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We propose a new discrete model—the twisted quantum double model—of 2D topological phases
based on a finite group G and a 3–cocycle α over G. The detailed properties of the ground states
are studied, and we find that the ground–state subspace can be characterized in terms of the twisted
quantum double Dα(G) of G. When α is the trivial 3–cocycle, the model becomes Kitaev’s quantum
double model based on the finite group G, in which the elementary excitations are known to be
classified by the quantum double D(G) of G. Our model can be viewed as a Hamiltonian extension
of the Dijkgraaf–Witten topological gauge theories to the discrete graph case with gauge group
being a finite group. We also demonstrate a duality between a large class of Levin-Wen string-net
models and certain twisted quantum double models, by mapping the string–net 6j symbols to the
corresponding 3–cocycles. The paper is presented in a way such that it is accessible to a wide range
of physicists.
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I. INTRODUCTION

The study of possible phases of matter has gone beyond
Landau’s paradigm of symmetry breaking for decades,
which leads to the discovery of topological phases of mat-
ter. Among all possible topological phases, there are a
class of them that are believed to bear intrinsic topologi-

cal order1, in which they display features such as robust
ground state degeneracies, Abelian or non–Abelian braid-
ing (anyonic) statistics of quasi–particle excitations, and
in many cases protected edge excitations. The classic
examples of these phases include the (fractional) quan-
tum Hall states, Z2 spin liquids, chiral spin liquids, and
p + ip superconductors2–10. The physical characteristics
of topological phases urge the search of the mathematical
structures that classify the topological phases. It is then
natural to resort to certain theoretical models that can
yield various topological phases.

There is a very general framework—the string–net
models11, also known as the Levin–Wen models—
supplying exactly soluble models that incorporates a
large class of intrinsically topological phases, notably
those preserving time–reversal symmetry. Although it is
believed that tensor category theory is the mathematical
framework that underlies these models, a general classi-
fication of these models—in particular of the topological
phases they describe—is yet to be found.

The intrinsically, topologically ordered systems are
roughly speaking those gapped quantum phases of mat-
ter that involve long range entanglement (LRE). In con-
trast, there are gapped quantum phases of matter that in-
volve short range entanglement (SRE), which, when sym-
metry is unbroken, give rise to nontrivial phases, called
symmetry–protected topological (SPT) phases12,13, such
as the Haldane phase on one–dimensional spin chain14

and topological insulators15–20. Characteristic proper-
ties of these phases are usually non–degenerate ground
states and, if the system has a boundary, nontrivial edge
excitations.

Very recently, however, it is discovered that a specific
SPT phase, namely an Ising spin model with a gauged
Z2 symmetry, admits a dual LRE phase described by
a string net model21. This remarkable duality is then
conjectured21 to exist between a general SPT phase with
discrete, gauged symmetry G and a string net model
with fusion rules also given by the product rule of G.
Soon after, this conjecture is confirmed in Ref22, which
henceforth implies that the classification of a large class
of SPT phases provided by group cohomology in 2+1 di-
mensions via H3(G, U(1)) described in Ref23 (We remark
that Ref25 offers a field theoretic approach that obtain
the same classification.) indirectly provide classifications
of the corresponding string net models.

This classification of string–net models seems feasible,
as the building blocks of these models, namely the 6j–
symbols may fall into equivalence classes that are related
to the 3–cocycles in the cohomology group H3(G, U(1))
of the symmetry group G of the model22. Nevertheless,
in the string–net models that have been studied so far,
the 6j symbols are assumed to respect the full tetrahe-
dral symmetry, which may be too restrictive for a de-
scription of topological phases. Namely, as pointed out
in Ref22, the topological phases described by the Levin–
Wen model with tetrahedral symmetry may not account
for all topological phases classified by H3(G, U(1)).

This has motivated us to propose a new class of dis-
crete models for 2D topological phases, called the twisted
quantum double model for reasons to be clear later,
whose construction involves a 3-cocycle, an element in
the group cohomology group H3(G, U(1)). More pre-
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cisely we consider a model on a planar graph of triangles,
each edge of which is graced with a group element of a
finite group G. The Hamiltonian of the model has matrix
elements constructed by a 3–cocycle α belonging to the
cohomology group H3(G, U(1)) of G. We require that
α satisfies only the 3–cocycle condition δα = 1 where
δ is the coboundary operator, which under the circum-
stance of this paper is actually the pentagon identity in
disguise. Owing to the absence of extra conditions put
in by hand on α, all solutions to the 3–cocycle condition
but one—namely the trivial 3–cocycle—do not respect
the tetrahedral symmetry. In other words, any element
of H3(G, U(1)) defines an instance of our model.

