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We study the effect of electron-electron interaction on the charge and spin structures at the
edge of integer quantum Hall liquids, under three different kinds of confining potentials. Our
exact diagonalization calculation for small systems indicates that the low energy excitations of
ν = 1 ferromagnetic state are bosonic edge spin waves. Instabilities of the ferromagnetic state with
altering confinement strength result from the softening of these edge spin waves, and formation of
edge spin textures. In ν . 2 regime, exact diagonalization on edge electron systems indicates that
compact Hartree-Fock states with different total spin always become ground states in some regions
of parameter space, and the ground states appear in between two compact states are their edge spin
waves. The initial ν = 2 instability is toward the compact state with total spin 1. Larger systems
are studied using a microscopic trial wave functions, and some quantitative predictions on the edge
instabilities for a certain type of confining potential are reached in the thermodynamic limit.

PACS numbers:

I. INTRODUCTION

In quantum Hall (QH) systems the charged bulk exci-
tations are gapped, while gapless excitations exist at the
edges.1,2 Due to the quantization of kinetic energy un-
der strong magnetic field, the physics of edge excitations
depends on the interplay of electron-electron interaction
and the confining potential. The different manners in
which the two dimensional electron gas (2DEG) is con-
fined lead to rich electronic structures at the edges of the
sample.

The edge of a ν = 1 spinless QH liquid confined
in a simple geometry by a sharp confining potential is
described by the ZF = 1 chiral Fermi-liquid theory.1

With smoother confinement, the edge undergoes a charge

reconstruction transition in which separated electronic
lumps appear and bring new boundaries with even num-
ber, breaking the chirality.3,4 Further including the spin
freedom and with sufficiently weak Zeeman splitting,
Hartree-Fock (HF) technique shows that the charge re-
construction transition is pre-emptied by formation of
edge spin texture.5 In fact closely related edge spin re-

construction was found for ν = 2 within HF approxi-
mation, in which a spin polarized strip is created along
the edge and through which the edge undergoes a second-
order spin-unpolarized to spin-polarized transition as the
confining potential smoothes.6,7 The edge modes associ-
ated with this spin reconstruction of ν = 2 edge show
up in NMR8 and momentum-resolved electron tunneling
spectroscopy.7 Still within HF approximation, Barlas et

al.9 found that under sufficiently weak triangular confin-
ing potential, unpolarized ν = 2 state’s spin-polarization
transition is preceded by a charge reconstruction of a sin-
gle spin species, creating a detached spin-polarized strip.
This kind of edge structure are understood as a simul-
taneous edge charge and spin reconstruction. It is these
recent theoretical and in particular, experimental devel-
opments that motivated the present work, which go be-

yond earlier theoretical work5,6,9–12 in several aspects.

First of all, earlier studies of integer QH edge instabil-
ities and reconstructions were mostly based on HF ap-
proximation, and focused on the ground states only. In
the present work we perform detailed exact diagonaliza-
tion study on the same systems. In addition to obtaining
the exact ground states, we also obtain the low-energy
spectra of the system before instabilities occur, which
provide deeper insight into the nature of the instabilities
and the mechanisms of the corresponding edge recon-
structions.

Secondly, details of a QH liquid’s edge structure may
also depend on the detailed form of the confining poten-
tial. Earlier works usually focus on one specific type of
confining potential. In this paper, we consider a 2DEG
with disk geometry under three different types of con-
finement. Positive background charge confining poten-
tial is usually used to model a realistic confinement.13

Parabolic confining potential is commonly used in the
research of QH dots.3,14 By numerically solving the Pois-
son and Schrodinger equations for electron states in
a GaAs/AlxGa1−xAs heterostructure with three spa-
tial dimensions’ confinement in Hartree approximation,
Kumar et al. argue that it is reasonable to model a
real QH dot device’s confining potential as a parabolic
one.15 Linear confining potential also deserves some at-
tention, because the recent momentum-resolved tunnel-
ing experiments7 for parallel wires which can be modeled
as linear confining potential, have observed edge spin
reconstruction, and more complicated edge charge and
spin reconstruction is found in a similar triangular con-
fining potential.9 Such a comprehensive study allows us
to compare the systems’ behavior under different types
of confinements, and distinguish between universal and
non-universal aspects of edge physics.

Last but not least, here we study ν = 1 and ν = 2
edges together, and reveal the similarities and differences
in their behavior. Such side-by-side comparison has not
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been performed before. In fact insights from the study of
ν = 1 are crucial to our understanding of the ν = 2 case.
Our most robust results are summarized as what fol-

lows. Ignoring Zeeman coupling, the low energy spectra
of ν = 1 ferromagnetic state can be mapped onto those
of ∆S = −1 bosons on top of the ferromagnetic state.
These excited bosons are edge spin waves (ESWs), which
propagate in both directions. Under positive background
charge confining potential, the ferromagnetic state is sta-
ble as the distance d from positive background charge
layer to 2DEG approaches zero. When the distance d be-
comes larger, ferromagnetic state is destabilized by soft-
ening of ESWs, resulting in edge spin textures. Under
parabolic or linear confinement, the ferromagnetic state
is destabilized by softening of ESWs under both smoother
and stronger confinements, and the ferromagnetic state
window disappears as the particle number N increases.
In ν . 2 regime, compact states (defined below) with
different total spin S can always become ground states
in some regions of parameter space. The low energy ex-
citations of a compact state can be mapped onto those of
∆S = −1 bosons on top of it, thus are ESWs of this com-
pact state. The ground states appearing in between two
different compact states can thus be viewed as edge spin
textures as well. The initial ν = 2 instability is toward
the S = 1 compact state.
The rest of the paper is organized as what follows.

In Sec. II, we introduce the models, provide some nu-
merical details of our calculations, and an electrostatic
model which gives some qualitative understanding on in-
teger quantum Hall liquid’s edge instabilities. In Sec.
III we investigate the low energy excitations and edge
instabilities of ν = 1 ferromagnetic state using exact di-
agonalization on small systems and a microscopic trial
wave function on large systems. Sec. IV considers the
low energy excitations and edge instabilities of ν = 2
unpolarized state. Besides carrying out exact diagonal-
ization on small systems, we also study the large systems
by separating out the edge electron systems and using ex-
act diagonalization on them. Some concluding remarks
are made in Sec. V. We make comparisons with earlier
work wherever appropriate.

