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We present the detailed formalism of the extremely correlated Fermi liquid theory, developed for
treating the physics of the t-J model. We start from the exact Schwinger equation of motion for
the Greens function for projected electrons, and develop a systematic expansion in a parameter λ,
relating to the double occupancy. The resulting Greens function has a canonical part arising from an
effective Hamiltonian of the auxiliary electrons, and a caparison part, playing the role of a frequency
dependent adaptive spectral weight. This adaptive weight balances the requirement at low ω, of the
invariance of the Fermi volume, and at high ω of decaying as c0

iω
, with a correlation depleted c0 < 1.

The effective Hamiltonian Heff describing the auxiliary Fermions is given a natural interpretation
with an effective interaction Veff containing both the exchange Jij , and the hopping parameters tij .
It is made Hermitian by adding suitable terms that ultimately vanish, in the symmetrized theory
developed in this paper. Simple but important shift invariances of the t-J model are noted with
respect to translating its parameters uniformly. These play a crucial role in constraining the form
of Veff and also provide checks for further approximations. The auxiliary and physical Greens
function satisfy two sum rules, and the Lagrange multipliers for these are identified. A complete set
of expressions for the Greens functions to second order in λ is given, satisfying various invariances.
A systematic iterative procedure for higher order approximations is detailed. A superconducting
instability of the theory is noted at the simplest level with a high transition temperature.

PACS numbers:

I. INTRODUCTION

This work presents the detailed formalism of a newly developed framework for systematic calculation of the dynami-
cal properties of the t-J model, starting from the basic parameters t and J of the model. A subsequent paper Ref. (1)
presents self consistent numerical results from the initial application of this theory, for the case of two dimensional
square lattice relevant to cuprate superconductors. We will refer to extreme correlations as the limit U � t, so that
the single occupancy constraint is enforced. The t-J model Eq. (12) is the prime example of such a situation. In
practice this theory applies already when U ' Zt, where Z is the coordination number of the lattice. The theory and
calculations presented are in the extremely correlated Fermi liquid (ECFL) phase discussed in Ref. (2). This phase is
liquid like, and connects continuously to the Fermi liquid phase of weak coupling models such as the Hubbard model,
while accommodating the extreme local interaction U →∞.

The t-J model described by Eq. (12), is one of the standard models of condensed matter physics. It has been the
focus of intense effort for the last few decades, as reviewed in Ref. (3). Interest in the model grew particularly after its
identification by Anderson in Ref. (4), as governing many of the rich and complex set of phenomena High Tc cuprates
superconductors. The origin of the exchange part of the t-J model in an inverse expansion in the interaction U is

familiar from superexchange theory. The relation J = 4t2

U is found starting from the Hubbard model as in Ref. (5), so
that large U leads to a small J . An early account of the model and the various sum rules can be found in the Ref. (5).
More recently Zhang and Rice6 gave an argument for reducing the three band copper oxygen model to an effective
single band model, with a t-J form. Their method, apart from being more realistic, gives independent magnitudes
for t and J unconstrained by relations of the type inherent in superexchange within a single band model.

Controlled calculations within this model are beset by two fundamental difficulties: (a) the non canonical nature of
the single occupancy (Gutzwiller7) projection of the electrons that changes the canonical anticommutation relations
to a more nontrivial Hubbard (Lie) algebra and (b) the absence of any obvious small parameter for generating a
systematic theory. The present author has recently formulated a method in Ref. (2) and Ref. (8) that overcomes
these difficulties to a large extent. The basic idea is to approach the system starting from the limit of low particle
density n = Ne/Ns (ratio of electron number to the number of sites), i.e. a generalized virial expansion. The density
can be increased towards half filling systematically, as described below. Early applications to Angle Resolved Photo
Emission (ARPES) experiments in Ref. (9) are promising, and the general structure of the solution already leads to
non trivial and experimentally testable predictions in Ref. (10). The present work gives the details of the method
introduced in Ref. (2), and carries out a calculation to the lowest nontrivial order in a parameter λ described below.
The main ideas involved in this framework can be summarized as follows:

• The Schwinger method: Ref. (2) utilizes the key observation that the Schwinger method dispenses with Wicks
theorem, and replaces that step of canonical theory by a formal matrix (operator) inversion. The Schwinger
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equation for the Greens function typically involves a time derivative and a functional derivative with respect to
a source potential V (defined more fully below). It has the great advantage over standard equations of motion
in that the functional derivative generates all required higher order Greens functions. This is unlike say the
BBGKY hierarchy of quantum statistical mechanics, where one needs to import higher order correlations from
elsewhere. For the t-J model, Ref. (2) obtains an exact Schwinger equation described below in Eq. (42) and
Eq. (43). For our purpose, that equation may be illustrated schematically by the symbolic equation:

(Ĝ−1
0 (µ)− Y1 − X) · G = (1− γ), (1)

where Ĝ−1
0 (Eq. (64)) is a non interacting Greens function and γ (Eq. (35)) is essentially the spatially localized but

time dependent Greens function itself ∼ Glocal. Further Y1 is a Hartree type energy and X ∼ (something)× δ
δV ,

contains the all important functional derivative with respect to V (both X,Y are defined in Eq. (43)). The
undefined “something” lumps together constants and the interaction potential, but is independent of G. This
is a convenient launching pad provided by Schwinger’s method, since it is exact. However it is also intractable
as it stands! There is no obvious small parameter, and the presence of the time dependent γ on the right hand
side represents the removal of states (and double occupancy) from the canonical theory and creates a new set
of problems. We must understand and overcome these, in order to create a practical and controlled scheme for
calculations. We therefore push forward to the next set of steps.

• Non canonical nature of the problem and its consequences:

The non canonical nature of the problem is reflected in the γ term on the right of Eq. (1), it is a time dependent
Greens function obtainable from G itself (Eq. (45)). This γ term contains an essential difficulty of the problem;
it has a technical origin that we first discuss, and also an important physical aspect that we describe below.

(?) Consider first the canonical theories, such as the Hubbard model (see Eq. (4) below), where one only
has the 1 term in the right hand side of Eq. (1). In order to get rid of the functional derivative operator X in
favour of a (multiplicative) self energy, one uses X ∼ (something)× δ

δV to write:

X · G → Σ G ≡ (something)× G Γ G, using
δ

δV G = G Γ G,

following from Γ ≡ − δ

δV G
−1, (2)

wherein the vertex Γ is introduced. This gives the Schwinger Dyson relationship between the self energy Σ and
vertex:

Σ = (something)× G Γ, so that (Ĝ−1
0 (µ)− Y1 − Σ) G = 1. (3)

This Schwinger Dyson construction necessarily requires that the vertex Γ reduce to unity at high frequencies,
i.e. should be “asymptotically free”. In case of the non canonical theory Eq. (1), a similar procedure fails. It is
easily verified that the required good behaviour is lost because of the time dependent term γ on the right hand
side of Eq. (1), as shown in Ref. (11). The so defined vertex grows linearly with frequency, and invalidates the
Dysonian self energy scheme.

(?) The physical problem that is related to the non canonical γ term has to do with the spectral weight of the
projected electrons in a t-J model. Here basic sum rules give us insight into the origin, as well as a resolution
of this fundamental problem. For non canonical electrons, the high frequency behavior of the Greens function
is G ∼ c0

iω with c0 = 1 − n
2 , rather than the familiar result for canonical electrons c0 = 1. The depletion of c0

from unity arises from the physics of single occupancy projection of the (non canonical) electrons ĉiσ (denoted

by the Hubbard operator Xσ0
i below). Consider the relation c0 = 〈ĉiσ ĉ†iσ + ĉ†iσ ĉiσ〉 , the process 〈ĉiσ ĉ†iσ〉 suffers

from the inhibiting requirement that in order to create an electron with spin σ, the spin state σ̄ at site i must
also be unoccupied (so that a double occupancy is not created by this process), resulting in c0 < 1. On the
other hand, if the numerator of G(iω) remains as c0 at all frequencies, then the Fermi surface must enlarge in
volume, and thereby violate the Luttinger Ward theorem of invariance of this volume12. We thus arrive at an
appreciation of the fundamental tension between the conflicting requirements; at high frequency of fixing a known
coefficient c0 < 1, and at low frequency of a numerator almost unshifted from unity, for preserving the Fermi
surface volume. A resolution is provided by the possibility of an adaptive (or smart) spectral weight, i.e the
numerator of the Greens function. If a frequency dependent spectral weight can be found, so as to interpolate
smoothly between the high and low frequency requirements, then both could be satisfied.

(?) The product ansatz: The above points suggest that the Greens function of the t-J model is
usefully thought of as a product of two terms in frequency space i.e. G ∼ g×µ (Eq. (44)), where g is a canonical
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Greens function and µ the caparison factor playing the role of an adaptive (or smart) spectral weight factor.
The g term (i.e. the denominator) is required to be a canonical object with its poles and cuts as usual in a Fermi
liquid, and defines the auxiliary Fermi liquid in this theory. The frequency dependent µ term (in the numerator)
plays the role of the smart spectral weight; it reduces to the correct coefficient c0 at high frequencies while
recovering weight at lower frequencies. Thus a convolution in time domain into two suitable time dependent
pieces could resolve this conundrum, and motivates the product ansatz in Eq. (44).

(?)The µ term is also termed the caparison factor in Ref. (2), keeping in mind that it provides a second
layer of dressing, over and above the dressing provided by the usual Fermi liquid type processes in g itself. This
product ansatz is at the heart of the procedure described here and is seen to lead to a pair of exact equations
for the two parts g and µ below in Eq. (67) and Eq. (68).

• Small parameter in theory:

The t-J model is the sum of two highly non trivial terms, the kinetic energy projected to the space of single
occupancy, and the exchange energy. It has no obvious small parameters making it especially difficult to deal
with. Some inspiration is gained by examining the form of the analogous Schwinger equation for canonical
theories, such as the Hubbard model. Again omitting details, the relevant equation can be written symbolically
as:

(Ĝ−1
0 (µ)− U G− U

δ

δV ) ·G = 1, (4)

where U is the Coulomb repulsion in the Hubbard model. Comparing with Eq. (1) suggests a simple approach
to introduce a new parameter λ. In its simplest form, we propose to study the modified problem symbolically
expressed as:

(Ĝ−1
0 (µ)− λ Y1 − λ X) · G. = (1− λ γ), (5)

with 0 ≤ λ ≤ 1, so that this equation Eq. (5) interpolates smoothly between the Fermi gas and the t-J model.
This appearance of the parameter parallels the way the Hubbard parameter U enters Eq. (4). The complication
of the non canonical γ term on the right is handled analogously to the Hartree term Y1. Unlike the repulsive
Hubbard case, with an infinite interval [0,∞] for U , the parameter λ lives in a small and finite interval [0, 1].
The expectation is that low order perturbation expansion in λ has a reasonable chance of capturing the physics
of extreme correlations at λ = 1. We show in the Appendix A that in the atomic limit, the role of λ can be
explicitly related to that of the fraction of double occupancy (and thus also density), so that tuning λ smoothly
adjusts this fraction between its two limits. Further in Eq. (11) below, a suggestive expression for the Fermionic
operators is noted that relates λ < 1 to a soft version of Gutzwiller projection.

• Effective Hamiltonian for the auxiliary Fermions with a pseudo potential:

Setting aside the caparison factor µ for a moment, we examine further the equations of motion (Eq. (22) and
Eq. (26)) for the auxiliary Fermion g following from Eq. (5) together with the product ansatz G = g × µ. We
would like to interpret these as the actual (canonical) equations of a suitable Fermi liquid, obtainable from a
standard Hermitian Hamiltonian. However, we find that the equations (Eq. (22) and Eq. (26)) as they stand,
do not immediately cooperate with this task. They require a process of symmetrization described next, where
one adds extra terms that vanish when treated exactly, and after this lead to a Hermitean theory for g. We
term the resulting equations as the symmetrized theory, as outlined in this paper.

The theory based on Eq. (22) and Eq. (26) without symmetrization, is of course also exact, and is potentially
useful in its own right. We develop such a minimal theory elsewhere, with the expectation that this minimal
theory would not admit a Hermitean Hamiltonian to describe the auxiliary g. Also in an approximate treatment,
e.g. through an expansion in the parameter λ to any fixed but finite order, we would expect the symmetrized
and minimal versions of the theory to be different, converging only when all orders are taken into account.

Returning to the symmetrization procedure, we construct an effective Hamiltonian Heff for canonical electrons

(fiσ, f
†
iσ), with the property that the (imaginary time) Heisenberg equation of motion for canonical electrons

ḟiσ = −[fiσ, Heff ], match exactly the Heisenberg equation of motion for projected electrons ˙̂ciσ = −[ĉiσ, Ht−J ],
except for terms that vanish on enforcing the single occupancy constraint on the auxiliary fiσ electrons. Thus
we require

[fiσ, Heff ] = ([ĉiσ, Ht−J ])(ĉ,ĉ†)→(f,f†) + (expressions involving f, f† that vanish at single occupancy). (6)
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We can then add these missing terms with (f, f†)→ (ĉ, ĉ†) to the Heisenberg equation of motion (EOM) for ĉ
and thereby obtain an auxiliary Fermi liquid that would be also “natural”, i.e. have all the standard properties
of a Fermi liquid13,14. One should therefore be able to use standard Feynman diagrams (Ref. (13)) to compute
the properties of this auxiliary theory in powers of λ, if one were so inclined.

We find it straightforward to find such an effective Hamiltonian Heff (Eq. (27)) as described below in Sec. (II C).
The physical meaning of Heff becomes clearer with the following remarks. The kinetic energy of the
projected electrons could also be written differently. An alternate representation, occasionally used in literature,
relates:

ĉ†iσ = Xi
σ0 → f†iσ (1− niσ̄), ĉiσ = Xi

0σ → fiσ (1− niσ̄), (7)

with σ̄ = −σ and niσ = f†iσfiσ. Within this representation, the Hilbert space continues to allow for double
occupancy, i.e. is canonical, but the various operators representing the physical processes act only upon the
singly occupied subspace, and produce states that are likewise singly occupied. Thus we may write the kinetic
energy part as:

KE = −
∑

ij

tij (1− niσ̄) f†iσfjσ (1− njσ̄). (8)

Since the exchange energy
∑
ij Jij

~Si · ~Sj automatically conserves single occupancy, we will not write it out.
The kinetic energy is thus a multi Fermi operator and represents both the propagation and interaction between
particles. To separate these functionalities, we introduce a parameter λ here, it will turn out to be the same
parameter as in Eq. (5), and write

KE(λ) = −
∑

ij

tij (1− λ niσ̄) f†iσfjσ (1− λ njσ̄)

= −
∑

ij

tij f
†
iσfjσ + λ

∑

ij

tij f†iσfjσ (niσ̄ + njσ̄) + λ2 Hd (9)

Hd = −
∑

ij

tij f†iσfjσ (niσ̄njσ̄) , Hd → dropped. (10)

The term Hd acts on the doubly occupied subspace and is null in the singly occupied space, and hence it
may be dropped altogether. The remaining part of the kinetic energy term KE(λ) has the structure of a four
Fermi interaction between the canonical Fermions, and turns out to be a large part of Heff in Eq. (27). The
introduction of the parameter λ, can thus be viewed as replacing Eq. (7) by a “softer” representation of the
Gutzwiller projection:

ĉ†iσ → f†iσ (1− λ niσ̄), ĉiσ → fiσ (1− λ niσ̄). (11)

This λ representation discourages but does not completely eliminate double occupancy. However as λ → 1, it
does become the exact projected operators Eq. (7), and further provides a simple interpolation between standard
(canonical) Fermions and the projected electrons by varying λ in the range 0 ≤ λ ≤ 1. Thus Eq. (11) suggests
the interpretation of the parameter λ, as the controller of the (partial) Gutzwiller projection.