We study our model in detail by placing it on a torus.
In terms of 3–cocycles we construct, for the ground states
of our model, explicitly three topological observables,
namely, the ground state degeneracy (GSD), the S and
T operators that are a representation of the generators of
the modular group SL(2,Z). This construction is a new
result of ours, purely based on our model and in terms
of the 3-cocycles of G, without using group representa-
tion theory. These topological observables on the ground
states lead to a set of topological numbers, respectively
formed by the GSD, elements of S-matrix, and topologi-
cal spin. We show that these topological numbers depend
on the cohomology classes [α] ∈ H3(G, U(1)). Moreover,
equivalent 3–cocycles define equivalent twisted quantum
double models, in the sense that their Hamiltonians can
be continuously deformed into each other. We present a
few characteristic properties of the topological numbers,
which may help to resolve this open question in future
work. On top of these abstract constructions, we work
out a few concrete examples for certain finite groups,
Abelian and non–Abelian.

We also discourse on how our model relates to topo-
logical field theories and models of topological phases.
It turns out that our model is a reasonable Hamiltonian
extension of the Dijkgraaf–Witten theory26–28 of topo-
logical Chern–Simons gauge theory in three dimensions,
as we can identify the ground states of our model de-
fined by an [α] ∈ H3(G, U(1)) on the boundary of a
three-manifold with the gauge–invariant boundary states
of the Dijkgraaf–Witten theory defined by the same
[α] in the bulk, which then equates the GSD of our
model with the partition function of the correspond-
ing Dijkgraaf–Witten theory. Since three-dimensional
topological Chern-Simons theory corresponds to two-
dimensional rational conformal field theory (RCFT)27, a
connection between our model and RCFT is thus estab-
lished. In particular, the GSD of our model with group
G agrees with the number of primary fields in the RCFT
that an orbifold by the symmetry group G of a holomor-
phic CFT.

We demonstrate that our twisted quantum double
model reduces precisely to Kitaev’s quantum double
model in the special case where the defining 3-cocycle
is trivial. The nontrivial 3-cocycles in our model may
twist the usual group algebra C[G] into a twisted group

algebra, which mainly motivates the name of our model.
As our model is motivated by the Levin–Wen model,

we demonstrate a duality between a large class of Levin–
Wen string–net models and certain twisted quantum dou-
ble models, by mapping the string–net 6j symbols to the
corresponding 3–cocycles.

We would like to insert as an aside here that we min-
imized the complexity of the mathematics in this paper
without sacrificing the preciseness and comprehensibility
of our presentation. For instance, although group coho-
mology is a key word of this paper, but we assume zero
prior knowledge of it because we define and present the
n–cocycles as merely U(1) functions that satisfy an alge-
braic condition. As such, we believe the paper is acces-
sible to a wide range of physicists and mathematicians.

Our paper is organized as follows. In Section II we
construct our new model of topological phases. Section
III is devoted to the general setting for the topological
observables. In Section IV we compute the ground state
degeneracy (GSD) on a torus and study the correspond-
ing topological degrees of freedom. Section V furnishes
the construction of two more topological observables that
give rise to fractional topological numbers. We present
a classification of the topological numbers in our model
in In Section VI. Section VII offers concrete examples of
our model for a number of finite groups. The next three
Sections VIII, IX, and X relate our model respectively to
Kitaev’s quantum double model, Dijkgraaf–Witten topo-
logical gauge theory, and Levin–Wen string–net model.
The final section (Section XI) concludes with remarks
and outlook. Appendix A introduces very briefly the
group cohomology of finite groups, while the other ap-
pendices collect proofs of various statements in the pa-
per.

II. THE MODEL

In this section, we shall construct our model in (2+1)–
dimension, as an exactly–soluble Hamiltonian on the
Hilbert space spanned by planar graphs consisting of tri-
angles whose edges are graced with group elements in
certain finite group.

