over each branch (LA, 

TA1, TA2), for simplicity and physical insight it is also helpful to lump these six velocities into 

two effective ones, , .ab effv  and , .c effv , requiring two more equations.  For the first constraint we 

insist on the correct low T behavior of the specific heat from Table I, leading to 

 
2 2

, . , .

3 1
polab eff c eff ab cv v v v

=∑ . (21) 

Similarly, for the second constraint we require the correct intermediate T behavior from Table I.  

For layered materials this gives 

 
2 2

, .

3 1
polab eff abv v

=∑ , (22a) 



18 

 

while for chain-like materials we find 

 , .

3 1
polc eff cv v

=∑ , (22b) 

Note that Eq. (21) is exact for all materials, but Eqs. (22a) and (22b) are exact only for highly 

anisotropic materials. 

3.  Decomposition of iso-energy surfaces for materials with hexagonal symmetry 

 As discussed in Section II.A, the exact dispersion relations of the quasi-TA and quasi-LA 

branches are more complicated than Eq. (1), whether evaluated by lattice dynamics22 or 

continuum elasticity [Eqs. (3.11) and (3.12) in the appendix of Ref. 11].  For a strongly layered 

material like graphite, the typical shapes of the exact iso-energy surfaces are depicted in Fig. 7(a).  

In the A-Γ-M plane, the quasi-LA surface is nearly rectangular while the quasi-TA surface has 

four prominent lobes (an A-Γ-K slice looks very similar).   

 The task here is to determine the best approximation of these iso-energy surfaces with 

Debye ellipsoids such as Fig. 1(a), given the principal sound velocities.  The obvious but naive 

approach is to approximate each branch with its own ellipsoid.  As indicated in Fig. 7(b), this is 

equivalent to approximating the lobed quasi-TA branch with a circumscribed ellipsoid.  

Similarly, the quasi-LA would be replaced with an equivalent inscribed ellipsoid.  As suggested 

by the graphical comparison of Fig. 7(b), these approximations appear quite crude and will 

introduce large errors in the phonon transport calculations.  For example, for graphite at room-
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temperature, HC calculated in this way is eight times too small as compared to that calculated 

using an all-direction lattice dynamics method as described in Appendix D. 

 A much improved approach is motivated by the exact dispersion relations of the quasi-

TA and quasi-LA branches.  From Eqs. (3.11) and (3.12) of the appendix of Auld [Auld], when  

( ) ( )( )13 3311

44 44 44

2
1 1 1C CC

C C C+ − −  it can be shown that  

 

33 4411 44

11 44

33 33 4444

11 44

2 2

2

2 2

 ,    

 ,    

ab

c

ab

c

k C CC C
ab c k C C

quasi TA
C k C CC

ab c k C C

k k

k k

ρ ρ

ρ ρ

ω
−
−

−
−
−

⎧ + ≤⎪= ⎨
⎪ + ≥⎩

, (23) 

and 

 

33 4411 44

11 44

33 33 4444

11 44

2 2

2

2 2

 ,    
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Graphite satisfies this very well   [ ( ) ( )( )13 3311

44 44 44

2
1 1 1 0.01C CC

C C C+ − − < ].  Noticing the 

complementary relation between Eqs. (23) and (24), we rewrite them as two new branches 
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k k
ρ ρ

ρ ρ

ω

ω

= +

= +
, (25) 

with the graphical interpretation given in Fig. 7(c): decompose the lobed quasi-TA branch and 

the curved quadrilateral quasi-LA branch, and recompose them as two ellipsoids.  Now all three 

branches of materials with hexagonal symmetry have dispersions in the form Eq. (1), and thus 

ellipsoidal iso-energy surfaces.  To help validate this ellipsoidal Debye approximation, in 
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Appendix D we compare its Hc with that from a full lattice-dynamics calculation of a graphite-

like material.  As shown in Fig. D1 the two calculations agree very well, to within ±10% over a 

wide temperature range from 200 K to 10,000 K. 

 

4.  Contributions from optical phonons 

 For materials with a polyatomic basis we use an Einstein model to account for the 

contributions of optical phonons, with Einstein frequencies taken from the average of the 

experimentally-reported optical phonon frequencies at the Γ  point and the edge of FBZ.  Note 

that this treatment may be oversimplified for materials with complicated optical branches and/or 

optical phonons with large group velocities. 