II. THE MODELS AND ELECTROSTATIC

CONSIDERATION

A. The models

We consider a 2DEG with spin degree of freedom in a
disk geometry. The single particle Hamiltonian is

H =
1

2me
[p+

e

c
A(r)]2 + U(r) + gµBszB, (1)

where me, −e is the mass and charge of a single elec-
tron respectively. c is the speed of light. µB is the Bohr
magneton. p is the momentum operator. U(r) is the ro-
tationally invariant confining potential. The vector po-

tential A = (−By/2, Bx/2, 0) in symmetric gauge. sz
is the z axis component of single particle spin operator.
Confining electrons to the lowest Landau level (LL), the
single particle wave functions are

φm(z) = (2πl2B2
mm!)−1/2zme−|z|2/4, (2)

where z = (x − iy)/lB is the complex coordinate in the

plane of the 2DEG and lB =
√

~c/eB is magnetic length,
m = 0, 1, 2, · · · . The complete Hamiltonian in symmetric
gauge is then

H =
1

2

∑

m,n,l,σ,σ′

V l
mnc

†
m+l,σc

†
n,σ′cn+l,σ′cm,σ +

∑

m,σ

U cp
m n̂m,σ

+
1

2
gµBB

∑

m

(n̂m,↑ − n̂m,↓),

(3)

where c†m,σ is the electron creation operator for the lowest
LL single-electron state with orbital angular momentum
m and spin σ, n̂m,σ = c†m,σcm,σ is the occupation number
operator of the mth orbital with spin σ, and

V l
mn =

∫

d2r1

∫

d2r2φ
∗
m+l(r1)φ

∗
n(r2)

e2

ǫr12
φn+l(r2)φm(r1)

(4)

represents the electron-electron Coulomb interaction (ǫ is
the dielectric constant). U cp

m is the matrix element of the
rotationally invariant confining potential. Hamiltonian
(3) has rotational symmetry, and also commutes with
total spin operator S and its z axis component Sz. Total
angular momentum M , total spin S and Sz are good
quantum numbers.
In GaAs, arising from band structure and spin-orbit

coupling, electron spin g factor is renormalized to g ≈
−0.44. The ratio of Zeeman energy gµBB to the typi-
cal Coulomb interaction energy e2/(ǫlB) is nearly 1/55
under magnetic field B = 9T . Thus the Coulomb inter-
action dominates the Zeeman gap in the magnetic fields
of interest. Actually, the g factor could even be tuned by
quantum confinement16 or by application of hydrostatic
pressure, and could pass through zero in these circum-
stances. We thus ignore the Zeeman term when studying
the edge spin excitations of integer quantum Hall liquids
most of the time. As a result for each energy level with
quantum number S obtained in exact diagonalization,
it has degeneracy 2S + 1 with different choices of Sz.
Adding back a Zeeman term will not change the eigen-
states, but only split the original degenerate energy lev-
els and give the states with different Sz different energy
shifts; we will also consider the effects of such splitting
below.
To model the confinement of 2DEG based on a

modulation-doped AlGaAs/GaAs heterostructure, we as-
sume a uniformly distributed neutralizing positive back-
ground charge layer at a distance d above the 2DEG
as in Fig. 1. The radius of the positive background
is R =

√

2N/ν, so the disk encloses exactly N/ν mag-
netic flux quanta for N -particle 2DEG system. Coulomb
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FIG. 1: (Color online) Sketch of an electron (blue) layer and
a uniformly distributed neutralizing background charge (red)
layer separated by a distance d from each other in disk geom-
etry.

interaction between the positive background charge and
the 2DEG gives rise to the positive background charge

confining potential

U cp
m =

eρ

2π2mm!

∫ ∫

r2<R

d2r1d
2r2

1
√

d2 + r212
r2m1 e−r2

1
/2,

(5)
where ρ is the charge density of the background. The
ratio of distance d between the electron layer and the
background charge layer to magnetic length lB: d/lB, is
the tuning parameter that controls the relative strength
of the confining potential to the electron-electron inter-
action.
For parabolic confining potential U(r) = βr2,

∑

m,σ

U cp
m n̂m,σ =

∞
∑

m=0,σ

〈m|βr2 |m〉 n̂m,σ

= b
∞
∑

m=0,σ

2(m+ 1)(
e2

ǫlB
)n̂m,σ

= b× 2(M̂ + N̂)(
e2

ǫlB
).

(6)

The coefficient β represents the steepness of the parabolic
confinement, which is in units of meV/nm2. In this case,

b = βl2B/(
e2

ǫlB
) (7)

is the dimensionless tuning parameter, which is propor-
tional to steepness coefficient β and the 3/2 power of
magnetic field strength B. The one body confining po-
tential operator can be written as the function of total
orbital angular momentum operator M̂ , and total parti-
cle number operator N̂ .

For linear confining potential U(r) = αr,

U cp
m = 〈m|αr |m〉

= a

√

π

2

(2m+ 1)!!

2mm!
(
e2

ǫlB
),

(8)

where the coefficient α represents the slope of the linear
confining potential, which is in units of meV/nm. Here,

a = αlB/(
e2

ǫlB
) (9)

is the dimensionless tuning parameter, which is propor-
tional to the confining potential’s slope α and magnetic
field strength B.
For the exact diagonalization calculations of small sys-

tems below, we limit N particles in a finite number Norb

of orbitals, and solve the problem in subspaces with cer-
tain quantum numbers M , S and Sz. Therefore the
Hilbert space could be limited to a reasonable size and
exact diagonalization could be carried out. For the ex-
act diagonalization calculations in Sec. III.A and IV.A,
we give each electron system a sufficiently large orbital
number Norb (Norb = 16, 23, 19 for N = 8, 10, 12 system
respectively), so that the calculated orbital occupation
numbers nm approach 0 in the outermost given orbitals.
For this reason, we believe that the limited orbital num-
ber Norb we have chosen has little effect to restrict the
electrons to the inner orbitals, and the results will not
change qualitatively if larger Norb is used in this exact
diagonalization calculation.
At this point, we also need to introduce a standard to

identify the filling factor ν of the electron systems for the
future calculation. For finite systems it is very easy to
identify the ν = 1 and 2 states, because electrons just
completely occupy the innermost lowest LL orbitals of
the single or two spin component(s) and form a Slater
determinant state. The finite size systems for ν = 2
state study should have even numbers of particle. As
the confinement smoothes, electron system transits from
unpolarized ν = 2 state to partially polarized states, and
finally to polarized ν = 1 state. When the system is in
this transition region, we say it is in 1 ≤ ν ≤ 2 regime.
For an electron system with filling factor ν = 1, when
the confinement becomes smoother (stronger), electrons
would tend to distribute in more (less) orbitals. If the
confinement becomes a little smoother (stronger) and the
system has just undergone a few transitions from the
original ν = 1 state, we say this system is in ν . 1 (ν & 1)
regime. The identification is similar for ν = 2 state. But
filling factor could not be larger than 2 if Hilbert space is
truncated to the lowest LL, so only ν . 2 regime exists.

B. Electrostatic consideration of origin of edge

instabilities

Before studying edge instabilities of ν = 1 and ν = 2
QH liquids numerically, we introduce an electrostatic
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FIG. 2: (Color online) (a) Edge test electron and electron
layer in disk geometry. (b) Edge test electron and eletron layer
in strip geometry. (c) Edge test electron and semi-infinite
electron layer and positive background charge layer.

model, which gives us some qualitative understandings
of the instabilities, especially for large systems. The ex-
pectation value of r2 for single electron state of the low-
est LL is 2(m + 1)l2B, so it is reasonable to make the
approximation that every 1 (2) electron(s) occupy area
2πl2B and the whole −Ne charge uniformly distributes in

a disk with radius R =
√
2NlB (

√
NlB) for ν = 1 (2)

state. The charge density is σ = −e/(2πl2B) for ν = 1
state, and −e/(πl2B) for ν = 2 state.