In this representation (with λ = 1), the physical electron Greens function Gij corresponds to the correlator

−〈〈(1 − niσ̄i)fiσi , f†jσj (1 − niσ̄j )〉〉, while −〈〈fiσi , f†jσj 〉〉 would represent the auxiliary Greens function g(i, j).

The caparison factor µ seems hard to interpret in this language though. The ECFL formalism developed here
presents a procedure to splice together g and µ precisely, to yield the physical G. Its otherwise formal structure
becomes clearer upon making the above connection; in particular Eq. (9) helps in developing some intuition for
g. For instance a physical interpretation of the auxiliary Fermions is provided by the fiσ themselves, and thereby
requiring the same number of auxiliary Fermions as the physical ones, as done below, is perfectly natural.

• Invariances of the effective Hamiltonian Heff and the emergence of the second Chemical potential
u0:

In Heff (Eq. (27)), the hopping parameter tij is elevated to the role of an interaction coupling, in addition to its
role a band hopping parameter. This feature needs attention, since we know that a constant (k independent) shift
of the band energies εk → εk +ut, or adding an onsite interaction through Jij → Jij + δij uJ , is inconsequential
for the t-J model, but makes a difference in Eq. (9), and in various approximations for the t-J model. This
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“pure” gauge invariance is of primary importance in this kind of a theory, and must be addressed at the very
outset to obtain a consistent and meaningful description of the t-J model. Such shifts could potentially lead to
a change of the interaction strengths in Heff , unless they can be explicitly eliminated in the theory. This issue is
addressed by first listing these shift symmetries of the model in Sec. (II), and then requiring the approximation
scheme to be shift invariant, at each order of λ.

Imposing the shift symmetries on Heff Eq. (27) causes it to have a term with a Hubbard Coulomb like interaction
with strength u0, such that arbitrary shifts of t and J can be absorbed into the parameter u0. Analogous
to the standard chemical potential µ, this u0 is a Lagrange multiplier of a term in the Hamiltonian Heff .
However it multiplies an interaction term that is quartic in the canonical Fermions, unlike µ that multiplies the
usual (quadratic) number operator. The chemical potential µ and the second chemical potential u0 are jointly
determined by two sum rules Eq. (90) and Eq. (91), one for the number of physical electrons and the other for
the (identical) number of auxiliary canonical electrons.

In this work, we obtain a set of equations for the Greens function. These are essentially of the same form as in
our recent earlier Letter Ref. (2), but differ in a few details due to the usage of the idea of the effective Hamiltonian
and its shift invariances. An iterative framework is carefully established, and calculations of the Greens function to
second order in λ are carried out explicitly.

The outline of the paper is as follows. In Sec. (II), we list the shift symmetries of the t-J model and obtain the
exact equation satisfied by the Greens function. We also determine the form of the effective Hamiltonian Heff for the
auxiliary Fermions, such that the Heisenberg equations for the field operators are satisfied in a Hermitian framework.
In Sec. (III-IV), we use the product ansatz for the Greens function to introduce and find the exact equations for the
auxiliary Fermions and the caparison factor µ. In Sec. (V) we turn off the time dependent sources and write the
exact momentum space relations between the self energy, the caparison factor and the physical Greens functions-
these are the analogs of the Schwinger-Dyson equations for this problem. Section. (VI) summarizes in tabular form
the necessary equations needed for the next step in the iterative process that is analogous to the skeleton graph
expansion. Sec. (VII) describes the λ expansion of various objects and the precise nature of the iterative expansion.
Several detailed calculations are needed to obtain the second order equations, and are detailed in Appendix. (B).
Sec. (VIII) details the Ward identities of this theory, which splits into two parts following the splitting of the Greens
functions. Sec. (IX) gives the set of vertices defining the random phase approximation for this theory and Sec. (X)
gives the formal results for the charge and spin susceptibilities within RPA and its low order expansion. Sec. (XII)
concludes with some comments including a calculation of the superconducting transition temperature in this theory.

Appendix. (A) gives a detailed calculation in the atomic limit. The simple calculation here may be useful in providing
the reader some insight into the interpretation of the λ expansion in terms of the number of doubly occupied sites.
Appendix. (B) contains the detailed calculations of the various objects need to compile the second order Greens
function.

II. THE t-J MODEL AND ITS SHIFT INVARIANCE

We write the projected Fermi operators in terms of the Hubbard X operators as usual ĉiσ → X0σ
i , ĉ†iσ → Xσ0

i and

ĉ†iσ′ ĉiσ → Xσ′σ
i . We study the t-J model given by

H = −
∑

i,j,σ

tijX
σ0
i X0σ

j − µ
∑

i,σ

Xσσ
i +

1

2

∑

i,j

Jij{~Si.~Sj −
1

4
ninj},

= −
∑

i,j,σ

tijX
σ0
i X0σ

j − µ
∑

i,σ

Xσσ
i +

1

4

∑

ij,σ

Jij
(
Xσσ̄
i X σ̄σ

j −Xσσ
i X σ̄σ̄

j

)
(12)

We will treat the two terms on an equal footing as far as possible, and allow terms with i = j. The statement of the
model is invariant under a particular “pure gauge” transformation that we next discuss. Let us first note the shift
invariance of the two parameters in H. Consider the uniform (i.e. space independent) shifts of the basic parameters:

tij → tij − ut δij , Jij → Jij + uJ δij , (13)

with independent parameters ut, uJ . Under this transformation the Hamiltonian shifts as

H → H +

(
ut +

1

4
uJ

)
N̂ (14)

where N̂ =
∑
iσX

σσ
i is the number operator for the electrons. Let us note two simple theorems encoding this

invariance:



6

• Shift theorem-(I): A shift of either t or J can be absorbed into suitable parameters, leaving the physics unchanged.

• Shift theorem-(II): The two shifts of t and J cancel each other when uJ = −4× ut.

The first theorem is illustrated in the initial Hamiltonian Eq. (12), where the shift in Eq. (14) can be absorbed
in the chemical potential µ → µ + ut + 1

4uJ . Later it serves to identify a second generalized chemical potential u0

encountered in the following. The second theorem is subtle as it leaves the chemical potential µ unchanged (see
Ref. (15)). It provides a measure of the equal handed treatment of t and J . We will find these almost trivial theorems
of great use in devising and validating various approximation schemes later.

In further work we need to add a source term via the operator A

A =

∫ β

0

A(τ) dτ =
∑

j,σ1,σ2

∫ β

0

dτ Vσ1σ2
j (τ)Xσ1σ2

j (τ) +
∑

ij,σ1σ2

∫ β

0

dτ Vσ1σ2
ij (τ)Xσ10

i (τ)X0σ2
j (τ), (15)

with the usual imaginary time Heisenberg picture τ dependence of the operators Q(τ) = eτHQe−τH , and the Bosonic
sources, Vσ1σ2

j (τ) at every site and also Vσ1σ2
ij (τ) for every pair of sites, as arbitrary functions of time. We will denote

these sources in a compact notation where the site index also carries the time argument as Vσ1σ2
i ≡ Vσ1σ2

i (τi) and
Vσ1σ2
ij ≡ Vσ1σ2

ij (τi) δ(τi − τj). For any variable we define a modified expectation

〈〈Q(τ1, τ2, ..)〉〉 =
Tr
[
e−βHTτ (e−A Q(τ1, τ2, ..)

]

Tr [e−βHTτ (e−A)]
, (16)

with a compact notation that includes the (imaginary) time ordering symbol Tτ and the exponential factor automat-

ically. With the abbreviation i ≡ (Ri, τi) for spatial ~Ri and imaginary time (τ) coordinates, the physical electron is
described by a Greens function:

Gσiσf [i, f ] = −〈〈X0σi
i X

σf0
f 〉〉. (17)

From this, the variation can be found from functional differentiation as

δ

δVσ1σ2
j (τ1)

〈〈Q(τ2)〉〉 = 〈〈Q(τ2)〉〉 〈〈Xσ1σ2
j (τ1)〉〉 − 〈〈Xσ1σ2

j (τ1)Q(τ2)〉〉. (18)

We note the fundamental anticommutator between the destruction and creation operators:

{
X0σ1
i , Xσ20

j

}
= δij

(
δσ1σ2 − (σ1σ2) X σ̄1σ̄2

i

)
. (19)

A. The Heisenberg Equation of Motion

Let us now study the time evolution of the destruction operator through its important commutator:

[X0σi
i , H] = −

∑

j

tij

[
δσiσj − (σiσj) X

σ̄iσ̄j
i

]
X

0σj
j +

1

4
J0 X

0σi
i

︸ ︷︷ ︸
−µX0σi

i − 1

2

∑

j 6=i

Jij(σiσj) X
σ̄iσ̄j
j X

0σj
i . (20)

Here J0 is the zero wave vector, (i.e. Jii the onsite) exchange constant. The term in underbraces here and in the next
equation ensures that the commutator reproduces the term with Jij → Jij +uJ δij correctly. We note that under the
transformation Eq. (14), the last term in Eq. (20) adds nothing, in view of the ordering of the operators as written,
while the term with underbraces provides the correct transformation factor. Let us call this commutator as:

[X0σi
i , H] = −

∑

j

tijX
0σi
j +

1

4
J0 X

0σi
i

︸ ︷︷ ︸
−µX0σi

i +Aiσi (21)

Ai,σi =
∑

jσj

tij(σiσj) X
σ̄iσ̄j
i X

0σj
j − 1

2

∑

j 6=i

Jij (σiσj) X
σ̄iσ̄j
j X

0σj
i (22)

We next express the EOM for the Greens function in terms of A.
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B. Equation of motion for G

Let us compute the time derivative of the G. For this we need the derivative

∂τiTτ
(
e−AX0σi

i (τi)
)

= −Tτ
(
e−A[X0σi

i (τi), H]
)

+ Tτ
(
e−A[A(τi), X

0σi
i (τi)]

)

[A(τi), X
0σi
i (τi)] = Vσ1σ2

i (τi)[X
σ1σ2
i (τi), X

0σi
i (τi)]−

∑

j

Vσ1σ2
ij (τi)

{
Xσ10
i (τi), X

0σi
i (τi)

}
X0σ2
j (τi)

= −Vσiσ2
i X0σ2

i −
∑

j

Vσiσ2
ij X0σ2

j +
∑

j

Vσ1σ2
ij (σ1σi) X

σ̄iσ̄1
i X0σ2

j . (23)

This follows from the definition of the time ordering and Eq. (15) for A. Using this we find:

∂τiGσiσf [i, f ] = −δ(τi − τf )δi,f 〈〈
(
δσiσf − σiσfX

σ̄iσ̄f
i

)
〉〉+ 〈〈[X0σi

i (τi), H] X
σf0
f (τf )〉〉

−Vσiσ2
i (τi)Gσ2σf [i, f ]−

∑

j

Vσiσ2
ij Gσ2σf [j, f ]−

∑

j

Vσ1σ2
ij (σ1σi) 〈〈X σ̄iσ̄1

i (τi)X
0σ2
j (τj)X

σf0
f (τf )〉〉.

(24)

To simplify notation, in such expressions for the Greens functions (or Eq. (26) below), the sum over an index implies
a sum over the corresponding site and also an integration over the corresponding time, e.g.

∑
j Vσ1σ2

ij f(. . . , τj , . . .)→∑
Rj

∫ β
0
dτj Vσ1σ2

ij (τj)δ(τi − τj) f(. . . , τj , . . .). A further bold letter summation convention is used after Eq. (41).

However, note that in expressions for operators such as Eq. (21) or Eq. (22), the sum only refers to the site index
summation. We further use the abbreviations,

δ[i, j] = δi,j δ(τi − τj), t[i, j] = tij δ(τi − τj),
J [i, j] = Jij δ(τi − τj), Vσaσbr = Vσaσbr [τr]. (25)

In terms of these, and using Eq. (21) we find the equation of motion in terms of A:

(∂τi − µ)Gσiσf [i, f ] = −δ[i, f ]〈〈δσi,σf − σiσfX
σ̄iσ̄f
i 〉〉

+t[i, j] Gσiσf [j, f ]− 1

4
J0 Gσiσf [i, f ] + 〈〈Aiσi(τi)X

σf0
f (τf )〉〉 − Vσiσji (τi) Gσjσf [i, f ]

−
∑

j

Vσiσ2
ij Gσ2σf [j, f ]−

∑

j

Vσ1σ2
ij (σ1σi) 〈〈X σ̄iσ̄1

i (τi)X
0σ2
j (τj)X

σf0
f (τf )〉〉. (26)

We recall from the introduction, the discussion regarding suitably generalizing A of Eq. (22), in order to make
connection with a Hermitian Heff , and therefore turn to this task next.

C. Effective Hamiltonian

We now construct an effective Hamiltonian of canonical Fermions that will turn out to govern the auxiliary Fermi
liquid theory. The motivation for this construction is to cast the auxiliary Fermionic part of the ECFL theory into
a natural and canonical framework, so that the equation for the g, i.e. the auxiliary piece of the full G is obtainable
from a Hamiltonian that is Hermitian and respects the usual Fermi symmetry of interactions under exchange.

After some inspections we find that a suitable Hamiltonian is provided by the expression:

Heff = −
∑

ij

tijf
†
iσfjσ +

∑

i

(
1

4
J0 − µ)f†iσfiσ + λ Veff ,

Veff =
1

4

∑

ij

tij(σ1σ2)
[(
f†iσ1

f†iσ̄1
+ f†jσ1

f†jσ̄1

)
fiσ̄2

fjσ2
+ (h.c.)