 

B.  Specific heat of graphite 

 The specific heat of graphite has been well understood for decades both theoretically and 

experimentally,3-4, 7, 9, 12-13, 30 making this a useful check of the accuracy of the anisotropic Debye 

approximation used in the present work.  Graphite is highly anisotropic (r ranging from 10 - 16 

depending on the polarization) and also has relevance for its close cousins graphene and carbon 

nanotubes. 

 Following the recipes outlined above, the input parameters are extracted from the 

published phonon dispersion16 and summarized in Table III.  We assign the secant velocity to all 

branches.  In addition, to facilitate the analysis we unfold the dispersion relation along the c-axis 
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direction6: in real space we cut the 4-atom-basis primitive unit cell in half along the c-axis to 

form a unit cell with a 2-atom-basis, and correspondingly in reciprocal space the wavevector 

cutoff ,c mk  is doubled.  Only the c-axis direction was unfolded because the real dispersion 

relation13, 16 in that direction is continuous at the FBZ boundary (e.g. TA→TO’ and LA→LO’ in 

Fig. 2 of Ref. 16), whereas along the ab plane the real dispersion relation shows some gaps at the 

FBZ boundary and has optical modes that are relatively slower compared to their acoustic 

counterparts.  

 The modeled specific heat of graphite is shown by the solid red line in Figure 8(a), and 

shows a transition from T2  to T0 behavior with increasing T as expected from Table I as well as 

from standard models such as Lifshitz.12  The model accounts for contributions from both optical 

and acoustic phonons, and we confirmed that the contribution from electrons is negligible at the 

temperatures considered here.  The optical contributions are shown by the dashed red line and 

use , /E LO TOf  = 42 THz and , ZE Of  = 23 THz.  The acoustic contribution was calculated using both 

approaches described above: summing over all three polarizations and using the two effective 

velocities calculated from Eqs. (21) and (22a).  The two calculations are nearly indistinguishable 

so only the former is shown in Fig. 8(a). 

 The experimental specific heat of graphite3-4, 31 is shown by the points in Fig. 8(a).  With 

no free parameters the model agrees with the experimental data to within ±10% throughout the 

temperature range 50 – 2,000 K.  However, below 20 K the model transitions to a T3 power law, 

which is too steep as compared to the experimental data.  This discrepancy is due to the 

oversimplification of linearizing the phonon dispersion of the ZA branch.  The literature 
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dispersion13, 16 shows a monotonic decrease of the group velocity from 8500 m/s at the edge of 

the FBZ to approximately 1000 m/s at the Γ  point.  Therefore the secant method used here 

(6400 m/s) overestimates the velocity of small-wavevector ZA phonons which are the major 

contribution to the DOS at low temperatures, thereby underestimating their specific heat.  A 

more detailed model dispersion such as Eq. (5) for the ZA branch7, 12-13, 15-16 would help resolve 

this discrepancy, and also suggests an ideal T1 regime between T2 and T0 for the ZA contribution 

to the specific heat.12   However, such an approach is not pursued further here because it requires 

another material-dependent parameter which is less widely available, loses some of the 

simplicity and physical insight of the present model, and is not necessary for good accuracy at 

typical temperatures (~50 K and above).  

 For comparison Fig. 8(a) also includes a traditional 3D isotropic Debye model (blue line).  

The isotropic sound velocity for each polarization is obtained using 
1
32( )iso ab cv v v= , as required by 

the low temperature limit in Table I.  Similarly, the isotropic cutoff wavevector kD is calculated 

by conserving the number of acoustic modes, 
1
32

, ,( )D ab m c mk k k= .  Thus, as shown in Fig. 8(a) this 

isotropic model captures exactly the same high temperature Dulong and Petit limit and the low 

temperature Debye T3 law as the anisotropic model , but at intermediate temperatures the 

isotropic model misses the T2 regime and overpredicts the heat capacity by more than a factor of 

two. 