The edge instability and the resultant structure is de-
termined by the competition between electron-electron
repulsion and confinement potential. We thus consider
the forces felt by a test electron at the border of this
disk. Quantum mechanically the electron’s wave function
has width ∼ lB in the radial direction. For this reason,
in the electrostatic model, we put the test electron at a
point which is lQM away from the electron layer’s bor-
der and lQM ∼ lB. Besides direct interaction, exchange
interaction between two electrons with same spin in the
2DEG, is also an essential factor of edge instability. To
include exchange interaction in our electrostatic model,
we consider the following. First, exchange interaction is
attractive, which can be modeled as the direct interac-
tion between some hypothetical positive charges in the
disk and the edge test electron. Second, exchange in-
teraction has a short range with the order of magnetic
length lB in the QH regime. Therefore, including the
effect of exchange interaction at ν = 1 (where exchange
effects exists between all pairs of electrons), we reduce
the radius of the (negatively charged) disk from R to

R− lex without changing the charge density σ, where lex
also has the order of lB. A similar model (with proper
modification) can be used to describe the ν = 2 case.
As shown in Fig. 2(a), the electrostatic model for

2DEG ν = 1 state is an electron disk with uniform charge
density σ = −e/(2πl2B), radius R =

√
2NlB − lex, and an

edge test electron with distance l = lQM + lex away from
the electron disk. For ν = 2 state, we need two electron
disks and one edge test electron to model the system; one
of the disks with uniform charge density σ = −e/(2πl2B)
and radius R =

√
NlB − lex, models the electrons in the

plane with the same spin as the edge electron, and the
other disk with uniform charge density σ = −e/(2πl2B)
and radius R =

√
NlB, models the electrons in the plane

with the different spin as the edge electron. Edge test
electron is l = lex + lQM away from the first disk and
lQM away from the second disk in the ν = 2 state’s elec-
trostatic model.
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FIG. 3: (Color online) Numerically calculated force F felt by
the test electron vs R/l in the range R/l ∈ [0, 500] (blue line)
and its fitting function 2.0251 ln(R/l) (dashed red line) in disk
geometry.

To study the edge instabilities, we first consider the
force felt by the edge test electron from the electron disks
in this model. In the strip geometry of the same prob-
lem, it is easy to obtain an explicit form of this force,
which is what we consider first. As Fig. 2(b), it is
straightforward to show that the edge test electron feels a
force F = 2 ln(L/l)(eσ/ǫ) in x direction from the electron
layer, where L is the width of the strip and l is the dis-
tance from the test electron to the electron layer. When
the system is large (R ≫ lB), the force felt by edge test
electron in disk geometry tends to be the same as the
one in strip geometry, where R plays the role of L. In
disk geometry as Fig. 2(a), force F felt by the edge test
electron vs R/l in range [0, 500] is calculated numerically
in Fig. 3. It is well fitted by a function 2.0251 ln(R/l).
The coefficient of lnR/l approaches 2 as the strip one
with increasing R. Therefore, numerically we can see the
force felt by edge test electron in disk geometry has a
logarithmic dependence of R/l. l equals lQM + lex as the
test electron’s spin is the same as the ones in electron
disk, and lQM as they are different.
The inward force from the confining potential is pro-

portional to R under parabolic confining potential, and
is a constant under linear confining potential. Because
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of logarithmical R dependence of the outward force from
the electron disk, thermodynamic limit does not exist for
edge instability critical points (bc and ac) for these two
types of confinements. By further approximating that
lQM ≈ lB, lex ≈ 0 and F ≈ 2 ln(R/l), the electrostatic
model predicts that for N ≫ 1 the critical point of ν = 1
instability (smoother confinement side) decreases (in-

creases) as bc ∼ [ln(2N)]/(4π
√
2N) (ac ∼ [ln(2N)]/(2π))

with increasing particle number N under parabolic (lin-
ear) confining potential. By the same approximations for
N ≫ 0, the critical point of ν = 2 instability decreases
(increases) as bc ∼ [lnN ]/(2π

√
N) (ac ∼ (lnN)/π) with

increasing particle number N under parabolic (linear)
confining potential.
For large systems under positive background charge

confining potential, the electron layer and background
charge layer could be approximated as two semi-infinite
layers as Fig. 2(c). For ν = 1 state, when the distance of

the two layers d =
√

l2ex + 2lexlQM , the force felt by the
edge test electron becomes zero and ν = 1 edge instabil-
ity happens when d further increases. For ν = 2 state,
when the distance of the two layers d =

√

l2ex/4 + lexlQM ,
the force felt by the edge test electron becomes zero and
ν = 2 edge instability happens when d further increases.
Because lQM and lex are independent of R when R≫ lB,
the thermodynamic limit exists for positive background
charge confinement. From the electrostatic model, we
can also predict that in thermodynamic limit, the ν = 2
edge instability critical point dc is larger than the one for
ν = 1 edge instability, and they are both of order lB.
These conclusions are confirmed by numerical results

presented below, and also consistent with earlier work on
fractional QH edge reconstructions.13

III. LOW ENERGY EDGE EXCITATIONS AND

EDGE INSTABILITIES OF ν = 1
FERROMAGNETIC STATE

In this section, we investigate the low energy excita-
tions of ν = 1 ferromagnetic state under the three kinds
of confinements. First exact diagonalization results are
presented for small systems. The low energy spectra can
be mapped onto those of ∆S = −1 bosons on top of the
ferromagnetic states. By investigating the spin structure
of these low energy excitations, we conclude that they are
edge spin waves (ESWs). Microscopic trial wave func-
tions are constructed to describe the ESWs, which allow
for their studies in larger systems. We conclude that the
edge instabilities of the ν = 1 ferromagnetic state are
triggered by the condensation of the ESWs which results
in edge spin textures.

A. Exact diagonalization study for small systems

In this subsection exact diagonalization method is used
to study the small electron systems close to ν = 1 fer-
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FIG. 4: (Color online) Low energy spectrum of 10-electron
system under parabolic confining potential when b = 0.06.
The different total spin quantum numbers S of the eigenstates
are labeled by different colors as the annotation. The ground
state is ν = 1 ferromagnetic state (F). Low energy excitations
in ∆M > 0 subspaces are enclosed by dashed boxes, and
low energy excitations in ∆M < 0 subspaces are enclosed by
dotted boxes. The number below each box is the number of
states inside the box.

∆M boson configuration ∆S ∆M boson configuration ∆S
±1 n±1 = 1 1

±4
n±2 = 2 2

±2
n±1 = 2 2 n±4 = 1 1
n±2 = 1 1

±5

n±1 = 5 5

±3
n±1 = 3 3 n±1 = 3, n±2 = 1 4

n±1 = 1, n±2 = 1 2 n±1 = 2, n±3 = 1 3
n±3 = 1 1 n±1 = 1, n±2 = 2 3

±4
n±1 = 4 4 n±1 = 1, n±4 = 1 2

n±1 = 2, n±2 = 1 3 n±2 = 1, n±3 = 1 2
n±1 = 1, n±3 = 1 2 n±5 = 1 1

TABLE I: One-to-one correspondence between the configura-
tions of spin ∆S = −1 bosons and the low energy excitations
in each angular momentum subspace ∆M of N = 10 system
under parabolic confinement. ∆M is the difference of angu-
lar momentum quantum number M compared to the one for
ferromagnetic state. nq is the number of bosons with angular
momentum q.