]
− 1

4

∑

ij

Jij(σ1σ2) f†iσ1
f†jσ̄1

fjσ̄2
fiσ2

+
1

4

∑

i

u0(σ1σ2) f†iσ1
f†iσ̄1

fiσ̄2
fiσ2

. (27)

with a Hermitian effective potential V †eff = Veff and assume no constraint on double occupancy for these auxiliary

(canonical) Fermions fiσ. The t and J parts reproduce the exact equations of motion as shown below with certain



8

additional terms that vanish under the constraint of single occupancy. The parameter λ is set to unity at the end,
and provides an interpolation to the Fermi gas. The parameter u0 represent an effective Hubbard type interaction for

these Fermions, giving a contribution u0

∑
i f
†
i↑fi↑f

†
i↓fi↓. Its magnitude is arbitrary at the moment, since it disappears

under exclusion of double occupancy. Here it enables us to enforce the invariance in Shift-theorem-(I), where the shift
of t and J can be absorbed in u0. It will turn out to play the role of a second chemical potential or Lagrange multiplier,
in fixing the second sum rule Eq. (91). To illustrate this remark, note that adding a constant to t or J as in Eq. (14),
adds an onsite four Fermi interaction term. In order to satisfy the Shift theorem -(I), we must compensate for this
suitably, leading to the extra onsite term with coefficient u0, which can absorb this shift. It is also verified that the
Shift theorem-(II) is satisfied without the u0 term. We emphasize that the u0 term is both natural and essential for
the purpose of satisfying the Shift theorem (I). Since the structure of the u0 term is almost identical to that of Jij we
will most often “hide it” inside Jij , and explicitly display it at the end. Thus unless explicitly displayed, we should

read Jij → Jij − u0δij below. For analogous terms involving the Xσσ′

i operators as in Eq. (22), we can include u0 in
Jij without any errors, since the u0 term always vanishes due to the properties of these operators.

σ2 σ2

σ1 σ1

i j
1
4
(σ1σ2)tij

σ2 σ2

σ1
σ1

i j

1
4(σ1σ2)tij

σ2 σ2

σ1 σ1

i j
1
4
(σ1σ2)tij

σ2 σ2

σ1
σ1

i j

1
4(σ1σ2)tij

σ2 σ2

σ1 σ1

i j

−1
4(σ1σ2)Jij

FIG. 1: The pseudopotential Veff in the real space representation, where the wavy line represents tij and the coiled line
represents Jij . The first two interaction vertices have two undisplayed symmetric partners with the exchange i↔ j.

Defining symmetric Cooper pair singlet operators

P†(i, j) =
∑

σf†iσf
†
jσ̄ =

(
f†i↑f

†
j↓ − f

†
i↓f
†
j↑

)

P†(i, i) =
∑

σf†iσf
†
iσ̄ = 2f†i↑f

†
i↓ (28)

with P†(j, i) = P†(i, j) we write

Veff =
1

4

∑

ij

tij
[
(P†(i, i) + P†(j, j)) P(i, j) + (h.c.)

]
− 1

4

∑

ij

Jij P†ij Pij . (29)

In momentum representation the effective Hamiltonian Eq. (27) reads

Heff =
∑

k

(εk +
1

4
J0 − µ)f†kσfkσ +

λ

4 Ns

∑

p

(σ1σ2) Weff (p1, p2; p3, p4) f†p1σ1
f†p2σ̄1

fp3σ̄2
fp4σ2

,

Weff (p1, p2; p3, p4) = −δp1+p2,p3+p4
{εp1

+ εp2
+ εp3

+ εp4
+ Jp2−p3

− u0} (30)

where the momentum independent term u0 has been explicitly written out. In this effective Hamiltonian, the band
energies εpj of the original model are present, both in the band energy of the f ’s and the interaction term. Therefore
the shift Eq. (13) cannot be absorbed in the µ alone, and u0 must also transform suitably to ensure that the effective
Hamiltonian satisfies the Shift theorem-(I). Thus in using the effective Hamiltonian we refine of this theorem to

• Shift theorem-(I.1): An arbitrary shift Eq. (14) of t and J , can be absorbed by shifting the chemical potential
µ→ µ + ut + 1

4uJ and u0, as

u0 → u0 + 4 ut + uJ . (31)

Note that the Shift theorem-(II) is manifestly satisfied: the combination of the band energies εpj and the exchange
term Jp in Eq. (30) guarantees that their shift adds up to uJ + 4ut → 0, which vanishes under the conditions of this
theorem.
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σ2 σ2

σ1 σ1

p1
p2

p3p4

Weff = −δp1+p2,p3+p4 {∑
j εj + Jp2−p3 − u0 }

FIG. 2: The pseudopotential Weff in the momentum space representation. The zigzag line represents Weff . Note that the
momentum transfer in the argument of J is also expressible as Jp1−p4 .

Since the standard notation for interaction reads
∑〈ab|V |a′b′〉f†af†b fb′fa′ for a conventional two body interac-

tion, our notation corresponds to writing Weff (p1, p2; p3, p4) = 〈p1p2|W |p4p3〉. Fermi symmetry implies the in-
variance Weff (p1, p2; p3, p4) = Weff (p2, p1; p4, p3), and Hermiticity implies the invariance Weff (p1, p2; p3, p4) =
Weff (p3, p4; p1, p2). For this canonical theory, we calculate the commutator:

[fiσi , Heff ] = −
∑

j

tijfjσi + (
1

4
J0 − µ) fiσi + Âiσi

Âiσi = [fiσi , Veff ]. (32)

with

Âiσi =
∑

jσj

tij(σiσj)

[
f†iσ̄ifiσ̄jfjσj +

1

2
f†jσ̄ifjσ̄jfjσj +

1

2
f†jσ̄ifiσ̄jfiσj︸ ︷︷ ︸

]
− 1

2

∑

j 6=i

Jij (σiσj) f
†
jσ̄i
fjσ̄jfiσj (33)

Let us note that Âiσ Eq. (33) differs from Aiσ in Eq. (22), through terms (in underbraces) that vanish identically if
we impose the single occupancy constraint on the auxiliary electrons.

D. Equation of Motion for G continued.

We now return to the study of the equation of motion for G in Eq. (26), expressed in terms of Aiσ of Eq. (22),
the commutator of the destruction operator with H. This object yields the crucial Heisenberg equation of motion,
therefore as discussed in Eq. (6), we next look for terms that can be added to it to make it identical to Eq. (33).
Comparing Eq. (22) and Eq. (33) we see that these differ by terms (the second and third terms of the square bracket in
Eq. (33)) that are automatically vanishing for the Xab

i operators on using their standard rules. Thus we can add such
vanishing terms to Eq. (22) that remain exact and also importantly preserve the Hermitian nature of the auxiliary
Fermionic theory in approximate schemes. We thus rewrite also an exact, but more useful result:

Ai,σi =
∑

ijσj

tij(σiσj)

[
X
σ̄iσ̄j
i X

0σj
j +

1

2
X
σ̄iσ̄j
j X

0σj
j +

1

2
X σ̄i0
j X

0σ̄j
i X

0σj
i

]
− 1

2

∑

j 6=i

Jij (σiσj) X
σ̄iσ̄j
j X

0σj
i , (34)

so that Ai,σi and Âi,σi contain terms that are in one to one correspondence. We will use Eq. (34) in in place of
Eq. (22) in Eq. (26) next.

The notation simplifies if we use the matrix notation for the spin indices introduced in Ref. (11) and Ref. (2) e.g.
Gσiσf [i, f ] → [G[i, f ]]σiσf , so that we may regard G as a 2 × 2 matrix. In short, the space-time indices are displayed
but the spin indices are hidden in the above matrix structure. We next define γ through:

γσaσb [i] = σaσbGσ̄bσ̄a [i−, i], or γ[i] = G(k)[i−, i], (35)
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where we denote the k conjugation of any matrix M by (M (k))σ1σ2
= Mσ̄2σ̄1

σ1σ2. This conjugation corresponds to
time reversal in the spin space. Let 1 be the identity matrix in the 2× 2 dimensional spin space.

We employ a useful relation with an arbitrary operator Q that follows from Eq. (16): We write

〈〈σaσb X σ̄aσ̄b
i (τi) Q〉〉 = (γσaσb [i]−Dσaσb [i]) 〈〈Q〉〉

〈〈σaσb X σ̄a0
i (τ+

i )X0σ̄b
j (τi) Q〉〉 = (γσaσb [i, j]−Dσaσb [i, j]) 〈〈Q〉〉, (36)

where we denote With τj ≡ τ−i and define

γσaσb [i, j] = (σaσb) Gσ̄bσ̄a [jτ−i , iτi] = 〈〈σaσb X σ̄a0
i X0σ̄b

j 〉〉, (37)

γ[i, i] = γ[i] (38)

and

Dσiσj [i] = σiσj
δ

δV σ̄iσ̄ji (τi)

Dσiσj [i, j] = σiσj
δ

δV σ̄iσ̄ji,j (τi)

and D[i, i] = D[i]. (39)

In γ[i, i] and γ[i] we have are equal time objects with creation operators to the left of destruction operators. Let us
note the rewriting of the last term in Eq. (26):

−
∑

j

Vσ1σ2
ij (σiσ1) 〈〈X σ̄1σ̄i

i (τi)X
0σ2
j (τj)X

σf0
f (τf )〉〉 = +

∑

j

Vσ1σ2
ij (γσiσ1

[i]−Dσiσ1
[i])Gσ2σf [j, f ]. (40)

With this preparation, using Eq. (34) and we rewrite Eq. (26) as

(∂τi − µ +
1

4
J0)Gσiσf [i, f ] = −δ[i, f ](δσiσf − γσiσf [i])− Vσiσj

i Gσjσf [i, f ]− Vσiσj

i,j (τi) Gσjσf [j, f ]

+Vσ1σ2

ij (γσiσ1(i)−Dσiσ1(i))Gσ2σf (j, f)

+ t[i, j]

{ (
1− γ[i] +D[i]− 1

2
γ[j] +

1

2
D[j]

)
· G[j, f ]

}

σiσf

+ t[i, j]

{(
−1

2
γ[j, i] +

1

2
D[j, i]

)
· G[i, f ]

}

σiσf

+
1

2
J [i, j] { (γ[j]−D[j]) · G[i, f ] }σiσf ,

(41)

where the fixed variables are in normal letters and the repeated variables in bold letters are summed in space and
integrated in time. This may be written compactly in matrix form as

(∂τi − µ)G[i, f ] = −δ[i, f ](1− γ[i])− Vi · G[i, f ]− Vi,j · G[j, f ] + (γ(i)−D[i]) · Vi,j · G[j, f ]

−X[i, j] · G[j, f ]− Y [i, j] · G[j, f ], (42)

where we used the definitions (with fixed j and summed k)

X[i, j] = −t[i, j] (D[i] +
1

2
D[j]) + δ[i, j]

1

2
(J [i,k] D[k]− t[ik] D[k, i])

Y [i, j] = −t[i, j] (1− γ[i]− 1

2
γ[j]) +

1

4
J0 1− δ[i, j]

1

2
(J [i,k] γ[k]− t[i,k] γ[k, i]) .

(43)

These exact equations Eq. (42) and Eq. (43) form the basis for the remaining discussion. The coefficients in X and
Y differ slightly from the ones in Ref. (2), in view of the usage of the effective Hamiltonian idea in this paper. The
extra terms arise from the form of Eq. (33), and actually vanish if we could treat either of these exactly. We will show
that this formulation leads to approximations obeying the Shift Theorems (I-II) discussed earlier; note however that
Eq. (42) and the forms of X,Y in Eq. (43) are manifestly invariant under these theorems.
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III. DECOMPOSITION OF G INTO THE AUXILIARY FERMION GREENS FUNCTION g AND THE
CAPARISON FACTOR µ

As discussed in the Introduction, we next write the product ansatz for G

G[a, b] = g[a, r] · µ[r, b], (44)

where g is the canonical auxiliary Greens function and µ is the caparison factor, or the adaptive spectral weight. Since
G satisfies antiperiodic boundary conditions under τa → τa+β and τb → τb+β separately, we must Fourier transform
both factors g and µ with Fermionic frequencies ωn = (2n + 1)πkBT . At this point µ and g are undetermined. Let
us first note in matrix notation the equal time objects:

γ[i] = G[i−, i]→ (g[i,a] · µ[a, i])(k) = (µ[a, i])(k) · (g[i,a])(k),

γ[i, j] = G[j−, i]→ (g[j,a] · µ[a, i])(k) = (µ[a, i])(k) · (g[j,a])(k). (45)

We define a three point vertex functions

Λσ1σ2
σ3σ4

(p, q; r) ≡ − δ

δVσ3σ4
r (τr)

{g−1
σ1σ2

[p, q] },

Uσ1σ2
σ3σ4

[a, b; c] ≡ δµσ1σ2 [a, b]

δVσ3σ4
c (τc)

, (46)

or as an implicit matrix in the upper indices (but explicit in the lower ones):

Λσ3σ4
(p, q; r) = − δ

δVσ3σ4
r

{g−1[p, q] }, Uσ3σ4
[a, b; c] ≡ δµ[a, b]

δVσ3σ4
c

. (47)

In a similar vein, to obtain the four point vertex functions corresponding to the source Vrs with a pair of points
r, s with τr = τs, we define:

Λ∗(p, q; r, s) = − δ

δV∗r,s(τr)
{g−1[p, q] }, U∗[a, b; c, d] ≡ δµ[a, b]

δV∗c,d(τc)
. (48)

In some expressions involving summations, it is convenient to think of the vertices Λ∗(p, q; r, s),U∗[p, q; r, s] with
independent times τr, τs, with the constraint of equal times imposed by multiplying by a delta function δ(τr − τs), as
illustrated in Eq. (137).

This set of vertices Λ and U replace the single vertex Γ of a canonical many body system, and we will also find
equations determining these below. Clearly in any exact treatment, the four point vertex contains the three point
vertex by collapsing the points:

Λσ1σ2
σ3σ4

(p, q; r) = Λσ1σ2
σ3σ4

(p, q; r, s→ r), (49)

and similarly for U . However in any approximation scheme, this identity would follow only if the single occupancy
constraint at a given site i namely: 〈〈 Xσ1σ2

i X0σ3
i . . .〉〉 = 0 is satisfied exactly, for all choices of the spin indices. Since

typical approximations relax this constraint, if only slightly, it is therefore useful to keep both the sets of vertices in
the theory as separate entities. Another attractive possibility is to require the identity Eq. (49), by making a different
set of (controlled) approximations, and is also discussed below. Fig. (3) illustrates the conventions used for the four
point vertex, the three point vertex is obtained by the indicated contraction.