 



23 

 

C.  Specific heat of high density polyethylene 

 High density polyethylene (HDPE) is chosen as a representative chain-like material 

because of its high anisotropy ( 0.09r ≈ ) and the interest in its strongly direction-dependent and 

drawing-dependent thermal conductivity.32-33 

 The number density of HDPE primitive unit cells ( pucη = 3.64×1028 m-3) is estimated from 

the reported mass density32 by approximating the primitive unit cell as containing a single [CH2] 

basis.  However, the acoustic parameters needed to calculate the specific heat of HDPE are not 

well documented in the literature.  Therefore the strategy here is to fit our model to the 

experimental data.  We treat the two Debye temperatures ,D abθ  and ,D cθ  as adjustable parameters, 

and use a non-linear least-squares algorithm34 to minimize the root-mean-square (RMS) error of  

[(Cexpt. – Cmodel)/ Cexpt.]. 

 Figure 8(b) shows the experimental data and best fit model for the specific heat of HDPE 

of crystallinity 0.77.32   The experiment and model both show the expected transition from T3  to 

T1 behavior with increasing T, as expected from Table I.  We note that a more detailed dispersion 

relation accounting for subcontinuum chain bending modes12 suggests the T1 regime of those 

modes may ideally be separated into T5/2 and T1/2 regimes, although those do not appear 

separately evident in the experimental data of Fig. 8(b).  Returning to the present model, the T0 

Dulong and Petit regime is not expected until above 1000 K, which exceeds the melting 

temperature of HDPE (~400 K) and thus is not accessible in the experiments.  Also, because the 

vibrational temperature of the C-H bond can be estimated as above 1800 K,35 the heat capacity of 

the optical phonons is negligible over the entire experimental temperature range, and thus the 
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calculation in Fig. 8(b) only accounts for the acoustic phonons.  The fitting results show that the 

characteristic temperatures are , 100 KD abθ =  for the inter-chain modes and , 1099 KD cθ =  for the 

intra-chain modes, corresponding to a high anisotropy r = 0.09.  For comparison, Fig. 8(b) also 

shows the best fit using a traditional 3D isotropic Debye model with one adjustable Debye 

temperature Dθ  (289 K).  The RMS residual of the anisotropic model (7%) is much better than 

that of the isotropic model (48%). 

 

D.  Models for TBC and transmission coefficient 

 To calculate the TBC using Eq. (19), we need the irradiation and the transmission 

coefficients.  The former has been discussed in detail in Section II.D, and for the latter we now 

consider two common models: a maximum transmission model (MTM)18 and a diffuse mismatch 

model (DMM).2 

 The MTM (or radiation limit) supplies for the TBC an extreme upper bound compatible 

with the 2nd Law of Thermodynamics.18  It assumes a 100% phonon transmission leaving the 

material with the lesser cH , and the opposite transmission coefficient can be obtained directly 

from Eq. (18), leading to a TBC 

 

2
,  j i

MTM i j
j i

H HG if H H
H H T

∂= <
− ∂

. (26) 

where i, j = A, B or equivalently B, A. 
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 The DMM is often used as an estimate for atomically disordered interfaces.  The key 

assumption is that phonons lose their memory after bombarding the interface, leading to a 

transmission coefficient of the form2 

 

,

( )
( )

( ) ( )
j

ij DMM
i j

H T
t T

H T H T
=

+
. (27) 

where i, j = A, B or equivalently B, A. 

Substituting Eq. (27) into Eq. (19), we obtain 

 ( )

2 2

22
A B

B A

DMM
A B

H HH H
T TG

H H

∂ ∂+
∂ ∂=

+
. (28) 

 As noted previously, Eqs. (26) and (28) underline the symmetry of the heat transfer 

across the interface, i.e., there cannot be any thermal rectification upon exchanging the labels A 

and B. 

 We can now evaluate the suggestion from Section II that there may be a monotonic 

relationship between the irradiation and TBC.  Without loss of generality, we fix AH  and 

increase BH .  For the DMM this does indeed always act to increase the TBC [Eqs. (19) and 

(27)].  However, for the MTM increasing BH  increases the TBC only while BH  is smaller than 

AH ; but for B AH H>  we see that increasing BH  reduces the TBC [Eq. (26)].  Thus the 

anticipated monotonic relationship between irradiation and TBC is always true for the DMM, 

although only sometimes true for the MTM. 
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E.  TBC between graphite and metals 

 We now compare the TBC model to recent measurements by Schmidt et al.5 for 

boundaries between highly ordered pyrolytic graphite (HOPG) and various metals.  In all 

experiments the interfaces are aligned normal to the graphite’s c-axis, consistent with the model 

assumption.  Using the input parameters for metals (Table IV) and those for graphite (Table III), 

the flux bombarding on the interfaces (Hc) from graphite side is at most 16% of the flux from the 

metal sides throughout the experimental temperature range.  This makes the overall TBC 

calculation dominated by graphite (particularly by the TL2 branch), as both Eqs. (26) and (28) 

simplify to ( )THG grc ∂∂≈ ,2  for metalcgrc HH ,, << .
 