romagnetic state under the three confinements. Fig. 4
is the 10-electron system’s low energy spectrum under
parabolic confinement with b = 0.21 (ferromagnetic state
is the ground state). We will use this specific spectrum
to show some low energy spectra’s common character-
istics shared by all small systems we studied and un-
der all the three confinements. ∆M = M −M0 is the
difference of orbital angular momentum quantum num-
ber M compared to the one M = M0 for ferromag-
netic state (M0 = 45 for N = 10 system). In the sub-
spaces with ∆M > 0, a set of low energy excitations
(enclosed by dashed boxes in Fig. 4) are separated from
higher energy states. One of these excitations becomes
the ground state and thus destabilizes the ferromagnetic
ground state with smoother confinement. These low en-
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FIG. 5: (Color online) Charge density ρ(r) (red lines) and
change of spin density’s z axis component ∆sz(r) (dashed red
lines) for the low energy excitations of ν = 1 ferromagnetic
state, in (a) subspace ∆M = 1, Sz = S = 4 and (b) subspace
∆M = −1, Sz = S = 4, of the 10-electron system under
parabolic confinement with b = 0.06. The charge density
profiles of low energy excitations have no big change compared
to the one of ferromagnetic state (blue line).

ergy excitations all have nonzero ∆S and the polarized
excitations with ∆S = 0 have higher energies compared
to them. In the subspaces with ∆M < 0, another set of
low energy excitations (enclosed by dotted boxes in Fig.
4) are separated from higher energy states, and one of
these excitations becomes the ground state with stronger
confinement (except for positive background charge con-
finement case where the ferromagnetic state remains sta-
ble all the way to d = 0.). Polarized excitation with
∆S = 0 does not exist in the subspaces with ∆M < 0,
because all the lowest orbitals with up spin are already
occupied in the ferromagnetic state. More interestingly,
the low energy spectrum (enclosed by the boxes) matches
that of a bosonic system, with each boson reduces the
system’s total spin by 1. The one-to-one correspondence
between the bosonic states and low energy excitations of
this 10-electron system under parabolic confinement is
shown in Table I. Figs. 5 shows the charge and spin den-
sity profiles of the bosonic states in subspaces ∆M = 1
and −1 of the spectrum Fig. 4. While charge density
profiles are almost identical to that of the ferromagnetic
state, we find the flipped spin is confined to the edge. We
thus conclude the bosons excited from the ferromagnetic
state are actually edge spin waves (ESWs),11 which can
propagate both along the clockwise (∆M > 0 bosons)
and anti-clockwise (∆M < 0 bosons) directions. We re-
peat that the characteristics stated above are shared by
all small systems we studied and under all the three con-
finements.
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H e L
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FIG. 6: (Color online) Phase diagrams of 8, 10-electron
systems under (a) ν = 1 positive background charge, (b)
parabolic, (c) linear confining potential in ν . 1 regime, and
under (d) parabolic, (e) linear confining potential in ν & 1
regime based on exact diagonalization. ∆M (∆S) is the
difference between orbital angular momentum (spin) quan-
tum number M (S) and that of ν = 1 ferromagnetic state
for each system. ∆S of ground states are labeled by the
bars with different colors as the annotation. Step values are
∆(d/lB) = 10−2, ∆b = 2 × 10−4 and ∆a = 2 × 10−3 for the
three confinements respectively. The configuration of bosons
of case (c) is written above each ground state and nq is the
occupation number of the boson with angular momentum q.
For the ground states of all the other cases above, the configu-
rations of bosons are n1 = ∆M if ∆M > 0, and n−1 = −∆M
if ∆M < 0.

Fig. 6 presents the phase diagrams of 8, 10-electron
systems close to ν = 1 ferromagnetic states under
the three confinements. As the confinement becomes
smoother, the energy of a single boson state with some
positive angular momentum q = q0 corresponding to
clockwise ESW first crosses that of the ferromagnetic
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state, thus destabilizes it. There are interactions among
these bosons. As the confinement further smoothes, the
bosons start to condense because in this process the
benefit of adding a new boson with angular momentum
q0 would exceed the cost of the accompanying increase
of interaction energy. When the confinement becomes
smoother, the minimum of boson dispersion shift from
q = q0 to q = q′0. If that happens, the system will
choose to condense q′0 bosons, instead of q0 bosons. Us-
ing this picture, we can understand why in the phase di-
agrams Fig. 6(a-c) the systems flip spins one by one with
smoother confinement and quantum number ∆M+q0∆S
is conserved for all the ground states. q0 may change
along with different tuning parameters as in Fig. 6(c).
When the confinement becomes stronger, the systems
start to condense bosons with q = −1, which correspond
to anti-clockwise ESWs. As in Figs. 6(d,e), the systems
will condense all the possible q = −1 bosons to form spin
singlet states either at one time, or within a much smaller
range of tuning parameter compared to the transitions in
smoother confinement side.
Exact diagonalization results also show that under pos-

itive background charge confining potential, once the sys-
tem transits to ν = 1 ferromagnetic state, the phase will
be stable as d/lB approaches zero.
When the confinement becomes smoother, for all the

three confinements δU cp
m < δU cp

m′ (m > m′), where δU cp
m

is the change of confining potential in orbital m. The
electrons near the edge see an larger additional outward
force, thus are more likely to jump to the (m + q)th or-
bital (q > 0) with down spin from its original mth or-

bital with up spin to form a particle-hole pair b†m,q,↓ |F 〉.
By contrast, when the confinement becomes stronger,
δU cp

m > δU cp
m′ (m > m′). The electrons in the bulk see

an larger additional inward force, thus are more likely to
jump to the (m+q)th orbital (q < 0) with down spin from
its original mth orbital with up spin to form a particle-
hole pair. Therefore, in ∆Sz = −1 sector, all bosonic
excitations with positive q happen near the edge (ESW);
while all bosonic excitations with negative q happen in
the bulk (SW).

B. Microscopic trial wave function study for large

systems

Having identified the low energy excitations at ν = 1
as bosonic ESWs on top of the ferromagnetic state, we
want to construct microscopic trial wave functions to
approximate them. Like Abelian bosonization in one-
dimensional Fermi gas, the bosonic generators do not re-
spect the SU(2) spin rotational symmetry. For this rea-
son, we only choose one state among all the degenerate
states in each energy level with spin quantum number
S to represent all states in this level. The state we will
choose is the one with Sz = S, because upon adding a fi-
nite Zeeman term this state’s energy is the lowest within
this family.

On top of the Sz = S ferromagnetic state

|F 〉 =
N−1
∏

m=0

c†m,↑ |0〉 , (10)

the bosonic generators of ESWs were first constructed by
Oaknin et al.10 We rewrite them as

B†
q,σ =

N−1
∑

m=0

ψm,q,σb
†
m,q,σ, (11)

where b†m,q,σ ≡ c†m+q,σcm,↑, q is an integer and σ =↑ or
↓. There is one flipped spin if σ =↓ (∆Sz = −1), and
no flipped spin if σ =↑ (∆Sz = 0). On top of the ferro-
magnetic state with Sz = S in Eq. (10), b†m,q,σ generate
a basis with dimension N for σ =↓ and dimension q for
σ =↑. After diagonalizing the matrix

〈F |











b0,q,σ
b1,q,σ
...

bN−1,q,σ











H
(

b†0,q,σ, b
†
1,q,σ, · · · , b†N−1,q,σ

)

|F 〉

(12)
in which the Hamiltonian H is defined in Eq. (3)
and g = 0, ψm,q,σ is determined by identifying that
N−1
∑

m=0
ψm,q,σb

†
m,q,σ is the state with the lowest energy and

is normalized. Because

[Bq,σ, B
†

q′,σ′ ] = δq,q′δσ,σ′

N−1
∑

m=0

ψ2
m,q,σ(bm,q,σb

†
m,q,σ−b

†
m,q,σbm,q,σ)