A. Basic Ingredients

The model is defined on a two–dimensional graph Γ
consisting of triangles only (Fig. 1). Such a graph does
not have any open edge and may be thought as a simpli-
cial triangulation of certain two-dimensional Riemannian
surface, e.g., a sphere; however, in this model, we shall
take the graph as abstract without referring to its topo-
logical background except when we compare the model
with other models, such as Dijkgraaf–Witten discrete
topological gauge theories. Note that Fig. 1 is a crop
of one such graph, so the open edges in the figure are not
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really open. We enumerate the vertices of Γ by any or-
dered set of labels. The enumerations of the vertices we
choose is irrelevant as long as their relative order remains
consistent during the calculation.

FIG. 1: A portion of a graph that represent the basis vec-
tors in the Hilbert space. Each edge carries an arrow and is
assigned a group element denoted by [ab] with a < b.

The model is characterized by a triple (H, G, α), which
can be denoted by HG,α for short. The first in the triple
is the Hamiltonian H . The second ingredient G is a finite
group. Each edge of Γ is graced with a group element of
G. The Hilbert space is spanned by the configurations of
group elements on the edges of Γ. Each edge (see Fig. 1)
carries an arrow that goes from the vertex with a larger
label to the one with a smaller label. To each edge e of
the graph Γ, we assign a group element ge ∈ G, and all
possible assignments form the basis vectors of the Hilbert
space.

{g1, g2, ..., gE} (1)

where E is the total number of edges in Γ.

It convenient to denote both an edge and the group el-
ement on the edge by simply [ab] with a < b the two
boundary vertices of the edge. It is understood that
[ba] = [ab]−1. The inner product of the Hilbert space
is the obvious one:

〈

a′ b′

c′

[a′b′]

[b′c′] [a′c′]

∣∣∣∣∣ a b

c

[ab]

[bc] [ac]

〉
=δ[ab][a′b′]δ[bc][b′c′]δ[ac][a′c′]

. . . , (2)

where only one triangle in Γ is drawn, and the “. . . ”
omits the δ–functions on all other triangles that are not
shown. Note that three group elements on the three sides
of a triangle, e.g., the [ab], [bc] and [ac] on the RHS of
Eq. (2), are independent of each other in general, i.e.,
[ab] · [bc] 6= [ac]. From now on, we shall neglect the group
elements on the edges but keep only the vertex labels
when we draw a basis vector.

The third element is a normalized 3–cocycle α ∈
H3(G, U(1)), i.e., a function α : G3 → U(1) that sat-

v1 v3

v2

v4

(a)

v1 v2

v3

v4

(b)

FIG. 2: (a) The defining graph of the 3–cocycle
α([v1v2], [v2v3], [v3v4]). (b) For α([v1v2], [v2v3], [v3v4])−1.

isfies the 3-cocycle condition

α(g1, g2, g3)α(g0 · g1, g2, g3)−1× (3)

α(g0, g1 · g2, g3)α(g0, g1, g2 · g3)−1α(g0, g1, g2) = 1

for all gi ∈ G, and satisfies the normalization condition

α(1, g, h) = α(g, 1, h) = α(g, h, 1) = 1, (4)

whenever g, h ∈ G are arbitrary. A basic and brief in-
troduction to cohomology groups Hn(G, U(1)) of finite
groups is found in Appendix A. We emphasize that this
normalization condition is not an ad hoc condition we
imposed as an extra on the 3–cocycles; rather, it is a
natural condition that any group 3–cocycle can satisfy
for the following reason. A 3–cocycle α is in fact an
equivalence class of the 3–cocycles that can be scaled
into each other by merely a 3–coboundary δβ, where β
is a 2–cochain. It can be shown that for any equivalence
class of 3–cocycles, there always exists a representative
that meets the normalization condition in Eq. (4), which
is in turn justified.

Note that every group has a trivial 3-cocycle α0 ≡ 1 on
the entire G. One can define a 3–cocycle on any subgraph
composed of three triangles, which share a vertex and
any two of which share an edge. Consider Fig. 2(a)
as an example: The four vertices are in the order v1 <
v2 < v3 < v4; we define the 3–cocycle for this subgraph
by taking its three variables from left to right to be the
three group elements, [v1v2], [v2v3] and [v3v4], which are
along the path from the least vertex v1 to the greatest
vertex v4 passing v2 and v3 in order; hence, the 3–cocycle
reads α([v1v2], [v2v3], [v3v4]). If one lifts the vertex v2

in Fig. 2(a) above the paper plane, the three triangles
turns out to be on the surface of a tetrahedron. In this
sense, one can think of the 3–cocycle as associated with
a tetrahedron as well, which is useful when the graph is
really interpreted as the triangulation of a Riemannian
surface.