 

 Figure 9 compares the experimental results5 to four different models, including the 

traditional isotropic DMM,2 the 2D-DOS DMM,8 and the anisotropic DMM and MTM from this 

work.  To facilitate meaningful comparisons, we underline two details held constant for all 

models.  First, we include the pre-factor τ  [Eq. (17)] which we believe represents the real 

physics for the equilibrium temperature drop,5, 18, 27 although it was not incorporated in the 

original 2D-DOS DMM.8  This pre-factor increases the modeled TBC by a factor of 2-3 [Eq. 

(19)].  Second, we assume inelastic transmission27 across the interfaces.  Although restricting the 

transmission to be purely elastic would reduce the modeled TBCs closer to the experimental 

results, it also introduces an ambiguity in matching the phonon branches of the metals to the 

hybrid branches of graphite (Section III.A.3). 
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 The RMS errors of the four models as compared to the experimental data are summarized 

in Table V.  None of the models had any parameters adjusted to improve their fits.  The 

comparison shows that the experiments (points in Fig. 9) are best explained by the anisotropic 

DMM of the present work (red line), with an average error of 491%.  The 2D-DOS DMM8 (blue 

line) is the next-best model, with an average error of 1010%, while the traditional isotropic 

DMM (purple line)2 is the worst, with an average error of 3464%.  Although the average error of 

491% for the anisotropic DMM certainly leaves something to be desired, disagreements of this 

magnitude and larger are common in TBC modeling even of isotropic materials, and are most 

likely due to the failure of the DMM’s fundamental assumptions about the interface 

transmissivity.1 

 Comparing the models in more detail, we note that the isotropic DMM predictions greatly 

exceed those of the anisotropic DMM, and the experimental data.  This is because the averaging 

rule used to obtain an effective isotropic velocity, 
1
32( )iso ab cv v v= , is equivalent to increasing the 

incident velocity cv  and decreasing the in-plane velocity abv .  As shown in Table II, both of 

these changes tend to increase the irradiation in the c-axis direction, and as noted in Section III.D 

this will always correspond to an increase in the DMM TBC.  The 2D-DOS DMM predictions 

exceed those of the anisotropic DMM for a similar reason, because the 2D-DOS DMM neglects 

the curvature of the iso-energy surface at the edge of the FBZ, which also has the effect of 

overestimating the group velocity component along the c-axis direction and thus increasing the 

TBC.  
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 The other major feature of Fig. 9 is the implications of the anisotropic MTM (green line), 

which based on the 2nd Law of Thermodynamics is expected to serve as an extreme upper bound 

for the TBC.  The comparison with experiments shows that this anisotropic MTM indeed acts as 

an upper bound for these materials.  However, Fig. 9 also shows that the isotropic DMM greatly 

exceeds the anisotropic MTM limit, indicating that approximating a strongly anisotropic material 

as isotropic can lead to TBC predictions that violate the 2nd Law of Thermodynamics.   

 

IV.  SUMMARY AND CONCLUSIONS 

 We have developed a general framework to calculate the TBC for anisotropic materials 

based on an anisotropic Debye dispersion relation and ellipsoidal first Brillouin zone, which also 

yields compact analytical expressions in various limiting cases.  When compared to the 

experimental TBC between graphite and various metals from the literature,5 the new anisotropic 

DMM has errors at least a factor of six smaller than those of the traditional isotropic DMM and 

errors typically two times smaller than those of a recent 2D-DOS DMM.8  The anisotropic model 

also predicts an interesting and unexpected guideline for materials engineering to increase the 

TBC: due to phonon focusing the TBC actually can be increased by reducing a phonon velocity, 

as long as it is a velocity component parallel to the plane of the interface.  Recently an analogous 

effect on the thermal conductivity has also been reported.22-25 
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APPENDIX A: EVALUATING THE DOS AND vDOS INTEGRALS 

 The general form of the DOS [Eq. (10)] is a surface integral36 which can be evaluated by 

projecting the 3D iso-energy surface to a 2D plane.  Here we project it to the ka-kb plane: 