(13)

but

〈F | [Bq,σ, B
†
q′,σ′ ] |F 〉 = δq,q′δσ,σ′ , (14)

the states generated by B†
q,σ can be approximated as

bosons, especially when the number of excitations are
small. The state of n bosons with q and σ is

(B†
q,σ)

n |F 〉 = (

N−1
∑

m=0

ψm,q,σc
†
m+q,σcm,↑)

n |F 〉 . (15)

Compared with the exact low energy excitations, the
microscopic trial wave functions (15) have good quantum
numbersM and Sz but not S. Nevertheless they do have
large overlaps with the exact excited states (see Table
II for examples). The overlaps increase with increasing
particle number N , and we do not fully understand the
reason of this surprising behavior yet.
The bosonic excitations (15) are classified into two dif-

ferent types. The excitations generated by B†
q,↑ (∆Sz =

0 sector) are the well studied edge magneto-plasmons

(EMPs).3,4 Since B†
q,↑|F 〉 = 0 for q < 0, EMP can only

carry positive angular momentum and is thus chiral. It
excites the edge by creating a charge density wave with
positive angular momentum q which propagates along
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N positive background parabolic linear
8 0.8643 0.8584 0.8865
9 0.9164 0.9136 0.9134
10 0.9889 0.9896 0.9530
11 0.9904 0.9910 0.9864
12 0.9916 0.9920 0.9875
13 0.9926 0.9929 0.9884
14 0.9934 0.9936 0.9891
15 0.9941 0.9942 0.9897
16 0.9946 0.9947 0.9901
17 0.9951 0.9951 0.9905
18 0.9955 0.9954 0.9909
19 0.9959 0.9957 0.9912
20 0.9962 0.9960 0.9914

TABLE II: Overlaps between B†
1,↓ |F 〉 and the exact lowest en-

ergy state in the subspace withM =M0+1 and Sz = N/2−1,
as functions of the number of electrons under three different
kinds of confinements. In calculating these states, tuning pa-
rameters of confinement are chosen as the critical values of the
ferromagnetic state’s initial instibility with smoother confine-
ment.

the clockwise direction only. The excitations generated

by B†
q,↓ (∆Sz = −1 sector) are the ESWs discussed in

last subsection. As a non-chiral excitation, ESW excites
the edge by creating a clockwise edge spin wave with
positive q or anti-clockwise edge spin wave with negative
q.
For larger systems, exact diagonalization is not feasi-

ble. The microscopic wave functions (15) give us a tool
to study the instabilities near the ferromagnetic states.
The energies of a single boson with q, σ and two bosons
with the same q, σ on top of the ferromagnetic state are

△E(q,σ)
1 =

〈F |Bq,σHB
†
q,σ |F 〉

〈F |Bq,σB
†
q,σ |F 〉

− 〈F |H |F 〉 (16)

and

△E(q,σ)
2 =

〈F | (Bq,σ)
2H(B†

q,σ)
2 |F 〉

〈F | (Bq,σ)2(B
†
q,σ)2 |F 〉

− 〈F |H |F 〉 (17)

respectively. ε
(q,σ)
0 = △E(q,σ)

1 is the kinetic energy of a

single boson, and ε
(q,σ)
int = ∆E

(q,σ)
2 −2∆E

(q,σ)
1 is the inter-

action energy between the two bosons. The energy of n
bosons with the same q and σ on top of the ferromagnetic
state is

△E(q,σ)
n = nε

(q,σ)
0 +

n(n− 1)

2
ε
(q,σ)
int . (18)

In the exact diagonalization calculation for small sys-
tems, besides ferromagnetic state, the ground states are
always the bosonic states consisting of bosons with the
same q and σ. Assuming this is also true for larger sys-
tems and using Eq. (18), we obtain the phase diagrams
close to ferromagnetic states under the three confine-
ments for particle number up to 40 (Fig. 7). We first no-
tice that when the confinement smoothes, phase bound-
aries of ferromagnetic states are determined by the ESW

instabilities, rather than the EMP instabilities. With
smoother confinement, ESWs are generated one by one
to lower the systems’ energy.
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FIG. 7: (Color online) Phase diagrams based on trial wave
functions close to ν = 1 for large systems under (a) ν = 1
positive background charge, (b) parabolic and (c) linear con-
fining potentials. ν = 1 ferromagnetic states (F) transit to

bosonic states of the form (B†
q,↓)

n |F 〉 with varying strength
of confinement. Whenever one more boson is generated, a
point is plotted to label the critical tuning parameter of this
transition. The color of each point represents the angular mo-
mentum quantum number q of generated bosons, as labeled in
the annotation. There is one exception. Under parabolic con-
finement and with stronger confinement, the ferromagnetic
state condenses q = −1 bosons one by one when N ≤ 12,
but transits to unpolarized (even N) or spin 1/2 (odd N)
state directly when N > 12 (its critical point is labeled by
a bigger gray point). In the smoother confinement side, the
phase boundaries of ferromagnetic states are determined by
the edge spin wave instabilities, rather than the edge magne-
toplasmon instabilities (labeled by triangles). For 8 and 10-
electron systems, the critical points of ferromagnetic state’s
initial instability calculated by exact diagonalization are la-
beled by crosses in smoother confinement side, and circles in
stronger confinement side.

For positive background charge confining potential,
ESWs in ∆Sz = −1 sector with q = 1 are generated
on the ferromagnetic state one by one with smoother
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FIG. 8: Dispersion relation calculated by trial wave functions
for edge magnetoplasmon (EMP) and edge spin wave (ESW)
in N = 40 system under parabolic confining potential (b =
0.0387). The arrows label the minimum of each branch of
excitations. The dispersion relation of ESW is fitted well by
a parabola.

confinement. The critial value of ferromagnetic state’s
initial instability approaches a constant with increasing
particle number, which implies the existence of thermo-
dynamic limit. Therefore, we predict that in thermody-
namic limit, the instabilities close to ferromagnetic state
under positive background charge confinement are the
condensation of ∆Sz = −1 bosons with modulation an-
gular momentum q = 1 (the lowest possible modulation
angular momentum), and the critial point of ferromag-
netic state’s initial instability dc/lB ≈ 0.8.