On the other hand, if one switches the vertices v2 and
v3 in Fig. 2(a), one obtains Fig. 2(b), which defines the
inverse 3–cocycle α([v1v2], [v2v3], [v3v4])−1. Whether a
graph defines a 3–cocycle α or the inverse α−1 depends
on the orientation of the four vertices in the graph by the
following rule. One first reads off a list of the three ver-
tices counter–clockwise from any of the three triangles of
the defining graph of the 3–cocycle, e.g., (v2, v3, v4) from
Fig. 2(a) and (v3, v2, v4) from Fig. 2(b). One then ap-
pend the remaining vertex to the beginning of the list,
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e.g., (v1, v2, v3, v4) from Fig. 2(a) and (v1, v3, v2, v4) from
Fig. 2(b). If the list can be turned into ascending or-
der by even permutations, such as (v1, v2, v3, v4) from
Fig. 2(a), one has an α but an α−1 otherwise, as by
(v1, v3, v2, v4) from Fig. 2(b).

We would like to warn the reader of some abuse of lan-
guage in the rest of the paper. For example, when we
say “a 3–cocycle”, we may refer to a class [α], a repre-
sentative α, or the evaluation of α on a tetrahedron. For
another example, although there is abstractly only one 3–
cocycle condition as in Eq. (3), we may sometimes mean
3–cocycle conditions by the evaluation of the condition
on different tetrahedra. But all such and such should not
cause any confusion contextually.

B. The Hamiltonian

The 3–cocycles will appear in the matrix elements of
the model’s Hamilton defined as follows.

H = −
∑

v

Av −
∑

f

Bf , (5)

where Bf is the face operator defined at each triangular
face f , and Av is the vertex operator defined on each ver-
tex v. As we shall see later, this Hamiltonian is formally
the same as and generalizes that of the Kitaev model30,31,
where an operators Av behaves as a gauge transformation
on the group elements respectively on the edges meeting
at v, and a Bf detects whether the flux through face f
is zero. This kind of Hamiltonians generically feature
ground states that are gauge invariant and bear zero flux
everywhere. We now elaborate more on these operators.

The action of Bf on a basis vector is

Bf

∣∣∣∣∣
v1 v2

v3 〉
= δ[v1v2]·[v2v3]·[v3v1]

∣∣∣∣∣
v1 v2

v3 〉
.

(6)

The discrete delta function δ[v1v2]·[v2v3]·[v3v1] is unity if
[v1v2] · [v2v3] · [v3v1] = 1, where 1 is the identity element
in G, and 0 otherwise. Note again that here, the
ordering of v1, v2, and v3 does not matter because of
the identities δ[v1v2]·[v2v3]·[v3v1] = δ[v3v1]·[v1v2]·[v2v3]

and δ[v1v2]·[v2v3]·[v3v1] = δ{[v1v2]·[v2v3]·[v3v1]}−1 =
δ[v3v1]−1·[v2v3]−1·[v1v2]−1 = δ[v1v3]·[v3v2]·[v2v1]. In other
words, in any state on which Bf = 1 on a triangular
face f , the three group degrees of freedom around v is
related by a chain rule:

[v1v3] = [v1v2] · [v2v3] (7)

for any enumeration v1, v2, v3 of the three vertices of the
face f .

The operator Av is a summation

Av =
1

|G|
∑

[vv′]=g∈G

Ag
v, (8)

which deserves explanation. The value |G| is the order
of the group G. The operator Ag

v acts on a vertex v with
a group element g ∈ G by replacing v by a new enu-
meration v′ that is less than v but greater than all the
enumerations that are less than v in the original set of
enumerations before the action of the operator, such that
[v′v] = g. Ag

v does not affect any vertex other than v but
introduces a U(1) phase, composed of 3–cocycles deter-
mined by v′ and all the vertices adjacent to v before the
action, to the resulted state. In a dynamical language,
v′ is understood as on the next “time” slice, and there
is an edge [v′v] ∈ G in the (2 + 1) dimensional “space-
time” picture. Consider a trivalent vertex as an example
(see Eq. (9)). Without loss of generality, we assume that
the enumerations of the four vertices are in the order
v1 < v2 < v3 < v4. The basis vector on the LHS of (9)
is specified by six group elements, [v1v3], [v2v3], [v3v4],
[v1v4], [v2v1], and [v2v4]. The action of Ag

v3
on this state

reads

Ag
v3

∣∣∣∣∣
v1 v2

v3

v4 〉

=δ[v′

3v3],gα ([v1v2], [v2v′
3], [v′

3v3]) α ([v2v′
3], [v′

3v3], [v3v4])