 

2 2

1 c c a b

a bg g

dS k k dk dk
k k

ω ⎛ ⎞ ⎛ ⎞∂ ∂= + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∫∫ ∫∫v v

, (A1) 

where ck  can be expressed in terms of ak  and bk : 

 

2 2 2 2( )c ab a b ck v k k vω= − + . (A2) 

 Equation (A1) can be evaluated by implementing the polar-coordinate substitution: 

 

cos
sin

a

b

k
k

ρ ϕ
ρ ϕ

=
=

, (A3) 

where the domain of the polar angle is 0 2ϕ π≤ ≤ .  The main complication is in determining the 

domain of the polar radius ρ . 
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 When ( ), ,min ,D c D abω ω ω< , no part of the iso-energy surface has reached the boundary 

of the FBZ, so 0 abvρ ω≤ ≤ .  However, when ( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < , part of 

the iso-energy surface lies outside of the FBZ, and it is helpful to consider the domain of ρ  in 

two categories.  First, for materials with anisotropy ratio r >1, the ka-kb projection of the iso-

energy surface within the FBZ is an annulus (Fig. A1), with an outer radius max abvρ ω=   and an 

inner radius ( ) ( )2 2 2 2
min , , , ,ab m D ab D ab D ckρ ω ω ω ω= − −  which can be obtained by solving the 

intersection of the two ellipsoids in Fig. A1.  Second, for materials with r <1, the projection of 

the iso-energy surface becomes instead a disk (Fig. A1), with 

( ) ( )2 2 2 2
max , , , ,ab m D c D c D abkρ ω ω ω ω= − − , again obtained from the intersection of the two 

ellipsoids in Fig. A1. 

 Having identified the appropriate domain of ρ , it is straightforward to evaluate the polar-

coordinate version of Eq. (A1), and thus the DOS.  For layered materials (r > 1) we find 

 

2

,2 2

2 2 2
, ,

, ,2 2 2 2
, ,

,      0
2
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,      
2
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D c D ab
D c D ab

ab c D ab D c

v v
D

v v

ω ω ω
π

ω
ω ω ωω ω ω ω

π ω ω

⎧
≤ ≤⎪

⎪= ⎨
−⎪ ≤ ≤⎪ −⎩

. (A4) 

For chain-like materials (r < 1), 
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 Following a similar procedure, we evaluate the vDOS also in two categories.  For r > 1, 
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and for r < 1, 
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APPENDIX B: 2D AND 1D PHONON GAS MODELS 

 Here we develop simplified 2D and 1D phonon gas models to verify the various 

intermediate-T limiting behaviors presented above for the specific heat (Table I) and c-axis 

irradiation (Table II). 

 The 2D and 1D DOS (Fig. B1) for a single polarization are easily shown to be: 
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Conservation of the number of modes requires 
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and the group velocity components along the ab-plane and c-axis are 
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Combining these we obtain the frequency-dependent DOS 
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 Substituting Eq. (B4) into Eq. (11), we obtain the 2D and 1D specific heat: 
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∑

∑
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which agrees with the limiting behaviors in Table I. 

 The 2D and 1D irradiation along the c-axis can be calculated from 
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1
,2  c BE g c
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H f D v d
ω

ω ω=∑∫ . (B6) 

 The pre-factor 1
2

 
arises because only the states with a wavevector component 0ck <  are 

involved in this transport process.  In the following discussion, we focus on the simplification of 

,g cv . 

 For the 2D phonon gas [Fig. B1(a)], we have 

 ab abv kω . (B7) 

Combining Eqs. (B3) and (B7) and averaging ,g cv  over the range ,[ ,0]c mk− , we find 

 

2
,

, ,2 2
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g c D

v k
v

ω
≈ . (B8) 

 Substituting Eq. (B8) into Eq. (B6), we obtain the 2D irradiation along the c-axis 

 

2 2 2 2
,

,2 248
c m B c

c D
pol ab

k k T vH
v
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which agrees with the limiting behavior in Table II. 

 Likewise, for a 1D phonon gas [Fig. B1(b)], we have 

 c cv kω ≈ . (B10) 

Combining Eqs. (B3) and (B10), we find 

 , ,1g c D cv v≈ . (B11) 
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 Substituting Eq. (B11) into Eq. (B6), we obtain the 1D irradiation along the c-axis 

 

2 2 2
,

,1 16
ab m B

c D

k k T
H = , (B12) 

which again agrees with the limiting behavior in Table II. 