Under parabolic and linear confinements, the systems
tend to condense ∆Sz = −1 bosons with larger modula-
tion angular momentum q to minimize the energy, espe-
cially when the particle number becomes large. For a cer-
tain system, the minimum of the bonson’s dispersion may
also change from one angular momentum q to another.
Fig. 8 shows the dispersion relation of ESW in N = 40
system under parabolic confinement when b = 0.0387.
At this tuning parameter, the minimum is at q = 2 and
its energy is lower than the ferromagnetic state’s energy,
so the system prefers to condense q = 2 bosons. With
smaller b, the minimum would shift to q = 3, then the
system gives up the q = 2 bosons and chooses to condense
q = 3 bosons. This process can also be observed in the
phase diagram Fig. 7(b), where the color of instabilities’
critical points changes from red to green with smaller b
when N = 40. As the confinement is strengthened un-
der parabolic and linear confinement, ∆Sz = −1 bosons
with q = −1 are always favored to be condensed. It is the
condensation of these ESWs that drives spin edge recon-
struction (or formation of edge spin textures) at ν = 1.17

First order phase transition will happen under parabolic
confinement (N > 12). Instead of generating bosons one
by one as the linear confinement case or small systems
(N ≤ 12), the system prefers to generate all the possible
bosons at one time. The window of ν = 1 ferromagnetic
state decreases to zero with increasing particle numbers
under parabolic and linear confinement. Thus the ν = 1
ferromagnetic state will not appear as ground state in
large systems under these two confinements. Also con-

sistent with the electrostatic analysis, the critical points
of edge instabilities in the smoother confinements side
decrease (increase) with increasing particle number un-
der parabolic (linear) confining potential. For 8 and 10-
electron systems, our trial wave function method’s results
are in quantitative agreement with exact diagonalization
results of Sec. III.A; the latter are labeled in Fig. 7 for
comparison.
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FIG. 9: (a) Stability diagram calculated by trial wave func-
tion for the 40-electron system’s ferromagnetic state (F) un-
der positive background charge confining potential, showing
the region of stability to the ferromagnetic state, and the re-
gions where it is unstable to edge spin wave (ESW) and edge
magneto-plasmon (EMP) instabilities. (b) Renormalized crit-
ical g factor g̃c = gcµBB/(e

2/ǫlB) for the ferromagnetic state
having EMP, instead of ESW initial instability vs particle
number N under positive background charge confining po-
tential calculated by trial wave function.

Finite Zeeman term will lift the energies of ESWs. The
dimensionless parameter g̃ = gµBB/(e

2/ǫlB) is the ratio
of the Zeeman energy to the typical Coulomb energy.
For large enough g̃ = g̃c the ferromagnetic state will pre-
fer to transit to its polarized excitations, and EMP will
replace ESW to become the initial instability of ferro-
magnetic state. Fig. 9(a) shows the stability diagram of
the 40-electron system under positive background charge
confinement in (g̃, d/lB) plane with phase boundaries
obtained by our trial wave function. For small Zeeman
energies, g̃ < g̃c = 0.0056, the ferromagnetic state is
destabilized by the ESWs with smoother confinement.
As g̃c increases, the critical tuning parameter dc/lB of
ferromagnetic state’s initial instability increases as well
until at g̃c = 0.0056, the polarized EMP becomes the ini-
tial instability. Fig. 9(b) shows how the critical value g̃c
changes with increasing particle number. With thermo-
dynamic limit under positive background charge confine-
ment g̃c approaches a constant with increasing particle
number. Based on this figure, we predict that in thermo-
dynamic limit, g̃c ≈ 0.005. And if we choose dielectric
constant ǫ = 12.8, g = −0.44 for the 2DEG based on
a modulation-doped AlGaAs/GaAs heterostructure, the
critical magnetic field magnitude is Bc = 0.74T corre-
sponding to the renormalized critical g factor g̃c = 0.005.
Our quantitative prediction of g̃c is about one half that
obtained by J. Sjostrand et al.,18 who used a modified
version of the positive background charge confinement
which is slightly sharper. Other results like dc also differ
by a order 1 numerical factors. These indicate such quan-
titative results are sensitive to details of the confining po-
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tential. The fact that g̃c is larger for sharper confinement
is not surprising as sharper confinement tends to lift the
energy of charge modes more than spin modes. We note
that in real samples there are usually additional sources
of confining potential on top of the background charge,
like gates and in particular, sharp crystalline boundaries.
Thus in reality Bc may well exceed ∼ 1T. Also in real-
ity d ≪ dc. As a result edge spin textures (possibly in
combination with charge reconstruction) are likely to be
present in many systems.

IV. LOW ENERGY EDGE EXCITATIONS AND

EDGE INSTABILITIES OF ν = 2 UNPOLARIZED

STATE

In this section, we investigate the low energy excita-
tions and edge instabilities of ν = 2 unpolarized state
under the three kinds of confinements. Carrying out ex-
act diagonalization on small systems in 1 ≤ υ ≤ 2 regime,
we observe that compact states (defined below) with total
spin from 0 to N/2 become ground states in some regions
of tuning parameter. Similar to the ferromagnetic state
case, low energy spectra can be mapped onto those of
the bosons on top of the ν = 2 unpolarized state. The
non-compact ground states with simultaneous edge spin
and charge reconstruction are understood as the conden-
sation of bosons (ESWs) on top of S 6= 0 compact states.
Larger systems are studied by separating edge electrons
from bulk ones; this allows us to reach conclusions about
thermodynamic limit in certain cases.

A. Exact diagonalization study of small systems

In this subsection, we study small systems in 1 ≤ ν ≤ 2
regime. Exact diagonalization is carried out in 8, 10, 12-
electron systems, and the phase diagrams of 10-electron
system (Fig. 10) are used to show some common char-
acteristics shared by all small systems we studied. Start-
ing from ν = 2 unpolarized state (with M = 20 in Figs.
10), with smoother confinement, the compact states with
spin S from 0 to N/2 become ground states (labeled by
black points) in some tuning parameter regions. A com-
pact state is the state having the minimumM compatible
with a given S (the degeneracy is 2S+1 without Zeeman
coupling). The compact state with Sz = S is

∣

∣Ck
N−k

〉

=
N−k−1
∏

m=0

c†m,↑

k−1
∏

m′=0

c†m′,↓ |0〉 . (19)

It is a single Slater determinant with the N − k lowest
m single particle states with spin up and the k lowest m
single particle states with spin down occupied, in which
k is an integer running from 0 to N/2. They are the
ground states obtained in previous work based on HF
approximation.6,7 The fact that such compact states oc-
cupy large portions of the phase diagrams in our exact

diagonalization study provides strong support to earlier
HF studies. The compact states with Sz < S can be
obtained using spin lowering operator

S− =

∞
∑

m=1

c†m,↓cm,↑ (20)

on the Sz = S compact state
∣

∣Ck
N−k

〉

. Besides com-
pact states, other ground states with smaller S (labeled
by red points in Figs. 10) appear between neighbor-
ing compact states. These non-compact ground states
have charge and spin textures, and will be studied in the
next subsection. We find that the difference between a
non-compact ground state and the neighboring compact
states

∣

∣Ck
N−k

〉

and
∣

∣Ck−1
N−k+1

〉

lies mostly in the occupa-
tion numbers between the (k − 1)th and the (N − k)th
orbital (see Fig. 11 as an example); these orbitals are

occupied by spin up electrons only in state
∣

∣Ck−1
N−k+1

〉

.
The non-compact ground states resemble HF states with
simultaneous charge and spin reconstructions.9

B. Separation between bulk and edge electrons and

exact diagonalization study of large systems

Through our exact diagonalization study for small sys-
tems in ν ≤ 2 regime, we realize that with smoother
confinement the compact states with increasing total
spin become ground states in some tuning parameter re-
gions; the ground states appear in between compact state
∣

∣Ck
N−k

〉

and
∣

∣Ck−1
N−k+1

〉

have their major charge and spin
reconstructions in the same orbital segment occupied by
single spin electrons in compact state

∣

∣Ck−1
N−k+1

〉

. Assum-
ing these two points still hold for larger systems, when
studying the low energy edge excitations and edge insta-
bilities of ν = 2 unpolarized state of large system, we can
use the exact diagonalization to study a separated edge
electron system because the occupation number of the
orbitals inside this edge system (bulk orbitals) are nearly
2 (completely occupied). The effective Hamiltonian for
the edge electron system in ν . 2 regime is

Heff =
1

2

∑

m≥m0,n≥m0,l,σ,σ′

V l
mn,σσ′c

†
m+l,σc

†
n,σ′cn+l,σ′cm,σ

+
∑

m≥m0,σ

(△U cp
mm0

+ UHF
mm0

)c†m,σcm,σ.