We now use a notation where ∗ is used as a place holder, as illustrated in component form by

· · · ξ∗σaσb · · ·
δ

δV∗j
= · · ·σaσb · · ·

δ

δV σ̄a,σ̄bj

, (50)

with ξσaσb = σaσb, and an implicit spin flip in the indices of the attached derivative operator δ/δV σ̄a,σ̄bj .

We would like to rewrite Eq. (42) in terms of the vertex functions. We need to express

X[i, j] · G[j, f ] = −t[i, j] (D[i] +
1

2
D[j]) · G[j, f ] +

1

2
(J [i,k] D[k]− t[ik] D[k, i]) · G[i, f ] (51)

in terms of the vertex functions.
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Differentiating Eq. (44) we find

δ

δVσ,σ′
r

G[a, b] = g[a, c] · Λσ,σ′(c,d; r) · G[d, b] + g[a, c] · Uσ,σ′ [c, b; r] (52)

Consulting Eq. (39) for the definition of Dσ1σ2
[i] = ξσ1σ2

δ

δVσ̄1σ̄2
i

, where ξσ1σ2
= σ1σ2, we rewrite this as

D[r] · G[a, b] = ξ∗ · g[a, c] · Λ∗(c,d; r) · G[d, b] + ξ∗ · g[a, c] · U∗[c, b; r], (53)

where the spin flip in the derivatives is implied as stressed above.
Combining Eq. (51) and Eq. (53) we define the useful linear operator

L[i, j] = t[i,k] ξ∗ · g[k, j] ·
(

δ

δV∗i
+

1

2

δ

δV∗k

)
+

1

2
t[i,k] ξ∗ · g[i, j] · δ

δV∗k,i
− 1

2
J [i,k] ξ∗ · g[i, j] · δ

δV∗k
. (54)

Hence we may write Eq. (51) compactly as

X[i, j] · G[j, f ] ≡ Φ[i,b] · G[b, f ] + Ψ[i, f ] (55)

where the two central objects of this theory arise from the action of a common operator Eq. (54) on two seed objects
g−1 and µ as follows:

Φ[i,m] ≡ L[i, c] · g−1[c,m]

= −t[i, j] ξ∗ · g[j, c] ·
(

Λ∗[c,m; i] +
1

2
Λ∗[c,m; j]

)
− 1

2
t[i,k] ξ∗ · g[i, c] · Λ∗[c,m; k, i] +

1

2
J [i,k] ξ∗ · g[i, c] · Λ∗[c,m; k],

(56)

and

Ψ[i,m] ≡ − L[i, c] · µ[c,m]

= −t[i, j] ξ∗ · g[j, c] ·
(
U∗[c,m; i] +

1

2
U∗[c,m; j]

)
− 1

2
t[i,k] ξ∗ · g[i, c] · U∗[c,m; k, i] +

1

2
J [i,k] ξ∗ · g[i, c] · U∗[c,m; k].

(57)

Writing Eq. (43) as

Y [i, j] = −t[i, j] + Y1[i, j]

Y1[i, j] = t[i, j] (γ[i] +
1

2
γ[j])− δ[i, j] 1

2
(J [i,k] γ[k]− t[i,k]γ[k, i]) . (58)

We also need to process the object:

(γ(i)−D[i]) · Vi,j · G[j, f ] = γ(i) · Vi,j · G[j, f ]− ξ∗ · Vi,j ·
δ

δV∗i
G[j, f ]

= γ(i) · Vi,j · G[j, f ]− ξ∗ · Vi,j · g[j, c] · Λ∗[c, r; i] · G[r, f ]− ξ∗ · Vi,j · g[j, c] · U∗[c, f ; i]

(59)

IV. ASSEMBLING THE EQUATIONS

Let us rewrite the three relevant equations symbolically:

1. Eq. (42) for G:

(∂τi − µ)G = −δ(1− γ)− Vi · G − Vi,j · G + (γ −Di) · Vi,j · G −X · G − Y · G, (60)

2. Eq. (59) for the two site source Vij :

(γ −Di) · Vi,j · G = γ(i) · Vi,j · G[j, f ]− ξ∗ · Vi,j · g · Λ∗ · G − ξ∗ · Vi,j · g · U∗ (61)
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3. Eq. (55) the product rule:

X.G = Φ.G + Ψ (62)

Combining these we rewrite Eq. (60) symbolically as

(∂τi − µ + Y + Vi + (1− γ) · Vi,j + ξ∗ · Vi,j · g · Λ∗ + Φ)G = −δ(1− γ)−Ψ− ξ∗ · Vi,j · g · U∗ (63)

Defining

g−1
0 [i, f ] = {[(µ− ∂τi −

1

4
J0)1− Vi]δ[i, f ] + t[i, f ]− Vi,f (τi) δ(τi − τf )}, (64)

the exact EOM Eq. (42) can be written in matrix form:

{g−1
0 [i, j] + γi · Vi,j − ξ∗ · Vi,a · g(a,b) · Λ∗(b, j; i)− Y1[i, j]− Φ[i, j]} · g[j, f ] · µ[f , f ] =

δ[i, f ] (1− γ[i]) + Ψ[i, f ] + ξ∗ · Vi,a · g(a,b) · U∗(b, f ; i). (65)

At this point, a convenient parameter λ (finally set λ→ 1) is now inserted into this equation as follows:

{g−1
0 [i, j] + λ γi · Vi,j − λ ξ∗ · Vi,a · g(a,b) · Λ∗(b, j; i)︸ ︷︷ ︸−λ Y1[i, j]− λ Φ[i, j]} · g[j, f ] · µ[f , f ] =

δ[i, f ] (1− λ γ[i]) + λ Ψ[i, f ] + λ ξ∗ · Vi,a · g(a,b) · U∗(b, f ; i)︸ ︷︷ ︸ .

(66)

Clearly this becomes the exact equation Eq. (65) at λ = 1, and reduces to the Fermi gas Greens function Eq. (64) at
λ = 0. We may now split Eq. (65) exactly into a pair of equations that are fundamental to the theory:

{g−1
0 [i, j] + λ γi · Vi,j − λ ξ∗ · Vi,a · g(a,b) · Λ∗(b, j; i)− λ Y1[i, j]− λ Φ[i, j]} · g[j, f ] = δ[i, f ] (67)

µ[i, f ] = δ[i, f ] (1− λ γ[i]) + λ Ψ[i, f ] + λ ξ∗ · Vi,a · g(a,b) · U∗(b, f ; i). (68)

We can usefully invert Eq. (67) and write

g−1[i,m] = {g−1
0 [i,m] + λ γi · Vi,m − λ ξ∗ · Vi,a · g(a,b) · Λ∗(b,m; i)− λ Y1[i,m]− λ Φ[i,m]}. (69)

We see that g satisfies a canonical equation, with a delta function of weight unity on the right, and µ soaks up the
remaining factors on the right hand side of Eq. (66). This is decomposition is not unique, one has the obvious freedom
of respectively post-multiplying g and pre-multiplying µ by a common function and its inverse. However, requiring g
to be canonical fixes the function to be unity. The motivation of introducing λ in the above equations, is to establish
adiabatic, or more properly, parametric continuity with the Fermi gas16. At this stage some remarks are necessary

• At λ = 1 Eq. (67) and Eq. (68) becomes the exact equations for the EC phase, while it has the virtue that as
λ = 0 it gives a canonical equation for g, with µ[i, j] = 1δ[i, j]. Procedurally, we can calculate objects to a given
order in λ iteratively, and set λ = 1 at the end of the calculation. We thus establish and maintain continuity
with the Fermi gas in the equations of motion.

• The process of introducing λ into the EOM is not unique. For example the terms of Eq. (66) in the underbraces
cancel at i = j from the vanishing of Eq. (40). However this cancellation is exact only at λ = 1, so we will find
below that an expansion in λ has the annoying feature of a slight violation of the contraction of indices result
Eq. (49). We will show below that this is inconsequential to the orders in λ considered here. With hindsight, a
better strategy would be to impose the constraint Eq. (49) to the order of the calculation. This can be achieved
if we multiply the terms in underbraces by a sufficiently high power of λr, say with r ≥ r0 , and thereby avoid
dealing with this problem at low orders r < r0. Below we will analyze the minimal choice r = 1, record the
issues that crop up and make suitable approximations later. The impatient may simply ignore the terms with
underbraces.

• Another type of freedom is available at this stage: if necessary, we could add an arbitrary term that varies
smoothly with λ and vanishes at both end points e.g. ∝ λ(1−λ), to either side of Eq. (67) and Eq. (68). It will
turn out that the first order term [ g−1 ]1 calculated below, does need a simple term of this type to fulfill the
Fermi surface sum rule. In general, however, the natural and minimal choice made in Eq. (66), without such a
term, seems adequate for higher terms.
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• We note that the Shift theorems (I-II) are preserved by X,Y above in Eq. (43), and this invariance survives the
introduction of λ in Eq. (66). As a result the various objects Φ,Ψ,g−1, µ satisfy these theorems individually.
This property leads to a powerful consistency check on the approximations to each order in λ.

• Note that a λ expansion of γ[i] implies that the high frequency fall off of the G ∼ c0
iω , now occurs with a coefficient

c0 = 1−λ γ that is different from 1− n
2 at finite orders of λ. While it is tempting to freeze this coefficient at the

exact value, it would be inconsistent since we take its derivatives to find Ψ etc. The departure of this coefficient
from the exact value becomes increasingly significant near n ∼ 1, and provides a criterion for the validity of a
given order of approximation.

V. EXPLICIT EQUATIONS AND THE ZERO SOURCE LIMIT IN FOURIER SPACE

When we turn off the sources, the various matrix function G,g, µ become spin diagonal. We will also take Fourier
transforms (only) in this limit, since translation invariance in space and time is regained when the sources vanish.

We next express Φ and Ψ explicitly in terms of the vertex functions. We need to take the Fourier transform of
Eq. (56) and Eq. (57). In the ECFL theory, a rotationally invariant liquid phase is obtained by turning off the sources.
We can use the standard spin rotational symmetry analysis illustrated here with Λ as in Ref. (11). We define the
three non vanishing matrix elements as Λ(1) = Λσσσσ, Λ(2) = Λσσσ̄σ̄ and Λ(3) = Λσσ̄σσ̄. We also record the Nozières identity
for the two expressions of a particle hole singlet: Λ(1)−Λ(2) = Λ(3), which provides an important check on the theory.
We further use a notation for the frequently occurring antisymmetric combination Λ(a) = Λ(2) − Λ(3). Armed with
these, we next drop the matrix structure by utilizing an identity arising with a fixed σ (such as in the expression for
Φσσ above):

〈σ| ξ∗ · g · Λ∗ |σ〉 =
∑

σaσb

σσa gσaσb Λσbσσ̄σ̄a

=
∑

σb

(gσσb Λσbσσ̄σ̄ − gσ̄σb Λσbσσ̄σ )

= (gσσ Λσσσ̄σ̄ − gσ̄σ̄ Λσ̄σσ̄σ)

= g (Λ(2) − Λ(3)) ≡ g Λ(a). (70)

Note that we dropped the spin index on g due to the isotropy of the state.
We use the FT convention for the two, three and four site objects illustrated with the examples:

G[a, b] =
∑

k

eik(a−b)G(k)

Λσ1σ2
σ3σ4

[a, b; c] =
∑

p1,p2

eip1(a−c)+ip2(c−b)Λσ1σ2
σ3σ4

(p1, p2)

Λσ1σ2
σ3σ4

[a, b; c, d] =
∑

p1+p4=p2+p3

ei(p1a−p2b−p3c+p4d)Λσ1σ2
σ3σ4

(p1, p2; p3, p4). (71)

The identity Eq. (49) in momentum space implies:

Λ(p1, p2) =
∑

p3,p4

Λ(p1, p2; p3, p4),

U(p1, p2) =
∑

p3,p4

U(p1, p2; p3, p4). (72)

At zero source we get the exact relations between self energies and vertices by Fourier transforming Eq. (56) and
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a

b c

d

σ1

σ2 σ3

σ4
p1

p2 p3

p4Λσ1σ2
σ3σ4

[a, b; c, d]

Λσ1σ2
σ3σ4

[p1, p2; p3; p4]

and

FIG. 3: The vertex The four site vertex can be visualized from its definition for canonical theory: −〈〈fa σ1f
†
b σ2

f†c σ3
fd σ4〉〉+

〈〈fa σ1f
†
b σ2
〉〉〈〈f†c σ3

fd σ4〉〉 = δ

δVσ3σ4
cd

gσ1σ2(ab) = gσ1σ
′
1
[a,a] Λ

σ′
1σ

′
2

σ3σ4 [a,b; c, d] gσ′
2σ2

[b, b]. Therefore we may visualize that apart

from the external legs, Λσ1σ2
σ3σ4

[a, b; c, d] ∼ 〈fa σ1f
†
b σ2

f†c σ3
fd σ4〉. Note that in this convention, the labels differ by a cyclic

permutation from those in Fig. (2).

Eq. (57)

Φ(k) =
∑

p

(
εp +

1

2
εk +

1

2
Jk−p

)
g[p] Λ(a)(p, k) +

∑

pq

1

2
εq+p−k g[p] Λ(a)(p, k; q + p− k, q)

=
∑

pq

(
εp +

1

2
εk +

1

2
εq+p−k +

1

2
Jk−p

)
g[p] Λ(a)(p, k; q + p− k, q)

Ψ(k) =
∑

p

(
εp +

1

2
εk +

1

2
Jk−p

)
g[p] U (a)(p, k) +

∑

pq

1

2
εq+p−k g[p] U (a)(p, k; q + p− k, q),

=
∑

pq

(
εp +

1

2
εk +

1

2
εq+p−k +

1

2
Jk−p

)
g[p] U (a)(p, k; q + p− k, q) (73)

A convergence factor eiωp0+

arises from the time ordering and is implied wherever necessary and the last line in both
equations is valid provided the identity Eq. (72) is satisfied. Here Λ(a) = Λ(2) − Λ(3) and U (a) = U (2) − U (3).