 

APPENDIX C: DEFINING AN EQUILIBRIUM TEMPERATURE 

 As mentioned in Ref. 18, there are several ways to define an equilibrium temperature .eqT  

in terms of the opposing emitted temperatures T+  and T−  used in a two-flux model.  The typical 

strategy is to require conservation of some related quantity such as phonon number density, 

energy density, or irradiation along the c-axis.  Here we show that the difference between any of 

these definitions and a naive definition 

 
1

., 2 ( )eq naiveT T T+ −= +   (C1) 

is of the order of 2 T−Δ , where T T+ −Δ = − , and thus for low-to-moderate-thermal bias all 

definitions are practically equivalent. 

 Here we take the conservation of irradiation along the c-axis as an example: 

 ( ) ( ) ( )1 1
. 2 2c eq c cH T H T H T+ −= + . (C2) 

In the analytical limiting cases in Table II, we have 



35 

 

 ( ) n
cH T AT= . (C3) 

where A is a function of the velocities and wavevector cutoffs, but not temperature.  For 

intermediate cases not covered by Table II, the numerical results of Fig. 6 confirm that cH  is a 

smoothly-varying function of T, which for small Δ around any T is still well-approximated by the 

power law form of Eq. (C3).  Therefore n is in the range [1, 4], though not necessarily an integer. 

 Substituting Eq. (C3) into Eq. (C2), the equilibrium temperature can be generalized as 

 
1 1

. 2 2
n n n

eqT T T+ −= + . (C4) 

 Using a Taylor series Eq. (C4) can be expanded as 

 

2 3

.
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− − −
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. (C5) 

where O  represents higher order terms. 

 The naive arithmetic average equilibrium temperature can be expressed as 

 
., 1

2eq naiveT T
T−

−

⎛ ⎞Δ= +⎜ ⎟
⎝ ⎠

. (C6) 

Subtracting Eq. (C6) from Eq. (C5) and neglecting higher order terms, we obtain 
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Considering that 1T−Δ , Eqs. (C5) and (C7) indicate that ( ). ., . .eq eq naive eq eqT T T T− Δ , and 

thus the naive definition is adequate to represent the real equilibrium temperature. 

 Following a similar procedure, we have confirmed that the conclusion above also applies 

to approaches using conservation of phonon number density and energy density. 

 

APPENDIX D: COMPARISON TO THE PHONON IRRADIATION CALCULATED USING 

FULL-DIRECTION-DISPERSION 

 As discussed in Section III.E, we believe the discrepancies between the anisotropic DMM 

model and the experimental TBC seen in Fig. 9 are largely due to the crude approximations for 

the transmission coefficients, not the anisotropic Debye approximation used for the phonon 

irradiation.  To independently check the Hc calculation, here we validate the anisotropic Debye 

model by comparison with the phonon irradiation of a graphite-like material calculated using the 

lattice dynamics method.22, 37  We followed Ref. 22 in detail, including using the optimized 

Tersoff potential38 for intra-plane interactions and the Lennard-Jones (LJ) potential39 for inter-

plane interactions.  With the resulting all-direction dispersion relation, we calculated the phonon 

irradiation by modifying Eq. (2) in Ref. 22 from classical to Bose-Einstein statistics. 

 Figure D1 shows the comparison between the phonon irradiation calculated using the 

lattice dynamics dispersion and that calculated using our model with velocities (vab,TA = 10,100, 

vab,TL1 = 25,000, vab,TL2 = 5,700; vc,TA = 300, vc,TL1 = 300, vc,TL2 = 2,500 [m/s]) extracted from the 

lattice dynamics dispersion along [100] and [001].  The simple Debye ellipsoid results agree with 
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the full lattice dynamics calculation to within ±10% over a wide temperature range from 200 K 

to 10,000 K.  Below 100 K, the Debye ellipsoid approximation deviates from the lattice 

dynamics results due to the shortcoming described in Section II.A: for the ZA branch, the Debye 

model cannot capture the dependence of phase velocity on the magnitude of the wavevector. 
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CAPTIONS 