(21)

The first term is the same as the Coulomb interaction
term in Eq. (3), except that here we only consider
the edge electrons in orbitals m ≥ m0. The orbital
m0 is suitably chosen to study the edge instabilities if
〈nm0

〉 ≈ 2 in the exact diagonalization result and the
choice of m0 in our calculation will be stated below. The
electrons in orbitals m < m0 are defined as bulk elec-
trons in our treatment. m0 = (N − Nedge)/2, where
Nedge is the particle number of edge electron system
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FIG. 10: (Color online) Phase diagrams for 10-electron systems under (a) ν = 2 positive background charge, (b) parabolic,
(c) linear confining potential in 1 ≤ ν ≤ 2 regime. Step values are ∆(d/lB) = 10−2, ∆b = 10−3 and ∆a = 10−2 for the three
confinements respectively. Compact states are labeled by black points, while non-compact states are labeled by red points. The
total orbital angular momentum number M of each state is labeled above the points. See text for the definition of compact
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FIG. 11: (Color online) Occupation numbers 〈nm〉 of (a) com-
pact state

∣

∣C3
7

〉

, (b) non-compact ground state (GS) with

M = 25, S = 1 appearing between
∣

∣C3
7

〉

and
∣

∣C2
8

〉

in Fig.

10(b) and (c) compact state
∣

∣C2
8

〉

. Red and blue bars label
the occupation numbers of spin up and down orbitals respec-
tively.

we choose and N is the particle number of the whole
system. △U cp

mm0
≡ U cp

m − U cp
m0

, where U cp
m is the one

body confining potential term defined in Sec. II. For
positive background charge and linear confining poten-
tial △U cp

mm0
is dependent of particle number N , while

it is independent of N for parabolic confining potential.
When edge instability happens, bulk orbitals are still
completely occupied. So the Coulomb interaction be-
tween bulk and edge electrons has only Hartree and Fock
terms left, which is equivalent to a one body Hartree-

Fock field UHF
mm0

=
∑

m′<m0

(2V 0
m′m − V m−m′

m′m ) felt by edge

electrons, and V 0
m′m and V m−m′

m′m were defined in Eq. (4).

Actually the two assumptions at the beginning of this
subsection for large electron systems are not very secure.
In disk geometry the sharp peak of the wave function at
the mth orbital φm(r) is at r =

√
2mlB, and the wave

function has width ∼ lB. The larger the particle num-
ber, the more electron orbitals are within the width lB
and may be involved in the instabilities in ν . 2 regime.

For the phase transition from unpolarized state
∣

∣

∣C
N/2
N/2

〉

to S = 4 compact state
∣

∣

∣C
N/2−4
N/2+4

〉

in our calculation, we

choose the particle number of edge electron system as
large as Nedge = 18 (i.e. m0 = N/2− 9) for N ≥ Nedge,
and give edge electrons 18 orbitals. By this choice, the
occupation number of the innermost edge orbital 〈nm0

〉
is larger than 1.99994; the occupation number of the out-
ermost given orbital 〈nm0+17〉 is less than 0.00005 for all
our numerical results up to particle number 80. Because
bulk electrons do not have tendency to move outward,
and larger edge orbitals have no tendency to be occupied,
all the orbitals with occupation numbers not close to 0 or
2 are included in the edge electron systems we studied.
Besides, we do not need to worry about the validity of
the two assumptions for large particle number N up to
80, since for our choices of m0 the exact diagonalization
results and the assumptions are self-consistent.

In ν . 2 regime, low energy spectra of electron sys-
tems with particle numbers up to 80 under the three
confinement are obtained by using exact diagonalization
on the edge electron systems illustrated above. We will
use the 30-electron system’s low energy spectrum under
parabolic confinement with b = 0.14 (ν = 2 unpolarized
state is the ground state) to show some common charac-
teristics shared by these spectra. ∆M = M −M0 is the
difference of orbital angular momentum quantum number
M compared to the one M = M0 for ν = 2 unpolarized
state (M0 = 210 for N = 30 system). In the subspaces
with ∆M > 0, a set of low energy excitations (enclosed
by dashed boxes in Fig. 12) are separated from higher
energy states. By checking these low energy excitations’
counting and spin configuration in each subspace ∆M
with the ones predicted by SU(2) effective theory,19 we
verified that these excitations are pure spin excitations
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FIG. 12: (Color online) Low energy spectrum of 30-electron
system, showing the low energy excitations of ν = 2 unpo-
larized state under parabolic confinement when tuning pa-
rameter b = 0.14 (m0 = 6 in the calculation). The total spin
quantum numbers S of eigenstates are labeled by different col-
ors as the annotation. The ground state is ν = 2 unpolarized
state. The dashed boxes enclose the low energy excitations
in each subspace close to the one of ν = 2 unpolarized state,
and the amount of the states in each box is labeled above it.
The states pointed by arrows are compact states.

and constitute the ESW branch of ν = 2 unpolarized
state. One of these excitations becomes the ground state
and thus destabilizes the ν = 2 unpolarized state with
smoother confinement. Very interestingly, we observe
that in each subspace M which allows the existence of
a compact state, the compact state (labeled by arrows in
Fig. 12) always has the lowest energy. For this reason,
in the following we view the compact states as the 2nd
generation descendants of the ν = 2 singlet state, and
view some low lying non-compact states as their descen-
dants. This provides us with an essentially complete un-
derstanding of the low-energy spectrum, and will make it
an analogy of the spectrum of ν = 1 ferromagnetic state
as stated in the following.
In each subspace M , part of the low energy excita-

tions can be mapped onto bosonic ESW excitations on
top of a neighboring compact state, and just like in
the ν = 1 ferromegnetic state, each boson reduces the
compact state’s total spin by 1. Taking the low energy
spectrum of 30-electron system under parabolic confine-
ment around the subspace of compact state

∣

∣C12
18

〉

with
M = M0 = 219 (Fig. 13) as an example, in subspaces
with ∆M =M −M0 > 0 some of the low energy excita-
tions are mapped onto the ∆S = −1 bosons with posi-
tive angular momentum q on top of compact state

∣

∣C12
18

〉

(labeled by dashed boxes); in subspaces with ∆M < 0
some of the low energy excitations are mapped onto the
∆S = −1 bosons with negative angular momentum q on
top of compact state

∣

∣C12
18

〉

(labeled by dotted boxes).
These compact state’s bosonic excitations may mix with
other low energy states in the same subspace, which are
the excitations of other states in the compact state’s sub-
space. The low energy excitations of a compact state are

ÈC18
12
>

1
1

22
3 3

S=1

S=2

S=3

S=4

216 217 218 219 220 221 222

130.96

130.97

130.98

130.99

131.00

131.01

131.02

M

E
n

er
gy
H
e

2
�
Εl

B
L

FIG. 13: (Color online) Low energy spectrum of 30-electron
system, showing the low energy excitations on top of com-
pact ground state