With k = (~k, iωk) and ωn = π(2n+ 1)kBT , the Greens functions at a fixed λ read:

G(k) = g(k)× µ(k)

g−1(k) = iωn + µ− εk −
1

4
J0 − λ Y1(k)− λΦ(k)

µ(k) = 1− λ γ + λ Ψ(k). (74)

The sum rule for the number of physical particles and the auxiliary Fermions is given by
∑

p

µ[p] g[p] =
n

2
(75)

∑

p

g[p] =
n

2
(76)

While the sum rule Eq. (90) clearly counts the number of physical electrons, the origin the sum rule Eq. (76) for g
requires some discussion taken from Ref. (2). We recall that it is meant to enforce the Luttinger Ward theorem of
a conserved Fermi volume for the auxiliary Fermions. By so doing and through the composition G = g × µ, it also
preserves it for the physical Fermions. While µ provides us with one obvious Lagrange multiplier to enforce one
of the sum rules, the more subtle parameter u0, introduced in Eq. (27), is required to enforce the second sum rule
Eq. (91). Explicit expressions for γ, Y1,Φ,Ψ can be calculated order by in λ as demonstrated below.
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VI. SUMMARIZING

Before proceeding to the iterative scheme, we collect all the relevant equations for convenience. The various vertex

Object Defining Equation Eq.
No.

g−1[i,m] {g−1
0 [i,m] + λ γi · Vi,m − λ ξ∗ · Vi,a · g(a,b) · Λ∗(b,m; i)− λ Y1[i,m]− λ Φ[i,m]} Eq. (69)

µ[i,m] δ[i,m] (1− λ γ[i]) + λ Ψ[i,m] + λ ξ∗ · Vi,a · g(a,b) · U∗(b,m; i) Eq. (68)

Y1[i,m] t[i,m] (γ[i] + 1
2
γ[m])− δ[i,m] 1

2
(J [i,k] γ[k]− t[i,k]γ[k, i]) Eq. (58)

γ[i] µ(k)[a, i] · g(k)[i,a] Eq. (45)

γ[i,m] µ(k)[a, i] · g(k)[m,a] Eq. (45)

Φ[i,m] −t[i, j] ξ∗ ·g[j, c]·
(
Λ∗[c,m; i] + 1

2
Λ∗[c,m; j]

)
− 1

2
t[i,k] ξ∗ ·g[i, c]·Λ∗[c,m; k, i]+ 1

2
J [i,k] ξ∗ ·

g[i, c] · Λ∗[c,m; k]
Eq. (56)

Ψ[i,m] −t[i, j] ξ∗ ·g[j, c]·
(
U∗[c,m; i] + 1

2
U∗[c,m; j]

)
− 1

2
t[i,k] ξ∗ ·g[i, c]·U∗[c,m; k, i]+ 1

2
J [i,k] ξ∗ ·

g[i, c] · U∗[c,m; k]
Eq. (57)

TABLE I: Summary of defining equations: The computation of the Greens function G = g.µ in Eq. (44) requires several
intermediate variables. The complete set of variables in this theory (first column), and their mutual and λ dependence (second
column) are collected here for convenience. The corresponding equation number in the paper is given in the last column.

functions are found from relationships summarized in Table (II).

Vertex Defining Equation Eq.
No.

Λ
σaσb
σcσd [i,m; j] −( δ

δVσcσdj

) g−1
σaσb [i,m] Eq. (46)

Λ
σaσb
σcσd [i,m; j, k] −( δ

δVσcσd
j,k

) g−1
σaσb [i,m] Eq. (48)

Uσaσbσcσd [i,m; j] ( δ

δVσcσdj

) µσaσb [i,m] Eq. (46)

Uσaσbσcσd [i,m; j, k] ( δ

δVσcσd
j,k

) µσaσb [i,m] Eq. (48)

TABLE II: Vertex Functions: The theory requires three point and four point vertices. Their nomenclature (first column)
and definition (second column) are given, along with the corresponding equation number in the paper.

It is worthwhile providing one non trivial example of the matrix notation. In component form note that Φ[i,m]
can be written out as:

Φσiσm [i,m] = −t[i, j] σiσ1 gσ1σ2 [j, c]

(
Λσ2σm
σ̄iσ̄1

[c,m; i] +
1

2
Λσ2σm
σ̄iσ̄1

[c,m; j]

)

− 1

2
t[i,k] σiσ1 gσ1σ2 [i, c] Λσ2σm

σ̄iσ̄1
[c,m; k, i] +

1

2
J [i,k] σiσ1 gσ1σ2 [i, c] Λσ2σm

σ̄iσ̄1
[c,m; k],

VII. λ EXPANSION AND THE ITERATIVE SCHEME

Taking functional derivatives w.r.t. V, we generate a self energy - vertex hierarchy of Fermionic theory, paralleling
the standard (i.e. canonical) theory, but with greater complexity due to the two kinds of vertex functions and self
energies. We describe the λ expansion and the iterative process next. The iterations are analogous to the skeleton
diagram expansion in standard many body theory, where λ plays the role of the interaction constant. Various objects
are expanded in terms of λ and g, while g itself is left intact. Potentially confusing is the treatment of g−1, which
is expanded in λ and g, ignoring its obvious relationship as the inverse of g. This becomes understandable when we
recall that g−1 is, apart from g−1

0 , the Dyson self energy of the system, and is to be regarded as a functional of g, as
in the Luttinger Ward functional Ref. (17). One example of this expansion may be useful. Consider γ[i,m], we will
expand it as:

γ(k)[i,m] = g[m,a] · µ[a, i] = g[m,a] ·
(
[µ[a, i]]0 + λ (µ[a, i]]1 + λ2 [µ[a, i]]2 +O(λ3)

)
(77)

keeping g intact, i.e. unexpanded in λ. A similar expansion is carried out also for γ[i], leading to a correction of the
high frequency fall of coefficient c0 as noted above.
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Seed object Derived objects

[ µ[i,m] ]p [γ[i], γ[i,m], Y1[i,m], U [a, b; c], U [a, b; c, d]]p

[ U [a, b; c], U [a, b; c, d] ]p [Ψ[i,m]]p[
g−1[i,m]

]
p

[ Λ[a, b; c], Λ[a, b; c, d] ]p

[ Λ[a, b; c], Λ[a, b; c, d] ]p [Φ[i,m]]p

TABLE III: Iteration level p calculations The auxiliary inverse Greens function g−1 and the adaptive spectral weight µ
play the role of seed objects at the pth order. By computing them to pth order in the parameter λ, we obtain and the vertex
functions and the other variables listed in the second column to the same order as described in Eq. (80) - Eq. (83).

Level (p+ 1) object Required level p objects

[ µ[i,m] ]p+1 [γ[i], Ψ[i,m], U [a, b; c], U [a, b; c, d]]p[
g−1[i,m]

]
p+1

[Y1[i,m], Φ[i,m], Λ[a, b; c] ]p

TABLE IV: Iteration level step-up calculations: In proceeding upwards in the iterative process in Eq. (84) the computed
(p+1)th order objects are listed in the first column, and the (p)th order objects needed are in the second column. Since g−1

and µ at a given level suffice to determine all other objects at that level through Table (III), the iterative nature of the scheme
becomes transparent.

Iterative process: We now describe the various steps of the iteration process. First note that all variables (except
g) are expanded as

A = [A]0 + λ [A]1 + λ2 [A]2 + · · ·+ λp [A]p + · · · (78)

The iteration scheme can be summarized in the two following tables. Table (III) lists the seed objects needed at any
order and gives the derived objects. Table (IV) lists the higher order objects and the needed lower level objects for

stepping up.

• I. Initialization at p=0: The iterations require the following starting relations.

g−1
0 [i,m] = {[(µ− ∂τi −

1

4
J0)1− Vi]δ[i,m] + t[i,m]− Vi,m}

[µ[i, f ]]0 = 1 δ[i, f ] (79)

• II. Computation of derived objects at level p from Table (I) :

The set of equations requiring [µ[i,m]]p

[γ[i]]p =
[
µ(k)[a, i]

]
p
· g(k)[i,a]

[γ[i,m]]p =
[
µ(k)[a, i]

]
p
· g(k)[m,a]

[
Uσaσbσcσd

[i,m; j]
]
p

= (
δ

δVσcσdj

) [µσaσb [i,m]]p

[
Uσaσbσcσd

[i,m; j, k]
]
p

= (
δ

δVσcσdj,k

) [µσaσb [i,m]]p (80)

[ Y1[i,m] ]p = t[i,m]

[
γ[i] +

1

2
γ[m]

]

p

− δ[i,m]
1

2
[J [i,k] γ[k]− t[i,k]γ[k, i]]p (81)
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[ Ψ[i,m] ]p = −t[i, j] ξ∗ · g[j, c] ·
(
U∗[c,m; i] +

1

2
U∗[c,m; j]

)

p

− 1

2
t[i,k] ξ∗ · g[i, c] · (U∗[c,m; k, i] )p +

1

2
J [i,k] ξ∗ · g[i, c] · (U∗[c,m; k] )p , (82)

The set of equations requiring
[
g−1[i,m]

]
p

[
Λσaσbσcσd

[i,m; j]
]
p

= −(
δ

δVσcσdj

)
[
g−1
σaσb

[i,m]
]
p

[
Λσaσbσcσd

[i,m; j, k]
]
p

= −(
δ

δVσcσdj,k

)
[
g−1
σaσb

[i,m]
]
p

[ Φ[i,m] ]p = −t[i, j] ξ∗ · g[j, c] ·
(

Λ∗[c,m; i] +
1

2
Λ∗[c,m; j]

)

p

− 1

2
t[i,k] ξ∗ · g[i, c] · (Λ∗[c,m; k, i] )p +

1

2
J [i,k] ξ∗ · g[i, c] · (Λ∗[c,m; k] )p , (83)

• III. Level p to Level (p+ 1): step up equations:

[µ[i,m]]p+1 = −δ[i,m] [γ[i]]p + [Ψ[i,m]]p + [ ξ∗ · Vi,a · g(a,b) · U∗(b,m; i)]p ,[
g−1[i,m]

]
p+1

= [γi · Vi,m − ξ∗ · Vi,a · g(a,b) · Λ∗(b,m; i) ]p − [ Y1[i,m] + Φ[i,m] ]p (84)

• IV. If required level is reached exit, else return to Step II.

This iterative procedure can thus be applied to obtain equations for the Greens functions to any desired order. In
practice the higher order terms grow very rapidly, as in the Feynman diagram series. However, as explained in the
introduction, a low order expansion is expected to capture already the significant features of extreme correlations, an
important reason being that the range of is finite and small, i.e. λ ∈ [0, 1]. In this work we will be content to work
to O(λ2) where all the relevant objects can be calculated explicitly.

Second order Greens function: Having formulated the iterative process, we next apply this to obtain the second
order Greens functions. The calculations are detailed in the Appendix B, and we directly present the first and second
order results here. Displaying the so far hidden u0 coefficient, we write the complete set of equations to O(λ2) from
Eq. (184) and Eq. (181).

G[k] = g(k)× µ[k]

µ[k] = 1− λn
2

+ λ2 n2

4
− λ2

∑

p,q

(εp + εk+q−p + εk + εq + Jk−p − u0) g[p] g[q] g[q + k − p] +O(λ3) (85)

g−1(k) = iωn + µ′ −
(

1− λ n+ λ2 3n2

8

)
εk + λ

∑

q

1

2
Jk−q g[q]− λ2 [Φ(k)]1 +O(λ3) (86)

[Φ(k)]1 = −
∑

q,p

g[q] g[p] g[k + q − p]

× (εk + εp + εq + εk+q−p + Jk−p − u0 ) {εk + εp + εq + εk+q−p +
1

2
(Jk−p + Jp−q)− u0 }. (87)

The shifted chemical potential µ′ is related to the physical (i.e. thermodynamical) chemical potential µ and u0

through

µ′ = µ− u0
λn

2
(1− λn

4
) +

[
J0
λn

4
(1− λn

2
) + 2λ(1− λn

8
)
∑

q

εqg[q]

]
. (88)

In using this expansion, one must first set λ→ 1. These expressions satisfy the Shift theorem (I.1) and Shift theorem
(II), as one can verify by shifting εk and Jk by k independent constants, and using

∑
q g[q] = n

2 . The self energy
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FIG. 4: The self energy graphs to second order from Weff and the effective Hamiltonian Heff . These determine the Φ self
energy.

from a Feynman diagram theory to second order from Heff in Eq. (27) matches the above expression for g−1. The
required diagrams are shown in Fig. (4) up to second order where the zigzag line Weff is defined in Fig. (2). Apart
from a single term (the expansion of Y1 in λ), the expansion of the auxiliary Fermi liquid is largely “autonomous”, i.e.
proceeds without requiring the knowledge of µ, and is represented in Feynman diagrammatic terms. The caparison
term µ has no obvious interpretation in terms of Heff , but is easy to compute along lines similar to the ones shown
here, and the full theory splices the two factors to yield G, as described here.

A consistent first order, i.e. O(λ) theory for g−1 and µ can be found after dropping all O(λ2) terms. As it stands,
we would get µ = 1 − λn2 to this order, and this would violate the Fermi surface volume theorem ( Ref. (12)). To
recover from this, we may however set µ[k] to unity instead. Formally this is achieved by adding λ(1 − λ)n2 to µ[k]
as discussed below Eq. (66), since this added term vanishes at both endpoints λ = 0 and λ = 1. This procedure is
within the permissible adjustments of the continuity argument, and at second order cancels out so that the quoted
second order result is unchanged. Further all vertices are unchanged since this is a static term. In this way the first
order theory can also be arranged to satisfy the Luttinger Ward Fermi volume theorem. This theory has a band
dispersion (1 − n)εk that that shrinks in width by a factor (1 − n) as in the Gutzwiller-Brinkman-Rice theory7,18,
with an enhanced effective mass m/m∗ = (1−n). The second order result presented here provides a more interesting
and frequency dependent correction to the Fermi gas.

The physical Greens function is obtained from:

G[k] = g[k] µ[k]. (89)

The number of the physical electrons is fixed by the first sum rule:

n

2
=
∑

k

G[k] eiωn0+

, (90)

while the auxiliary Fermion satisfy an identical sum rule:

n

2
=
∑

k

g[k] eiωn0+

(91)

We can determine the two independent real parameters µ and u0 in order to satisfy both these equations simulta-
neously, and thus the role of u0 as a Lagrange multiplier, similar to that of µ is now evident. It is also clear that
the shifts of t or J can be absorbed in the two Lagrange multipliers µ and u0. It is worth noting that the Simplified
ECFL model used in Ref. (2) and Ref. (9) can be obtained from Eq. (85) and Eq. (87) by throwing out the band
energies and exchange energies in the coefficients of g(q)g(p)g(k + q − p) while retaining u0, so that the Lagrange
multiplier of that approximation ∆0 is related to u0.