× α ([v1v′
3], [v′

3v3], [v3v4])
−1

∣∣∣∣∣
v1 v2

v′
3

v4 〉
, (9)

where on the RHS, the new enumerations are in the order
v1 < v2 < v′

3 < v3 < v4, and the following chain rule of
group elements on the edges holds.

[v1v′
3] = [v1v3] · [v3v′

3],

[v2v′
3] = [v2v3] · [v3v′

3],

[v′
3v4] = [v′

3v3] · [v3v4].

(10)

The phase factor consisting of three 3–cocycles on the
RHS of Eq. (9) encodes the non–vanishing matrix ele-

ments of B
v′

3
v3 , namely

(
Ag

v3

)[v1v3][v2v3][v3v4]

[v1v′

3][v2v′

3][v′

3v4]
([v1v2], [v2v3], [v1v3])

=α ([v1v2], [v2v′
3], [v′

3v3]) α ([v2v′
3], [v′

3v3], [v3v4])

× α ([v1v′
3], [v′

3v3], [v3v4])
−1

.

(11)

For each vertex on the LHS of Eq. (9), we group
its three neighboring enumerations together with the
new enumeration v′

3 in the ascending order. Hence, we
have (v1, v2, v′

3, v3) for the lower vertex, (v1, v′
3, v3, v4)

for the upper left vertex, and (v2, v′
3, v3, v4) for the

upper right one, and then assign three 3-cocycles re-
spectively to the three vertices: α ([v1v2], [v2v′

3], [v′
3v3]),

α ([v2v′
3], [v′

3v3], [v3v4]), and α ([v1v′
3], [v′

3v3], [v3v4])
−1

.
The chirality of a 3–cocyle, or in other words, whether
a vertex contributes a 3–cocycle α or the inverse α−1, is
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based on the following criteria. We write down a triple
for the three neighboring enumerations around each ver-
tex in the counterclockwise direction and append v′

3 to
the front, namely, (v′

3, v1, v2, v3) for the lower vertex,
(v′

3, v1, v3, v4) for the upper left one, and (v′
3, v2, v4, v3)

for the upper right one. If it takes (odd) even number of
steps to permute a list to the ascending order, the vertex
contributes (the inverse of) the corresponding 3-cocycle
in the action.

The matrix elements in Eq. (11) can be better mo-
tivated and understood in the following way. One may
think that the graph evolves in ”time” under the driven of
the Hamiltonian. Focusing on the vertex operator only
and considering the Ag

v3
in Eq. (9), the action of the

operator creates a new ”time” slice by replacing the orig-
inal vertex v3 by v′

3 and connects the two vertices in
the ”time” direction. This scenario is shown in Fig. 3,
which is made three–dimensional (2 + 1) to illustrate the
”spacetime” picture and the relation between our model
and Dijkgraaf–Witten discrete topological gauge theory
to be addressed in Section IX.

v1

v2

v4

v3

v′
3

FIG. 3: The topology of the action of Ag
v3

.

As in Fig. 3, we can view the original three triangles
on the LHS of Eq. (9) as a tetrahedron v1v2v3v4 and the
three new triangles as another tetrahedron v1v2v′

3v4, of
which the vertex v′

3 lies inside v1v2v3v4 because of the
ordering v′

3 < v3. Since v′
3 and v3 are connected, there

are three more tetrahedra generated effectively by the ac-
tion of the vertex operator, namely v1v2v′

3v3, v2v′
3v3v4,

and v1v′
3v3v4. It looks like that the original tetrahedron

is split into four tetrahedra. This splitting of tetrahe-
dron implies the three chain rules in Eq. (10), which
then enables us to endow the three tetrahedra v1v2v′

3v3,
v2v′

3v3v4, and v1v′
3v3v4 respectively with the three 3–

cocycles α ([v1v2], [v2v′
3], [v′

3v3]), α ([v2v′
3], [v′

3v3], [v3v4]),

and α ([v1v′
3], [v′

3v3], [v3v4])
−1

, following the rule shown
in Fig. 2.