∣

∣C12
18

〉

under parabolic confinement when
tuning parameter b = 0.13 (m0 = 6 in the calculation). The
different total spin quantum numbers S of the eigenstates are
labeled by different colors as the annotation. The ground
state is compact state

∣

∣C12
18

〉

. The dashed boxes enclose the

low energy excitations of compact ground state
∣

∣C12
18

〉

, and
the amount of the states in each box is labeled below it.

orbital m

spin up
spin down

bulk Υ=2 state edge ferromagnetic state

FIG. 14: (Color online) Sketch of the orbital configuration of
compact state

∣

∣C12
18

〉

with Sz = S.

similar to those of ν = 1 ferromagnetic state, because
both of them can be mapped onto the excited bosons
which reduce the system’s total spin by one on top of
the original state. This is not surprising since a compact
state can be viewed as a ν = 2 unpolarized state sur-
rounded by a ν = 1 ferromagnetic state at the boundary
as shown in Fig. 14. In ∆M > 0 subspaces, excitations
of a compact state are determined by the excitations of
bulk ν = 2 state and edge ferromagnetic state and also
their correlation. In ∆M < 0 subspaces, the bulk ν = 2
state is inert and excitations of a compact state are only
determined by the edge ferromagnetic state. In either
case the ferromagnetic state at the edge of the compact
state plays an essential role on the excitation. By our ex-
act diagonalization result, we found the excited bosons
on top of the S 6= 0 compact states close to ν = 2 state
have minimum at q = 1 for positive q and at q = −1
for negative q. Therefore, the instabilities of a com-
pact state close to ν = 2 are just the condensation of
∆S = −1, q = 1 bosons (ESWs) at the smoother con-
finement side and the condensation of ∆S = −1, q = −1
bosons (ESWs) at the stronger confinement side. Two

neighboring compact states
∣

∣Ck
N−k

〉

and
∣

∣Ck−1
N−k+1

〉

can
be connected by their excited bosons. As shown in Fig.
13, the lowest energy state in M = 222 subspace with
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FIG. 15: (Color online) Phase diagrams in ν . 2 regime for particle numbers from 10 to 80 (even numbers) under (a) ν = 2
positive background charge, (b) parabolic and (c) linear confining potential. Edge electron number Nedge is chosen to 18 for
N ≥ 18, and Nedge = N for N < 18. The orbital number for edge electrons is 18, so electrons can occupy from the m0th
to the (m0 + 17)th orbital of the whole system. Step values are ∆(d/lB) = 10−3, ∆b = 10−5 and ∆a = 10−5 for the three
confinements respectively. Different kinds of states are labeled by the bars with different colors. In the annotation the bosons
are the ones excited from the compact state in the stronger confinement side of the phase diagram if q = 1 and the compact
state in the smoother confinement side if q = −1. Singlet state can be view as the excited bosons on top of the compact states
in both sides.

S = 0 has three excited q = 1, ∆S = −1 bosons on
top of compact state

∣

∣C12
18

〉

; while it can also be viewed
having four excited q = −1, ∆S = −1 bosons on top of
compact state

∣

∣C11
19

〉

. The lowest energy excited boson of
compact states close to ν = 2 having q = ±1, explains
our finding in last subsection that the ground states ap-
pear in between compact state

∣

∣Ck
N−k

〉

and
∣

∣Ck−1
N−k+1

〉

have their major charge and spin reconstructions on top
of these compact states in a segment of orbitals which are
only occupied by spin up electrons (the orbitals of edge

ferromagnetic state) in state
∣

∣Ck−1
N−k+1

〉

.

The phase diagrams in ν . 2 regime are obtained from
exact diagonalization for the particle number up to 80 un-

der the three types of confinement potentials in Fig. 15.
They are qualitatively similar to those of small systems
in Sec. IV.A. Compact states (gray regions in Fig. 15)
with different total spins become ground states in some
tuning paramter regions, and between two neighboring
compact states, their bosonic excitations (ESWs) with
q = 1 or −1 may also destabilize them and appear as
ground states. Singlet states which can be viewed as the
condensation of maximum number of bosons from either
of the nieghboring compact states which always appear
as ground states (brown regions in Fig. 15). The bosonic
excitations (ESWs) of compact states with S 6= 0 may or
may not destabilize the compact states to become ground
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states. The windows of these compact states’ ESWs in
phase diagrams will change with different particle num-
bers, and different confinement types with the step values
of our calculation. Up to 80 electrons, our exact diago-
nalization result shows that the initial ν = 2 instability
is toward the S = 1 compact state. As shown in Fig. 15,
ν = 2 edge instability critical point under positive back-
ground charge confining potential approaches a constant
dc/lB ≈ 0.223, which indicates the existence of ther-
modynamic limit predicted by our electrostatic model.
The ν = 2 instability critical point bc (ac) for parabolic
(linear) confinement decreases (increases) with increas-
ing particle number, and these are also consistent with
the prediction of the electrostatic model.
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FIG. 16: Particle number N vs renormalized critical g factor
g̃c = gcµBB/(e

2/ǫlB) in which the edge spin wave (ESW)
phase window between neighboring compact states closes un-
der positive background charge confinement. Circular points
label the close of ESW phase window between S = 1 and
S = 2 compact state; rectangular points label the close of
ESW phase window between S = 2 and S = 3 compact state;
triangular points label the close of ESW phase window be-
tween S = 3 and S = 4 compact state.

In the phase diagrams Figs. 15, the ESW ground
states have smaller spin quantum number S compared
to their two neighboring compact ground states. With
finite Zeeman coupling, the ESW phase window will
close and only compact states appear in the phase dia-
grams. We calculated the renormalized critical g factors
g̃c = gcµBB/(e

2/ǫlB) in which the ESW phase windows
between neighboring compact states close for different

particle numbers N under positive background charge
confinement (Fig. 16). g̃c approaches a constant ∼ 10−4

with increasing particle number. Therefore we predict
that in thermodynamic limit and under positive back-
ground charge confinement, with a small Zeeman cou-
pling (g̃c ∼ 10−4), the windows of ESW phase close and
only compact states appear in the phase diagram near
ν = 2.

V. CONCLUDING REMARKS

In this paper, we investigate the low energy spin exci-
tations and edge instabilities triggered by them in integer
quantum Hall liquids, and the resultant edge reconstruc-
tions. We conclude that there are likely very rich spin
structure for the edges of both ν = 1 and ν = 2 quan-
tum Hall liquids. We also find that the specific form of
the instability and the resultant edge structure is very
sensitive to the details of the confining potential.

While we have the real electron spin in mind in this
work, our study and likely many of our results can be gen-
eralized to systems with pseudospins, including bilayers
quantum Hall systems20 and graphene.21 In some sense
these systems can be even more interesting. For exam-
ples there is no Zeeman coupling to the pseudospins and
thus no associated energy penalty for pseudospin tex-
tures; the Dirac Landau level wave function allows for
spin and pseudospin textures in higher Landau levels;22

and the lack of SU(2) symmetry allows more exotic forms
of pseudospin texture in bilayer systems.23

Another natural direction to pursue is edge spin exci-
tations and textures in fractional quantum Hall liquid.
In fact a preliminary attempt has already been made in
that direction.24
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