The role of the two sum rules in fixing the number of Fermions and also the Luttinger Ward Fermi surface is already
discussed in Ref. (2). We can add to that discussion with the help of the explicit functional forms found above. It
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should be noted from Eq. (85) and Eq. (87) that the functional derivatives

I[k, p] ≡ δ [Φ[k]]1
δg[p]

, J [k, p] ≡ δ [Ψ[k]]1
δg[p]

, (92)

are symmetric functions under k ↔ p. This symmetry therefore guarantees the existence of two Luttinger Ward type
functionals of the auxiliary Greens function g,

ΩΦ[g] = −1

4

∑

k,p,q,r

W (k, q; r, p) [W (k, q; r, p) +W (k, q; p, r)] g[k] g[p] g[q] g[r]

ΩΨ[g] =
1

4

∑

k,p,q,r

W (k, q; r, p) g[k] g[p] g[q] g[r], (93)

such that the two self energies can be found from these functionals:

[Φ[k]]1 =
δΩΦ

δg[k]
, [Ψ[k]]1 =

δΩΨ

δg[k]
. (94)

The form of these two functionals follows to this order from Eq. (87), and it is natural to conjecture that such
functionals exist to all orders in λ. The existence of the ΩΦ functional guarantees a (FS) volume conserving Luttinger
Ward Fermi surface for the g electrons, and the smooth behavior of Ψ(k) near this surface guarantees likewise for the
physical electrons.

VIII. WARD IDENTITIES

This theory admits Ward identities involving the vertices Λ and U that guarantee current conservation in a similar
fashion as Ref. (11). This is displayed with the help of sources, the charge potential u[m] =

∑
σ Vσσm and an added

source v[m] coupling to the kinetic energy as

t[i, j]→ t[i, j](1 + v[j]− v[i]), (95)

so that v[j] − v[i] acts as a discrete version of the Peierls phase factor of electromagnetic coupling in tight binding
systems. We define

Dm ≡ ∂τm
δ

δu[m]
− δ

δv[m]
, (96)

so that the Ward identity expressing the conservation of current, from Ref. (11) reads

Dm G[i, f ] = (δ[i,m]− δ[f,m]) G[i, f ]. (97)

This is a discrete (Takahashi type) version of the usual Ward identity appropriate to the lattice Fermi system at hand,
and electromagnetic coupling only requires the long wavelength limit of this identity. We will define the (T ) vertices
(summing over σ)

Λ(T )(i, j;m) = − δ

δv[m]
g−1
σσ [i, j]/u,v→0

U (T )(i, j;m) =
δ

δv[m]
µσσ[i, j]/u,v→0. (98)

It is easy to see that the bare τ vertices are given by differentiating g−1
0 in Eq. (64) as

λ(T )(i, j;m) = t[i, j] (δ[i,m]− δ[j,m]) , λ(T )[p1, p2] = εp1 − εp2 , (99)

while the singlet (i.e. density) vertices are already known from Λ(s) =
∑
σσ′ Λσσσ′σ′ . Note that the (T ) type vertices

are antisymmetric in i↔ j or p1 ↔ p2.
Taking Fourier transforms in Eq. (97) and writing G = g × µ, we get the conservation law:

(iωp1
− iωp2

)
(
g(p1)Λ(s)(p1, p2)g(p2)µ(p2) + g(p1)U (s)(p1, p2)

)
−

(
g(p1)Λ(T )(p1, p2)g(p2)µ(p2) + g(p1)U (T )(p1, p2)

)
=

g(p2)µ(p2)− g(p1)µ(p1). (100)
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Canceling out g(p1)g(p2) we get the Ward identity:

(iωp1
− iωp2

)
(

Λ(s)(p1, p2)µ(p2) + U (s)(p1, p2)g−1(p2)
)
−

(
Λ(T )(p1, p2)µ(p2) + U (T )(p1, p2)g−1(p2)

)
=

g−1(p1)µ(p2)− g−1(p2)µ(p1). (101)

With iωn → zn, we rewrite this as

Wg(p1, p2) µ(p2) + g−1(p2) Wµ(p1, p2) = 0, (102)

where we have defined the two Ward functions:

Wg(p1, p2) = (z1 − z2) Λ(s)(p1, p2)− Λ(T )(p1, p2) + g−1(p2)− g−1(p1)

Wµ(p1, p2) = (z1 − z2) U (s)(p1, p2)− U (T )(p1, p2) + µ(p1)− µ(p2) (103)

Since p1 and p2 are arbitrary, the two terms must vanish separately giving us the pair of Ward identities:

Wg(p1, p2) = 0, (104)

Wµ(p1, p2) = 0. (105)

IX. RANDOM PHASE APPROXIMATION

Since the Greens functions are known to O(λ2), we can take the derivatives of Eq. (140) and Eq. (141), to get
vertices to this order. Here we calculate by taking the equations to O(λ) only, but assuming δ

δV g = gΛg rather than
δ
δV g = gg, thereby obtaining the analog of the RPA. Since the spin susceptibility is also of considerable interest,
we will calculate the required vertices in the that channel as well. Summarizing the results we write linear integral
equations for the U vertices:

U (T )[p1, p2] = −λ
∑

q

g(q)Λ(T )(q, q + p2 − p1)g(q + p2 − p1) +O(λ2)

U (s)[p1, p2] = −λ
∑

q

g(q)Λ(s)(q, q + p2 − p1)g(q + p2 − p1) +O(λ2)

U (t)[p1, p2] = λ
∑

q

g(q)Λ(t)(q, q + p2 − p1)g(q + p2 − p1) +O(λ2), (106)

and similarly for the Λ vertices:

Λ(T )[p1, p2] = (εp1 − εp2)
(

1− λ n︸︷︷︸
)
− λ

∑

q

g(q)Λ(T )(q, q + p2 − p1)g(q + p2 − p1) F(q, p1, p2) +O(λ2),

Λ(s)[p1, p2] = 1− λ
∑

q

g(q)Λ(s)(q, q + p2 − p1)g(q + p2 − p1) F(q, p1, p2) +O(λ2),

Λ(t)[p1, p2] = 1 + λ
∑

q

g(q)Λ(t)(q, q + p2 − p1)g(q + p2 − p1) F(q, p1, p2) +O(λ2). (107)

where we use the shorthand F(q, p1, p2) ≡ {εp1 + εp2 + εq + εq+p2−p1 − u0 + 1
2 (Jp1−p2 + Jq−p1)}. The term in

underbrace receives an O(λ) contribution from differentiating the explicit v dependence of the transformed t[i,m]→
t[i,m](1+v[m]−v[i]) term in Eq. (140). It is readily shown by examining the kernel of the integral equations that the
solution for Λ(T )(p1, p2) is antisymmetric under exchanging p1 ↔ p2, while Λ(s)(p1, p2) and Λ(t)(p1, p2) are symmetric.

These vertices are shown to be compatible with Ward identities to O(λ) if used with the first order versions of the
Greens functions Eq. (85) and Eq. (86):

g(p) = iωn + µ′ − (1− λn)εk +
λ

2

∑

q

Jk−q g(q) +O(λ2), and µ(p) = 1, (108)

by substituting in the expressions Eq. (104) and Eq. (105), and showing the self consistency of this result. The details
of this verification parallel the standard proof in QED and are omitted here. Note that µ must be chosen to be unity
rather than 1−λn2 as discussed in the second para below Eq. (86), although this choice is irrelevant to the verification
of the Ward identity.
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X. TWO PARTICLE RESPONSE

We are interested in the pair correlations of the density na =
∑
σX

σσ
a and the spin density Sza =

1
2

∑
σ1,σ2

τzσ1σ2
Xσ1σ2
a , where τz is the usual Pauli matrix. These can be obtained from taking the functional derivatives

of the Greens function

Υσ1σ2
σ3σ4

[i, j] =
δ

δVσ3σ4
j

Gσ1σ2
[i−, i], (109)

and can be conveniently found from taking a limit of the three site object Υσ1σ2
σ3σ4

(p, q; r) = δ
δVσ3σ4
r
Gσ1σ2

[p, q]. With the

singlet and triplet objects denoted with a superscript α = s, t, we note the following relationships with the standard
charge and spin susceptibilities of interest:

〈〈 na(τa) nb(τb) 〉〉 = n2 − 2 Υ(s)(a, b)

〈〈 Sza(τa) Szb (τb) 〉〉 = −1

2
Υ(t)(a, b) (110)

Owing to the Bosonic nature of the densities, we have the symmetry Υ(α)(b, a) = Υ(α)(a, b) from which the Fourier

transform at Q ≡ ( ~Q, iΩq) satisfies the relation:

Υ(α)(Q) = Υ(α)(−Q). (111)

This symmetry can be used as another test of the consistency of any approximation.
The Greens function in Eq. (109) can be decomposed in to g and µ as before and we find

Υσ1σ2
σ3σ4

(a, b; r) =
δ

δVσ3σ4
r

{gσ1σa(a,a)µσaσ2(a, b)} ,

= {g(a,b)Λσ3σ4(b, s; r)g(s,a)µ(a, q)}σ1σ2
+ {g(a,b) Uσ3σ4(b, b; r)}σ1σ2

, (112)

where the vertex and Υ carry upper spin indices that are part of the matrix product. Turning off the sources, we find
the expressions for singlet and triplet response

Υ(α)(a, b; r) = g(a,b)Λ(α)(b, s)g(s,a)µ(a, b) + g(a,b) Uα(b, b; r),

Υ(α)(p1, p2) = g(p1)Λ(α)(p1, p2)g(p2)µ(p2) + g(p1) U (α)(p1, p2), (113)

where α = s, t. The definitional distinction between left and right derivatives leads to the asymmetry in the above
equations making it necessary to test the consistency Eq. (111) term by term.

Using the zero source limit notation from Ref. (11):

Q(1) = Qσσσσ; Q(2) = Qσσσ̄σ̄; Q(3) = Qσσ̄σσ̄

Q(a) = Q(2) −Q(3); Q(s) = Q(1) +Q(2); Q(t) = Q(1) −Q(2) = Q(3). (114)

The charge α = s and spin α = t susceptibilities at finite Q ≡ ( ~Q, iΩq) are given by setting p2 → p and p1 → p+Q
and summing over p.

Υ(α)(Q) ≡
∑

p

Υ(α)(p, p+Q) =
∑

p

(
g(p) Λ(α)(p, p+Q) g(p+Q) µ(p+Q) + g(p) U (α)(p, p+Q)

)
, (115)

These are exact expression for the susceptibilities, but as usual require a knowledge of the vertices and Greens functions
to give practical results. We can now use the RPA vertices calculated in Section. (IX) to give the corresponding
expressions.

We denote the susceptibility of the auxiliary Fermions as

χ
(α)
Λ (Q) ≡ −

∑

q

g(q)Λ(α)(q, q +Q)g(q +Q), (116)

and within RPA we note that µ(p) is independent of p, and from Eq. (106) we denote that the U vertices are functions
of the momentum difference only:

U (α)[p1, p2] = λ ξα χ
(α)
Λ (p2 − p1) (117)
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where ξα is 1 for α = singlet and −1 for α = triplet. Therefore we can sum over the p dependence of the second term
and rewrite Eq. (115) as

(
Υ(α)(Q)

)
RPA

= −Cα χ(α)
Λ (Q) (118)

where Cα =
(
µ− ξα λ n

2

)
. It seems more appropriate to reset µ = (1 − λn2 ) from unity at this level, in order to

recover the expected high frequency behavior in the charge as well as spin channel, so that Csinglet = (1−λn)→ 1−n
and Ctriplet = 1. The vertices Λ are to be computed from Eq. (107) and form a consistent set of equations for two
particle response in the sense of the usual RPA.

The integral equations must be solved numerically. However in order to display some flavor of the results, we
pursue this to the lowest order in λ by iteration, where explicit results can be obtained. Let us define a few frequently
occurring generalized polarizability functions for convenience. We will now reinstate Jk → Jk − u0

χ0(Q) = −
∑

q

g(q) g(q +Q)

χ1(Q) = −
∑

q

g(q) g(q +Q) {εq + εq+Q}

χ2(Q) =
1

2

∑

r,p

g(r)g(r +Q)g(p)g(p+Q) Jp−r

F (p+Q, p) =
∑

r

g(r)g(r +Q)

{
εp + εp+Q + εr + εr+Q +

1

2
(JQ + Jp−r)

}
. (119)

Here χ0(Q) is the standard Lindhard function and is positive in the static limit as ~Q→ 0, while the other functions
are generalizations thereof.

The answers are

Υ(s)(Q) = −(1− λn)χ0(Q)− λ[2 χ0(Q) χ1(Q)−
(
u0 −

1

2
JQ

)
χ2

0(Q) + χ2(Q)]

Υ(t)(Q) = −χ0(Q) + λ[2χ0(Q) χ1(Q) +

(
1

2
JQ − u0

)
χ2

0(Q) + χ2(Q)]. (120)

It is clear that the role of u0 enhances the spin susceptibility while decreasing the charge susceptibility. To this order
we see that the parity test Eq. (111) is satisfied to this order by using the symmetries of the objects in Eq. (119).

SInce the Greens function remain infinitely sharp within the RPA, its usefulness is limited- especially in view of the
large frequency dependent corrections with characteristic asymmetry seen in second order results Ref. (2), Ref. (9)
and Ref. (10). A second order version of RPA seems most desirable, although even without vertex corrections to
second order, the single particle spectral results are very interesting already. It also seems interesting to also study
phenomenologically, the analog of the “bubble” diagram for purposes of extracting the optical conductivity; a scheme
that reflects the width of the physical Greens function and satisfies the parity requirement Eq. (111) is given by:

[U(Q)]phen = − 1

1− n/2
∑

q

G(q)G(q +Q), (121)

although this expression is not the result a systematic expansion of Eq. (115) .

XI. DISCUSSION AND CONCLUSIONS

We have described above a controlled technique of dealing with the t-J model. This extremely correlated Fermi
liquid theory is a strong coupling approach, specifically designed to deal with a hard many body problem. The
considerations begin with the strong coupling limit of the Hubbard model, leading to the t-J model with a hard
constraint of eliminated double occupancy. The Schwinger method gives us a crucial initial platform to deal with
this problem. The ensuing exact functional differential equations are made tractable by the introduction of the exact
product ansatz: G = g× µ, with g a canonical Greens function of auxiliary electrons and µ the caparison factor. The
latter, in turn, is understood as an adaptive spectral weight balancing the requirements at the high and low frequency
ends of the spectrum. Both objects are expanded in powers of a parameter λ, that plays the role of fractional double
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occupancy. Thus λ = 1 corresponds to complete elimination of double occupancy whereas λ < 1 has some residual
double occupancy. We thus replace the hard constraint: of complete elimination of double occupancy by a softer one
or partial removal. In order to provide a natural description of the canonical electrons, we introduce the effective
Hamiltonian Heff , depending parametrically on λ. In order to obey the Shift theorems (I-II), we find it obligatory
to (re)introduce a Hubbard type u0 parameter in this model. It also plays the role of a second chemical potential
as explained above. The set of steps followed, in our starting as well as ending up with a Hubbard type interaction
has a slightly circular feel to it. This recipe is perhaps best understood as a renormalization group type procedure,
where the constraint of single occupancy is enforced incrementally and the density of doubly occupied sites is thinned
out smoothly. The infinite starting value of U in the t-J model is pushed downward to u0, typically a fraction
of the bandwidth from our numerical studies, albeit in a more general model Heff , and is therefore amenable to
a perturbative expansion. The form of the Heff and the important role of the shift symmetries in validating the
approximations is noteworthy. The hopping tij is elevated to an interaction constant of the model, this unfamiliar
step is kept under check by requiring the two important shift invariances. The Schwinger equation Eq. (42) for G,
being an exact statement of the problem, provides us with a rigorous backdrop to the entire procedure. Further our
procedure has the advantage of being systematically improvable through the iterative scheme developed here.