The operator Ag
v3

in Eq. (9) is just an identity operator
if [v′

3v3] = 1, i.e., the identity in G. In fact, according to
Eq. (9), we have the following matrix element

α ([v1v2], [v2v′
3], 1) α ([v2v′

3], 1, [v3v4])

× α ([v1v′
3], 1, [v3v4])

−1
,

(12)

which is unity, by the normalization condition (4).
The vertex operator in Eq. (9) can naturally extends

its definition from a trivalent vertex to a vertex of any

valence higher than three. The number of 3–cocyles in
the phase factor brought by the action of Ag

v on a vertex is
equal to the valence of the vertex. The chirality of each 3–
cocycle in the phase factor follows the criteria described
in the previous paragraph. It is clear that Ag=1

v ≡ I by
the discussion above.

It can be shown that all Bf and Av are projection
operators and commute with each other (see Appendix
A). As a result, the ground states and all elementary
excitations are thus simultaneous eigenvectors of all these
local operators. Moreover, the elementary excitations are
identified as local quasi–particles that are classified by
the the representations of the local operators.

We shall call our model twisted quantum double
model for reasons to be explained in Section IV B.

C. Equivalent Models

Now that a 3–cocycle defines a twisted quantum dou-
ble model, one may wonder since since a 3–cocycle rep-
resents a whole equivalence class, whether two equiv-
alent 3–cocycles, i.e., two representatives of the same
equivalent class, define the same model. Let us con-
sider two Hamiltonians HG,α and HG,α′ , respectively de-
fined by two equivalent 3–cocycle α and α′ that are re-
lated by the 3–coboundary δβ of a normalized 2–cochain
β : G2 7→ U(1) that satisfy β(x, e) = 1 = β(e, x) for all
x ∈ G,

α′(g0, g1, g2) = δβ(g0, g1, g2)α(g0, g1, g2)

=
β(g1, g2)β(g0, g1g2)

β(g0g1, g2)β(g0, g1)
α(g0, g1, g2),

(13)

where gi ∈ G, and δ is the coboundary operator. As
each 3–cocycle is defined on three triangles (or equally a
tetrahedron) such as in Fig 2, each 2–cochain β can be
thought as defined on a triangle. Hence, Eq. (13) can be
viewed as a local ”gauge” transformation on α.

We now check the relation between HG,α′ and HG,α.
It suffices to check only the vertex operators Ag

v(α′) and
Ag

v(α) because the face operators Bf have merely δ–
functions as its matrix elements and are thus inert under
the transformation in Eq. (13). Without loss of general-
ity, we consider again the vertex operator on a trivalent
vertex, as that in Eq. (9). By Eq. (13), We immediately
obtain the following.

Ag
3(α′)

∣∣∣∣∣
1 2

3

4 〉

=
α′([12],[23′],[3′3])α′([23′],[3′3],[34])

α′([13′],[3′3],[34])

∣∣∣∣∣
1 2

3′

4 〉

=β([12],[23])β([13],[34])
β([23],[34]) × α([12],[23′],[3′3])α([23′],[3′3],[34])

α([13′],[3′3],[34])
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× β([23′],[3′4])
β([12],[23′])β([13′],[3′4])

∣∣∣∣∣
1 2

3′

4 〉
, (14)

where the δ–function δ[3′3],g is omitted for simplicity. The
second term consisting of three α’s is precisely the matrix
element of Ag

3(α). If we move the first fraction of β in
the second equality of the above equation to the LHS,
we readily see that the action of Ag

3(α′) on the rescaled
state

β([23], [34])

β([12], [23])β([13], [34])

∣∣∣∣∣
1 2

3

4 〉

matches perfectly the action of Ag
3(α) on the original

state. The above rescaling is clearly a local U(1) phase,
which can be boiled down to the following local U(1)
transformation on the basis states of triangles:

∣∣∣∣∣
a b

c 〉
7→ β([ab], [bc])ε(a,b,c)

∣∣∣∣∣
a b

c 〉
, (15)

where ε(a, b, c) is a sign, which equals +1 if the enumer-
ations a < b < c are clockwise on the triangle and −1
otherwise. In this new basis, Ag

v(α′) has the same matrix
elements and thus the same spectrum as those of Ag

v(α)
in the old basis.