TABLE I.  Analytical expressions for the specific heat in several limiting cases.  The model 

recovers the Debye T3 law in the low temperature limit, and the Dulong and Petit law in the high 

temperature limit.  For strongly anisotropic materials at intermediate temperatures, the model 

predicts a T2 dependence and T1 dependence for layered (r >> 1) and chain-like (r << 1) 

materials, respectively.  3 1.202...ζ =  is Apery’s constant. 
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TABLE II.  Analytical expressions for the c-axis irradiation cH  in several limiting cases.  In the 

low temperature limit the model reduces to the blackbody emissive power law.  For intermediate 

temperatures and strongly anisotropic materials, the model predicts a T2 dependence for both 

layered and chain-like materials.  These expressions also highlight the phonon focusing effect of 

the ab-plane velocity abv : except for chain-like materials at intermediate T, in all other cases cH  

is actually increased by reducing abv . 
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TABLE III.  Input parameters for graphite, which are extracted from the phonon dispersion in 

Ref. 16 using the iso-energy-decomposition process described in Section III.A.3. 

Parameter Unit ab-plane c-axis 

vTA m/s   10200  1000 

vTL1 m/s   16200  1000 

vTL2 m/s     6400  2500 

kmax 1010m-1            1.73         1.1 

fE,LO/TO THz 42 

fE,ZO THz 23 
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TABLE IV.  Input parameters for metals.  The number density of primitive unit cells pucn  is 

obtained from Ref. 17 and the velocities from Ref. 2, with the exception of the slightly 

anisotropic titanium for which the effective isotropic velocities are obtained from 
1
32( )iso ab cv v v= , 

where abv  and cv  are calculated from the stiffness constants.11 

 

Material npuc 
(1028m-3) 

vLA 
(m/s) 

vTA 
(m/s) 

Al 6.02 6240 3040 

Au 5.90 3390 1290 

Cr 8.33 6980 4100 

Ti 2.83 6105 2923 
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TABLE V.  Comparison of RMS errors ( ( )( )2
1

. .exp model expN G G G−∑ ) for the different TBC 

models shown in Fig. 8, indicating the improvement of the anisotropic models.  For example, on 

average the anisotropic DMM is seven times better than the standard isotropic DMM as 

compared to the experimental data. 

Model 
RMS 

Al 
RMS 
Au 

RMS 
Cr 

RMS 
Ti 

Avg. 

Aniso-DMM   462%   745%    599%   156%    491% 

Aniso-MTM   569%   973%    715%   245%    626% 

2D-DMM 1023%  1021%   1493%   324%   1010% 

Iso-DMM 3512%  4408%   4807% 1129%   3464% 

ratio: 2D-DMM / Aniso-DMM        2.2        1.6         2.5       2.1         2.1 

ratio: Iso-DMM / Aniso-DMM        7.6        5.9         8.0       7.2         7.2 
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FIG.  1.  (Color online) (a) Iso-energy surface (here for ab cv v> ; the opposite case is 

straightforward).  The ellipsoidal surface has an equatorial radius abvω  and polar radius cvω .  

Its kb-kc projection is an ellipse.  (b) FBZ (here for , ,ab m c mk k> ; the opposite case is 

straightforward) with equatorial radius ,ab mk  and polar radius ,c mk .  Its kb-kc projection is also an 

ellipse. 
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FIG.  2.  (Color online) Two frequency regimes (here for ab cv v> , and , ,ab m c mk k> ; the other 

combinations are straightforward).  (a) When ( ), ,min ,D c D abω ω ω< , all of the states on the iso-

energy surface are allowed.  (b) When ( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < , only the states 

inside the FBZ are allowed.  In both cases the orange shading indicates the allowed states. 
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FIG.  3.  (Color online) Dimensionless DOS, ( ) ( )
1
32

, ,
ˆ 3D ab D c pucD D ω ω η= , as a function of 

dimensionless frequency 
1
32

, ,ˆ ( )D ab D cω ω ω ω= .  While layered materials (r >> 1) show a transition 

from a quadratic to a linear power law with increasing ω, chain-like materials (r << 1) show a 

transition from a quadratic power law to a constant value.  These transitions indicate different 

dimensionality crossovers. 
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FIG.  4.  (Color online) Dimensionless specific heat, ( )ˆ 3 puc BC C kη= , as a function of 

dimensionless temperature, ( )
1
32

, ,
ˆ

D ab D cT T θ θ= , obtained by numerical integration of Eqs. (11a) 

and (11b).  All materials recover the Debye T3 law at low T, and Dulong and Petit limit at high T.  