We can explore superconductivity at a qualitative level, by studying the pairing instabilities of the auxiliary Fermions
given by Heff via its BCS gap function ∆(k). In this first approximation, the physical electron order parameter

〈X↑0k X
↓0
−k〉 is proportional to that of the auxiliary electrons 〈f†↑(k)f†↓(−k)〉, together with the single occupancy con-

straint of vanishing upon summing over the wavevector k. Within a generalized Hartree Fock theory, retaining the
self energy correction to first order (as in Eq. (108)) as well as the pairing field average, we obtain an equation for
the gap function ∆(k):

∆(k) =
1

Ns

∑

p

{
εk + εp − u0 +

1

2
Jk−p

}
∆(p)

tanhβE(p)/2

E(p)
(122)

where E(p) =
√

∆2(p) + ξ2
p, and ξp = εp(1 − n) − 1

2

∑
Jq−pnq − µ. In the computation below, we will neglect the

numerically small J term in the single particle energy. Other than u0 and the two single particle energies in Eq. (122)
required for satisfying the Shift theorems (I-II), this is the same equation as the one found within the resonating
valence bond theory in Ref. (4), Ref. (19) and Ref. (20). The transition temperature for a d-wave state with a gap
function ∆(k) = ∆d [cos(kx)− cos(ky)] is obtained by solving Eq. (122) for the case of the nearest neighbour square
lattice t-J model, with parameters indicated in the caption. It is straightforward to see that the Tc equation has a

Tc max=J/(4 kBL
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FIG. 5: The transition temperature in Kelvin, from solving Eq. (122) assuming t = 3000K and J = 900K. The solid line
indicates the likely regime of validity of the O(λ) theory. Its dotted extension to lower hole density is speculative and is most
likely to change with higher order corrections reflecting the nearby Mott insulating state. The dotted red line indicates the
maximum Tc obtainable from this scheme, and is seen to depend solely upon the magnitude of J .

maximum scale of order J/(4kB) as already noted in Ref. (19) and Ref. (20). This value is attained in this solution
at a higher particle density, or equivalently, a lower hole density, than is warranted by the first approximation. The
solid line represents a plausible regime of validity of this scheme.

The extended s-wave order is usually described by a gap function ∆(k) = ∆s,0 + ∆s,1 [cos(kx) + cos(ky)]. The
constant term ∆s,0 leads to a finite probability of double occupancy, since it survives a wavevector sum. After it is
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dropped as per the above discussion, the assumed (purely extended) s-wave order is supported by the J term in the
kernel of Eq. (122) , but not by the u0 dependent and single particle energy terms. The latter thus do not play a role
in determining Tc for either d-wave or s-wave orders despite their large magnitude relative to J .

A detailed calculation of the gap equation is planned for the pairing of physical particles, parallel to the O(λ2)
theory of the normal state. The finite lifetime effects are then expected to become relevant. Such an improvement
of the pairing scheme should yield a greater understanding of the balance between the different orders and a greater
range of validity in density than the schematic theory treated here.
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Appendices
A. ATOMIC LIMIT t = J = 0

A. Double occupancy interpretation of λ from the atomic limit

In order to understand the role of λ we study the atomic limit t, J → 0 where this parameter can be introduced
into the physical Greens function in the form:

G[λ, iωn] =
1− λ n

2

iωn + µ
, (123)

and study its dependence on λ in the interval [0, 1]. The chemical potential µ can be calculated from the sum rule
on the density n of the number of particles N with n = N/Ns and temperature T as

µ = kBT log(
n

2− (1 + λ)n
). (124)

Thermodynamics tells us that the entropy S can be expressed as

S(n) = −Ns
∫ n

0

dn′
∂µ(n′)

∂T
(125)

and since we know µ from Eq. (124) we obtain with y = (1 + λ)n

S(n, λ)

kBNs
=

1

1 + λ
{log 4− y log n− (2− y) log (2− y)} . (126)

we see that its λ derivative: 1
kBNs

∂S
∂λ = 2

(1+λ)2

[
y
2 + log (1− y

2 )
]

is negative definite. Thus we see that the entropy

at a fixed density interpolates monotonically, between the free Fermi limit and the infinite U limits as λ ranges
over its domain 0 ≤ λ ≤ 1. The maximum allowed density is reduced from 2 to 2

1+λ and thus at λ = 1 we have
a maximum of one electron per site- as expected physically. Thus increasing λ from zero effectively removes the
available states contributing to entropy, its role may be viewed as that of (continuous) removal of states. Thus for
the equations of motion it is somewhat analogous to the role of Gutzwiller’s parameter g in his projection operator∏
i [1− (1− g)ni↑nj↓] at the wave function level.
In the atomic limit we can also calculate the entropy at a fixed density of doubly occupied sites d = 1

Ns

∑
i ni↑ni↓

as

S(n, d)

kBNs
= −d log d− (n− 2d) log(

n

2
− d)− (1 + d− n) log(1 + d− n). (127)

An uncorrelated system corresponds to d = n2

4 , where the entropy Eq. (127) is a maximum, while d = 0 for the fully
projected t-J model. Comparing the two expressions for entropy Eq. (126) and Eq. (127), we can express λ in terms
of d at any density. We have thus demonstrated that λ is a conjugate variable to the double occupation density in
this limit. Their explicit relationship is illustrated in Fig. (6).
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n= .25, .5, .75, 1.
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FIG. 6: The parameter λ is determined in terms of the double occupancy d at various densities in the atomic limit as described
in the text. The arrow indicates increasing density n. Note that the parameter d is scaled into the unit interval.

B. Expansion in λ in the Atomic Limit:

In the atomic limit we set t→ 0 and J → 0 so that Eq. (67) and Eq. (68) becomes

g[i, f ] = g0[i, f ;µa]

µ[i, f ] = δ[i, f ] (1− λ γ[i])− λ µb g[i, f ] · µ[f , f ]. (128)

Here we split the chemical potential into two pieces µ = µa + λµb. Thus in this limit g is the free Fermi Greens
function independent of λ, and µa is the free value µa → µ0, the latter determined from the non interacting theory
in terms of the number of particles. If we turn off the source V the Fourier transforms can be taken as

g[iωn] = g0[iωn;µa] =
1

iωn + µ0

µ[iωn] =
(

1− λ n

2

)
− λ µb g[iωn]µ[iωn],

=
1− λn2

1 + λµb g[iωn]
. (129)

Thus the physical Greens function

G[iωn] =
1− λ n

2

iωn + µ0 + λµb
. (130)

We fix the chemical potentials from the number sum rule as usual and thus

n

2
=

1

1 + e−βµ0
,

n

2
= (1− λ n

2
)

1

1 + e−β(µ0+λµb)
. (131)

We may then solve for µ’s in terms of the density and obtain

µ0 = kBT log(
n

2− n )

λ µb = kBT log(
2− n

2− (1 + λ)n
). (132)

Thus the chemical potential µ1 has a power series representation

µb =

∞∑

m=0

λm µ
(m)
b = kBT

∞∑

m=0

λm

m+ 1

[
n

2− n

]m+1

. (133)
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We see explicitly from Eq. (133) that the λ expansion of the the atomic limit is an expansion in λn/(2 − n) i.e. a
density expansion as well.

B. THE LOW ORDER CALCULATIONS OF GREENS FUNCTIONS

A. Greens function to O(λ)

We evaluate the complete starting point of the hierarchy. We start with terms of O(λ0) and end with [µ]1 and
[g−1]1, which are the seeds for the O(λ) terms.

1. Seed terms and Initialization

g−1
0 [i,m] = {[(µ− ∂τi −

1

4
J0)1− Vi]δ[i,m] + t[i,m]− Vi,m}

[µ[i, f ]]0 = 1 δ[i, f ] (134)

Derived objects

[γ[i]]0 = g(k)[i, i]

[γ[i,m]]0 = g(k)[m, i][
Uσaσbσcσd

[i,m; j]
]
0

= 0
[
Uσaσbσcσd

[i,m; j, k]
]
0

= 0.

(135)

[Y1[i,m]]0 = t[i,m] (g(k)[i, i] +
1

2
g(k)[m,m])− δ[i,m]

1

2

(
J [i, j] g(k)[j, j]− t[i, j] g(k)[i, j]

)

[Ψ[i,m]]0 = 0. (136)

[
Λσaσbσcσd

[i,m; j]
]
0

= δσaσcδσb,σd δ[i, j] δ[j,m],
[
Λσaσbσcσd

[i,m; j, k]
]
0

= δσaσcδσb,σd δ[i, j] δ[m, k] δ(τj − τk). (137)

In the four point vertex above, we have introduced the delta function δ(τj − τk), so that the labels i,m, j, k can be
viewed as four independent space time variables. Thus

[Φ[i,m]]0 = δ[i,m] t[i, j] g(k)[j, i] +
1

2
t[i,m] g(k)[m,m] +

1

2
δ[i,m] t[i, j] g(k)[i, j]− 1

2
J [i,m] g(k)[i,m] (138)

Combining the two we get

[ Y1[i,m]]0 + [Φ[i,m]]0 = δ[i,m] t[i, j]
(
g(k)[i, j] + g(k)[j, i]

)
+ t[i,m] (g(k)[i, i] + g(k)[m,m])

−1

2
J [i,m] g(k)[i,m]− δ[i,m]

1

2
J [i, j] g(k)[j, j] (139)

2. Stepping up and final Greens function to O(λ).

To first order in λ we collect the above results to obtain the Greens function

[
g−1[i,m]

]
1

= g(k)[i, i] · Vi,m + δ[i,m] g(k)[a, i] · V(k)
i,a + δ[i,m]

1

2
J [i, j] g(k)[j, j] +

1

2
J [i,m] g(k)[i,m]

−t[i,m] (g(k)[i, i] + g(k)[m,m])− δ[i,m] t[i, j]
(
g(k)[i, j] + g(k)[j, i]

)
(140)
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and the caparison factor:

[µ[i,m]]1 = −g(k)[i−, i] δ[i,m] (141)

The FT’s of these on turning off the sources is found using g[i−, i]→ n
2 as

[
g−1[k]

]
1

= n εk −
n

2
u0 +

1

2

∑

q

Jk−q g[q] +

(
1

4
J0 n+ 2

∑

q

εq g[q]

)
(142)

[µ[k]]1 = −n
2

(143)

The term −n2u0 in Eq. (142) arises when we reinstate J [i, j]→ J [i, j]− u0δ[i, j] in Eq. (140). Let us note that under

the shift Eq. (13), the first order correction
[
g−1[k]

]
1

shifts by 2nut+ n
2uJ . Therefore this term is invariant under the

Shift theorem-II and also the Shift theorem-(I.1), provided u0 is simultaneously transformed as specified in Eq. (31).

B. Greens function to O(λ2)

1. µ derived objects

We next start with seed terms of O(λ) calculated above and end with [µ]2 and [g−1]2.

[µ[i,m]]1 = −g(k)[i−, i] δ[i,m] (144)

Let us calculate the derived quantities from the above at the same level:

[ γ[i] ]1 =
[
µ(k)[a, i]

]
1
· g(k)[i,a] = −g[i, i] · g(k)[i, i]

[ γ[i,m] ]1 =
[
µ(k)[a, i]

]
1
· g(k)[m,a] = −g[i, i] · g(k)[m, i]

[Y [i,m]]1 = −t[i,m]

(
g[i, i] · g(k)[i, i] +

1

2
g[m,m] · g(k)[m,m]

)

+
1

2
δ[i,m]

(
J [i, j] g[j, j] · g(k)[j, j]− t[i, j] g[j, j] · g(k)[i, j]

)
(145)

Zero source Fourier transforms:

([γ[0]]1)V→0 = −n
2

4

([γ[k]]1)V→0
= −n

2
g[−k]

([Y1[k]]1)V→0
=

3n2

8
εk −

n2

8
u0 +

(
n2

8
J0 +

n

4

∑

q

εq g[q]

)
(146)

Here we reinstated J [i, j]→ J [i, j]− u0δ[i, j] in Eq. (145) to obtain the −n2

8 u0 term in Eq. (146).

2. µ derived vertices

Next we calculate (using lowest order functional derivatives)
[
Uσ1σ2
σ3σ4

[i,m; a]
]
1

= −δ[i,m] σ1σ2 gσ̄2σ3
[i, a] gσ4σ̄1

[a, i]
[
Uσ1σ2
σ3σ4

[i,m; a]
]
1 V→0 = −δ[i,m] σ1σ2 δσ̄2,σ3δσ̄4,σ1 g[i, a] g[a, i]

(147)

At zero sources so with V → 0

[ U(a)[i,m; a] ]1 = −2 δ[i,m] g[i, a] g[a, i],[
U (s)[i,m; a]

]
1

= − δ[i,m] g[i, a] g[a, i]. (148)
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The zero source Fourier transforms are as follows:

[
Uσ1σ2
σ3σ4

[p1, p2]
]
1

= − σ1σ2 δσ̄2,σ3
δσ̄4,σ1

∑

q

g[q] g[q + p2 − p1]

[
U (a)[p1, p2]

]
1

= −2
∑

q

g[q] g[q + p2 − p1] (149)

Similarly we find for the four index vertices:

[
Uσ1σ2
σ3σ4

[i,m; a, b]
]
1

= −δ[i,m] σ1σ2 δσ̄2,σ3
δσ̄4,σ1

g[i, a] g[b, i] δ(τa − τb),[
U (a)[i,m; a, b]

]
1
V→0 = −2 δ[i,m] g[i, a] g[b, i] δ(τa − τb), (150)

The zero source Fourier transforms are as follows:

[
Uσ1σ2
σ3σ4

[p1, p2; p3, p4]
]
1

= − σ1σ2 δσ̄2,σ3
δσ̄4,σ1

δp1+p4,p2+p3
g[p3] g[p4]

[
U (a)[p1, p2; p3, p4]

]
1

= −2 δp1+p4,p2+p3 g[p3] g[p4] (151)

3. Ψ to O(λ)

We compute [Ψ]1 from these.