There is a continuous deformation between any two
3–cocycles related by α′ = αδβ. Define a 2–cochain
β(t)(x, y) = β(x, y)t, with 0 ≤ t ≤ 1, then α(t) = αδβ(t)

is equivalent to α for all 0 ≤ t ≤ 1, with α(0) = α and
α(1) = α′. The corresponding transformation in Eq. (15)
with β replaced by β(t) is a continuous local U(1) trans-
formation; hence, there is no phase transition in the one–
parameter family of systems with the the Hamiltonian
HG,α(t) from 0 ≤ t ≤ 1. Thus we can conclude that the
Hamiltonians HG,α′ and HG,α due to two equivalent 3–
cocycles α′ and α indeed describe the same topological
phase.

III. TOPOLOGICAL OBSERVABLES AND

SYMMETRIES

In Hydrodynamics, topological properties of fluid, such
as the stability and interactions of currents and fluxes,
can be systematically studied by the diffeomorphism
symmetry group acting on the fluid29. Analogously, the
topological properties, in particular the topological ob-
servables and interactions (fusions) of the topological ex-
citations, i.e., topological charges (currents), fluxes, and
dyonic states of charge and fluxes, of a discrete model of
topological phases can be systematically studied by the
discrete version of diffeomorphisms, which we shall call
the mutation symmetry transformations of the graph.

The symmetry we will be dealing with in this model
are the mutations of the graph that preserve the spatial
topology but not necessarily the local graph structure.
A Hermitian operator is a topological observable if it is
invariant under the these mutation transformations.

In most physical systems, the mutation (or diffeo-
morphism) symmetry does not exist. Nevertheless, in
the discrete models of topological phases proposed by
Kitaev30,31, and Levin and Wen11, the mutation transfor-
mations to be constructed explicitly do have the space of
the ground states of these models as invariant subspaces.
Hence, we can use any topological observable, which is
invariant under these mutation transformations, to char-
acterize, at least partially, the topological phases in these
models. One such topological observable is ground state
degeneracy (GSD).

In this section, we construct the mutation transforma-
tions in our model and show that they are unitary sym-
metry transformations on the ground states. Then we
shall define and see, as an immediate consequence, that
the GSD of our model is indeed a topological observable.

All Bf and Av are mutually commuting projection op-
erators, as proven in Appendix A. Thus the ground states
are the simultaneous +1 eigenvectors of all Bf , Av. De-
fine the ground state projection operator

P 0
Γ = (

∏

f∈Γ

Bf )(
∏

v∈Γ

Av) (16)

and then the subspace of the ground states is

H0
Γ =

{
|Φ〉

∣∣∣PΓ|Φ〉 = |Φ〉
}

(17)

Usually, symmetry transformations in a lattice model
do not affect the lattice structure and are thus well-
defined on a fixed lattice. The mutation moves in our
model, however, take one graph to another. Since each
graph Γ is endowed with a Hilbert space HΓ and the
Hamiltonian defined in Eq. (5), the Hilbert space and
the Hamiltonian may be subject to changes under the
mutation moves.

It is known that we can always transform a triangular
graph Γ to another one Γ′ that triangulates the same
Riemannian surface by a composition of the following
elementary Pachner moves32,33:

f1 : 7→ (18)

f2 : 7→ (19)

f3 : 7→ , (20)

which are the generators of all mutation transformations.
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Each mutation generator fi : Γ → Γ′ induces a linear
transformation Ti : HΓ → HΓ′ :

T1

∣∣∣∣∣
v1

v2

v3

v4 〉
(21)

=
∑

[v1v3]∈G

α ([v1v2], [v2v3], [v3v4])

∣∣∣∣∣
v1

v2

v3

v4 〉

T2

∣∣∣∣∣
v1 v2

v3 〉
(22)

=
∑

[v1q],[v2q],
[v3q]∈G

α ([qv1], [v1v2], [v2v3])

∣∣∣∣∣
v1 v2

q

v3 〉

T3

∣∣∣∣∣
v1 v3

v2

v4 〉

=α ([v1v2], [v2v3], [v3v4])

∣∣∣∣∣
v1 v3

v4 〉
(23)

We now explain how we determine the linear properties
of these operators.