But at intermediate temperatures the layered materials (r >> 1) show a T2 dependence, while the 

chain-like materials (r << 1) show a T1 dependence. 
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FIG.  5.  (Color online) Dimensionless vDOS defined in Eq. (14), ( ),
ˆ 3 4c c D c puc ch h vω η= , as a 

function of dimensionless frequency, ,ˆ D cω ω ω= .  Both layered (r >> 1) and chain-like (r << 1) 

materials transition from a quadratic power law at low frequency to a constant value at high 

frequency. 
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FIG.  6.  (Color online) Dimensionless c-axis irradiation, ( ),
ˆ 3 4c c puc B c D cH H k vη θ= , as a 

function of dimensionless temperature, ,
ˆ

D cT T θ= , obtained by numerical integration of Eqs. 

(15a) and (15b).  Both layered (r >> 1) and chain-like (r << 1) materials show T4 T2 T1 power 

law transitions. 
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FIG.  7.  (Color online) Debye ellipsoid approximations for the iso-energy surfaces of materials 

with hexagonal symmetry.  The schematics represent projections in the A-Γ-M plane (an A-Γ-K 

plane looks very similar).  (a) Schematic iso-energy surfaces for a graphite-like material with a 

lobed quasi-TA branch and an almost cylindrical quasi-LA branch.  The third branch (pure TA) 

is not shown because it is already well-approximated by an ellipsoid (Eq. 4).   (b) A naive 

approach approximates the quasi-TA with a circumscribed ellipsoid, and the quasi-LA with an 

inscribed ellipsoid.  (c) An improved approach, used in this work, decomposes the quasi-TA and 

quasi-LA branches and then recomposes them as the two ellipsoids TL1 (black) and TL2 (green); 

see Eq. (25).  The original and recomposed iso-energy surfaces in (c) have been offset slightly 

for clarity.  
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FIG.  8.  (Color online) Comparison with experimental data for specific heat of (a) graphite and 

(b) HDPE, showing that the anisotropic Debye model successfully reproduces the specific heat 

of these strongly anisotropic materials.  The model parameters for graphite are fully determined 

from the published dispersion relation without any fitting, while the HDPE model has two 

adjustable parameters because no published dispersion information was available.   
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FIG.  9.  (Color online) Comparison with experimental data5 for TBC between graphite and (a) 

Al, (b) Au, (c) Cr, and (d) Ti.  In each case, four different models are considered: the traditional 

isotropic DMM,2 the 2D-DOS DMM,8 and the anisotropic DMM and MTM from the present 

work.  All models include the same pre-factor [Eq. (17)] and assume inelastic transmission 

across interfaces.  The corresponding RMS errors are summarized in Table V.  Key qualitative 

differences among the models are indicated by the iso-energy surfaces and group velocity 

vectors sketched in (e): as compared to the aniso-DMM, the 2D-DOS-DMM neglects the 

continuous transition from vab to vc, while the iso-DMM is equivalent to decreasing vab and 

increasing vc.  In both cases, the additional approximations to vab and vc tend to overestimate the 

c-axis heat transfer (Table II). 
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FIG.  A1.  (Color online) Mathematical framework to evaluate Eq. (10) for 

( ) ( ), , , ,min , max ,D c D ab D c D abω ω ω ω ω< < .  For materials with anisotropy ratio r > 1, the ka-kb 

projection of the iso-energy surface within the FBZ is an annulus.  For materials with r <1, the 

projection of the iso-energy surface becomes instead a disk. 
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FIG.  B1.  (Color online) 2D and 1D phonon gas models to verify the specific heat and c-axis 

irradiation of strongly anisotropic materials at intermediate temperatures 

[ , , , ,min( , ) max( , )D c D ab D c D abTθ θ θ θ ].  The two key features are the DOS and the c-axis 

component of the group velocity. 
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FIG.  D1.  (Color online) Comparison with lattice dynamics calculation (all-direction-dispersion) 

for phonon irradiation of a graphite-like material, showing errors less than 10% from 200 K – 

10000 K.  The disagreement at lower temperature is due to the failure to capture the reduced 

group velocity of ZA phonons at long wavelengths.12  The Debye model parameters for this 

graphite-like material are fully determined from the dispersion calculated from the lattice 

dynamics method22 without any fitting. 