[Ψ(k)]1 =
∑

p

(
εp +

1

2
εk +

1

2
Jk−p

)
g[p]

[
U (a)(p, k)

]
1

+
∑

pq

1

2
εq+p−k g[p]

[
U (a)(p, k; q + p− k, q)

]
1

= −
∑

p,q

(εp + εk+q−p + εk + εq + Jk−p) g[p] g[q] g[q + k − p]

=
∑

p,q

W (k, q; q + k − p, p) g[p] g[q] g[q + k − p] (152)

4. Stepping up: µ to O(λ2)

Stepping up, we calculate

[µ[i,m]]2 = −δ[i,m] g[i−, i]g(k)[i−, i] + [Ψ[i,m]]1 (153)

Hence at zero sources, the Fourier transform reads

[µ[k]]2 =
n2

4
−
∑

p,q

(εp + εk+q−p + εk + εq + Jk−p) g[p] g[q] g[q + k − p] (154)

Note that [µ]2, [Ψ]1 are invariant under all three shift theorems. It is clear that this is a more non trivial application
of the theorems than those in the lowest order.

5. g−1 derived objects

Let us now start with:
[
g−1[i,m]

]
1

given in Eq. (140):

[
g−1[i,m]

]
1

=
[
g(k)[i, i] · Vi,m + δ[i,m] g(k)[a, i] · V(k)

i,a

]
+

[
δ[i,m]

1

2
J [i, j] g(k)[j, j] +

1

2
J [i,m] g(k)[i,m]

]

[
−t[i,m] (g(k)[i, i] + g(k)[m,m])− δ[i,m] t[i, j]

(
g(k)[i, j] + g(k)[j, i]

)]
. (155)
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6. Vertex functions to O(λ)

Three point vertex:

[
Λσ1σ2
σ3σ4

[i,m; a]
]
1

= −(
δ

δVσ3σ4
a

)
[
g−1
σ1σ2

[i,m]
]
1

= [(I) + (II) + (III)]σ1σ2
σ3σ4

, (156)

where the terms (I), (II), (III) refer to the three square bracketed terms in Eq. (155).
For the first term we calculate

(I)σ1σ2
σ3σ4

= −(
δ

δVσ3σ4
a

)
[
(σ1σa) gσ̄aσ̄1

[i, i] Vσaσ2
i,m + δ[i,m] (σ1σ2) gσ̄aσ̄1

[a, i] V σ̄2σ̄a
i,a

]
(157)

V→0 = 0. (158)

For all other terms we can use a simple calculation:

X σ1σ2
σ3σ4

[p, q; r] = (
δ

δVσ3σ4
r

)g(k)
σ1σ2

[p, q]

= (σ1σ2)gσ̄2σ3
[p, r]gσ4σ̄1

[r, q]

X σ1σ2
σ3σ4

[p, q; r] V→0 = (σ1σ2)δσ̄2σ3
δσ̄1σ4

g[p, r]g[r, q]

X (a)[p, q; r] V→0 = 2 g[p, r]g[r, q]

(159)

Therefore

(II)(a)[i,m; a] = −δ[i,m] J [i, j] g[j, a] g[a, j]− J [i,m] g[i, a] g[a,m], (160)

and

(III)(a)[i,m; a] = 2 [ t[i,m] (g[i, a]g[a, i] + g[m, a]g[a,m]) + δ[i,m] t[i, j] (g[i, a]g[a, j] + g[j, a]g[a, i]) ] (161)

Zero source Fourier transforms read as:

(II)(a)[p1, p2] = −Jp2−p1

∑

q

g[q] g[q + p2 − p1]−
∑

q

Jp1−q g[q] g[q + p2 − p1]

(III)(a)[p1, p2] = −2
∑

q

g[q]g[q + p2 − p1] {εp2
+ εp1

+ εq+p2−p1
+ εq} (162)

Hence adding up we obtain:

[
Λσ1σ2
σ3σ4

[p1, p2]
]
1

= −(σ1σ2)δσ̄2σ3 δσ̄1σ4

∑

p3,p4

δp1+p4,p2+p3 g[p3]g[p4] {εp1 + εp2 + εp3 + εp4 +
1

2
(Jp1−p2 + Jp1−p3)}

=
1

2
(σ1σ2)δσ̄2σ3

δσ̄1σ4

∑

p3,p4

g[p3]g[p4] [W (p2, p3, p4, p1) +W (p2, p3, p1, p4)]

(163)[
Λ(a)[p1, p2]

]
1

= −
∑

p3,p4

g[p3]g[p4] [W (p2, p3, p4, p1) +W (p2, p3, p1, p4)] (164)

Note that rotation invariance relations imply that since
[
Λ(1)[p1, p2]

]
1

= 0, we must have

[
Λ(s)[p1, p2]

]
1

= −
[
Λ(t)[p1, p2]

]
1

=
1

2

[
Λ(a)[p1, p2]

]
1

(165)

The four point vertex. The calculation proceeds similarly:

[
Λσ1σ2
σ3σ4

[i,m; a, b]
]
1

= −(
δ

δVσ3σ4

a,b

)
[
g−1
σ1σ2

[i,m]
]
1

= [(IV ) + (V ) + (V I)]σ1σ2
σ3σ4

(166)
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Here the terms (IV ) − (V I) refer to the three square bracketed terms in Eq. (82). For the first term we calculate
with implicit τa = τb:

(IV )σ1σ2
σ3σ4

= −(
δ

δVσ3σ4

a,b

)
[
(σ1σa) gσ̄aσ̄1 [i, i] Vσaσ2

i,m + δ[i,m] (σ1σ2) gσ̄aσ̄1 [a, i] V σ̄2σ̄a
i,a

]
(167)

= −δ[i, a]δ[m, b] [(σ1σ3)δσ2σ4
gσ̄3σ̄1

[i, i] ]− δ[i, a]δ[i,m] [(σ1σ2) δσ̄2,σ3
gσ4σ̄1

[b, i]]

(IV )σ1σ2
σ3σ4 V→0 −δ[i, a]δ[m, b] δσ1σ3 δσ2σ4g[i, i]− δ[i, a]δ[i,m] (σ1σ2) δσ1σ̄4δσ2σ̄3 g[b, i]

(IV )(a) = δ[i, a]δ[m, b] g[i, i]− 2 δ[i, a]δ[i,m] g[b, i]︸ ︷︷ ︸ . (168)

This term is seen result in a violation of Eq. (49) and Eq. (72) for reasons discussed there and in the second remark
below Eq. (68), and therefore is dropped below. We have carried it in the calculation, and demarcated it with the
underbrace, in order to see its (minor) contribution explicitly before dropping it.

For all other terms we can use a simple calculation:

Yσ1σ2
σ3σ4

[p, q; r, s] = (
δ

δVσ3σ4
r,s

)g(k)
σ1σ2

[p, q]

Y(a)[p, q; r, s] V→0 = 2 g[p, r] g[s, q] δ(τr − τs) (169)

Therefore with implicit τa = τb:

(V )(a)[i,m; a, b] = −δ[i,m] J [i, j] g[j, a] g[b, j]− J [i,m] g[i, a] g[b,m] (170)

(V I)(a)[i,m; a, b] = 2 [ t[i,m] (g[i, a]g[b, i] + g[m, a]g[b,m]) + δ[i,m] t[i, j] (g[i, a]g[b, j] + g[j, a]g[b, i]) ] (171)

(IV )(a)[i,m; a, b] = δ[i, a]δ[m, b] g[i, i]− 2 δ[i, a]δ[i,m] g[b, i]

(IV )(a)[p1, p2, p3, p4] = δp1,p3δp2,p4g[0−]− 2 δp1+p4,p2+p3 g[p4]︸ ︷︷ ︸

(V )(a)[i,m; a, b] = −δ[i,m] J [i, j] g[j, a] g[b, j]− J [i,m] g[i, a] g[b,m] (172)

(V )(a)[p1, p2, p3, p4] = − (Jp2−p1 + Jp1−p3) g[p3] g[p4] δp1+p4,p2+p3

(V I)(a)[i,m; a, b] = 2 [ t[i,m] (g[i, a]g[b, i] + g[m, a]g[b,m]) + δ[i,m] t[i, j] (g[i, a]g[b, j] + g[j, a]g[b, i]) ]

(V I)(a)[p1, p2, p3, p4] = −2{εp2
+ εp1

+ εp3
+ εp4

} g[p3] g[p4] δp1+p4,p2+p3
(173)

Hence

[
Λσ1σ2
σ3σ4

[p1, p2, p3, p4]
]
1

= − (σ1σ2)δσ̄2σ3 δσ̄1σ4 δp1+p4,p2+p3 g[p3]g[p4] {εp1 + εp2 + εp3 + εp4 +
1

2
(Jp1−p2

+ Jp1−p3
)}

−δp1,p3
δp2,p4

δσ1σ3
δσ2σ4

g[0−]− 2 (σ1σ2) δσ1σ̄4
δσ2σ̄3

δp1+p4,p2+p3
g[p4]︸ ︷︷ ︸ (174)

Thus

[
Λ(a)[p1, p2, p3, p4]

]
1

= −2 δp1+p4,p2+p3
g[p3]g[p4] {εp1

+ εp2
+ εp3

+ εp4
+

1

2
(Jp1−p2

+ Jp1−p3
)}

+ δp1,p3
δp2,p4

g[0−]− 2 δp1+p4,p2+p3
g[p4]︸ ︷︷ ︸ (175)

Comparing Eq. (163) and Eq. (175), we see that other than the term with underbraces, these vertices satisfy Eq. (49)
or Eq. (72).
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7. Φ to O(λ)

We now assemble terms:

[Φ(k)]1 =
∑

p

(
εp +

1

2
εk +

1

2
Jk−p

)
g[p]

[
Λ(a)(p, k)

]
1

+
∑

pq

1

2
εq+p−k g[p]

[
Λ(a)(p, k; q + p− k, q)

]
1

(176)

Let us rewrite this as (k → p2, p→ p1, q → p4)

[Φ(p2)]1 =
∑

p1

(
εp1 +

1

2
εp2 +

1

2
Jp1−p2

)
g[p1]

[
Λ(a)(p1, p2)

]
1

+
∑

p1+p4=p2+p3

1

2
εp3 g[p1]

[
Λ(a)(p1, p2; p3, p4)

]
1

=
n

4

∑

p3

εp3
g[p3]−

∑

p1,p4

εp1+p4−p2
g[p1]g[p4]

︸ ︷︷ ︸

−2
∑

p1+p4=p2+p3

g[p1]g[p3]g[p4]

(
εp1 +

1

2
εp2 +

1

2
Jp1−p2

)
{εp1 + εp2 + εp3 + εp4 +

1

2
(Jp1−p2 + Jp1−p3)}

−
∑

p1+p4=p2+p3

g[p1]g[p3]g[p4] εp3
{εp1

+ εp2
+ εp3

+ εp4
+

1

2
(Jp1−p2

+ Jp1−p3
)} (177)

The first line with underbraces arises from the term Λ in Eq. (172), or Eq. (168) and Eq. (175) which disobey the
relation Eq. (49) or Eq. (72). It gives a static but momentum dependent contribution, and we will drop it as discussed
below Eq. (49) and in the second remark below Eq. (68). The rest are combined and rearranged to give

[Φ(p2)]1 = −
∑

p1+p4=p2+p3

g[p1]g[p3]g[p4] (εp1
+ εp2

+ εp3
+ εp4

+ Jp1−p2
) {εp1

+ εp2
+ εp3

+ εp4
+

1

2
(Jp1−p2 + Jp1−p3)},

=
1

2

∑

p1,p3,p4

g[p1]g[p3]g[p4]W (p2, p3; p4, p1) [W (p2, p3; p4, p1) +W (p2, p3; p1, p4)] , (178)

where in the first line we symmetrized further in p1 ↔ p4.
We can bring this into standard notation by sending p2 → k, p1 → p, p3 → q, p4 → k + q − p:

[Φ(k)]1 = −
∑

q,p

g[q] g[p] g[k + q − p]

× (εk + εp + εq + εk+q−p + Jk−p) {εk + εp + εq + εk+q−p +
1

2
(Jk−p + Jp−q)}

[Φ(k)]1 =
1

2

∑

q,p

g[q] g[p] g[k + q − p]W (k, q; q + k − p, p) [W (k, q; q + k − p, p) +W (k, q; p, q + k − p)] (179)

8. Stepping up and final Greens function to O(λ2).

We are now in a position to put together the second order result for g−1 and also µ. Recall that
[
g−1[k]

]
2

=

− [Y1[k] + Φ[k]]1, where these variables are calculated in Eq. (146) and Eq. (179). Hence we can now compile the
equations of the second order theory with sources turned off:

g−1(k) = g−1
0 (k) + λ

[
g−1(k)

]
1

+ λ2
[
g−1(k)

]
2

+O(λ3),

[
g−1[k]

]
0

= iωn + µ− εk −
1

4
J0

[
g−1[k]

]
1

= n εk −
n

2
u0 +

1

2

∑

q

Jk−q g[q] +

(
1

4
J0 n+ 2

∑

q

εq g[q]

)

[
g−1[k]

]
2

= −3n2

8
εk +

n2

8
u0 − [Φ(k)]1 −

(
n2

8
J0 +

n

4

∑

q

εq g[q]

)
(180)
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We thus see that all the computed [g−1]j are invariant under the two shift theorems. Adding up terms to O(λ2),

g−1(k) = iωn + µ′ −
(

1− λ n+ λ2 3n2

8

)
εk + λ

∑

q

1

2
Jk−q g[q]− λ2 [Φ(k)]1 +O(λ3), (181)

µ′ = µ− u0
λn

2
(1− λn

4
) +

[
J0
λn

4
(1− λn

2
) + 2λ(1− λn

8
)
∑

q

εqg[q]

]
, (182)

with [Φ(k)]1 defined in Eq. (179) and a shifted chemical potential µ′. Note that both terms in square brackets in
Eq. (182) are independent of frequency and wave vector; the first (T independent) term may be safely ignored since it
vanishes when we finally set J0 → 0, while the second term involving

∑
q εqg[q] is expected to be weakly T dependent.

Similarly the caparison factor µ is found to O(λ2) as:

µ[k] = 1 + λ [µ[k]]1 + λ2 [µ[k]]2 +O(λ3),

[µ[k]]1 = −n
2
,

[µ[k]]2 =
n2

4
+ [Ψ[k]]1 . (183)

Adding up terms to O(λ2) we obtain:

µ[k] = 1− λn
2

+ λ2 n2

4
+ λ2 [Ψ(k)]1 +O(λ3). (184)

along with the definition in Eq. (152).
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18 W. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).
19 G. Baskaran, Z. Zhou and P. W. Anderson, Sol. St. Comm. 63, 973 (1987).
20 G. Kotliar, Phys. Rev. 37, 3664 (1988).
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