For T1, we enumerate the four vertices in Eq. (21) by
v1 < v2 < v3 < v4. The action of T1 does not change
the degrees of freedom on the external edges, namely
[v1v2], [v2v3], [v3v4], and [v4v1], but only changes the
[v2v4] on the internal edge to [v1v3] on the internal edge
in the new graph. The new group element [v1v3] runs
over all group elements in G. The operator T1 also yields

a U(1) phase α ([v1v2], [v2v3], [v3v4])
ε(v1,v2,v3,v4)

on the
basis vector in the new Hilbert space. The exponent ε is
a sign function that assigns an exponent +1 or −1 to the
3–cocycle α according to following rule. One first picks
up either of the two triangles before the action of T1, then
notes down as a list its three vertices counter–clockwise,
e.g., either (v1, v2, v4) or (v2, v3, v4) as in Eq. (21). One
then appends the remaining vertex to the list from the
left, such as either (v3, v1, v2, v4) or (v1, v2, v3, v4). If it
takes even permutations to shuffle the list to completely
ascending order, ε = 1, which is the case in Eq. (21),
and ε = −1 otherwise.

As to T2 defined in Eq. (22), we suppose the order
of vertices is v1 < v2 < v3. The action of T2 creates
three triangles separated by three new edges that carry
respectively three new group elements. We enumerate
this new vertex by q, which is set to be less than v1, such
that the three new group elements are [qv1], [qv2], and

[qv3], which are then averaged out in order not to enlarge
the Hilbert space.

The remaining factor in T2 is also a phase, which is

in the form α ([v1v2], [v2v3], [v3q])ε(q,v1,v2,v3), where the
exponent is a sign depending on the orientation of the
three triangles on the RHS of the equation. We determine
the sign by first noting down the list of the three vertices
clockwise from any of the three triangles of the basis
graph after the action of T2, such as (q, v3, v2) from the
RHS of Eq. (22), then appending the remaining vertex to
the beginning of the list, such as (v1, q, v3, v2); if the list
can be turned into ascending order by even permutations,
ε = 1, which is the case in Eq. (22), and otherwise
ε = −1. In general, the enumeration q of the new vertex
in Eq. (22) can have any order relative the enumerations
of the three old vertices; however, we assume q is the
smallest therein for simplicity.

As opposed to T2, T3 shrinks three triangles to a one,
as in Eq. (23), the 3–cocycle on the RHS of which is

in general α ([v1v2], [v2v3], [v3v4])
ε(v1,v2,v3,v4)

, where the
exponent is a sign depending on the orientation of the
three triangles on the LHS of the equation. This sign is
determined this way: One first reads off the list of the
three vertices counter–clockwise from any of the three
triangles of the original basis graph, such as (v2, v3, v4)
from the LHS of Eq. (23), then appends the remaining
vertex to the beginning of the list, such as (v1, v2, v3, v4);
if the list can be turned into ascending order by even
permutations, ε = 1, otherwise ε = −1. To make life
easier, in Eq. (23), we consider only one case.

Now we show that the mutation transformations gener-

ated by T1, T2, and T3 are unitary symmetry transforma-

tions on the ground states. In particular, T1 is a unitarity
of the entire Bf = 1 subspace of the Hilbert space, in the

sense that HBf =1
Γ

∼= T1(HBf =1
Γ ). We denote the subspace

of ground states of the Hilbert space HΓ on a graph Γ by
H0

Γ. The proof consists of the following two steps.
(i). Mutation transformation preserve the space of

ground states.

That is, if T is a mutation transformation between
two Hilbert spaces HΓ to HΓ′ , and if |Φ〉 ∈ H0

Γ, then
T |Φ〉 ∈ H0

Γ′ .
It suffices to show that TiP

0
Γ = P 0

Γ′Ti for each mutation
generator Ti and each state in HBf =1, where PΓ and
P 0

Γ′ are the projectors respectively onto H0
Γ and H0

Γ′ (see
Appendix B). Note that however, we have H ′T 6= T H in
general.
(ii). Mutations are unitary on ground states.

By unitary we mean: If T is a mutation transformation
between two Hilbert spaces HΓ to HΓ′ , and if |Φ〉, |Ψ〉 ∈
H0

Γ, then

〈T Φ |T Ψ〉 = 〈Φ |Ψ〉 . (24)

It is sufficient to check Eq. (24) for T1,T2, and T3 only,
as seen in Appendix B.

Consequently, there is a bijection between the ground
states on any two graphs related by the mutation moves.
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Since two such graphs have the same spatial topology,
the dimension of the ground state Hilbert space, i.e., the
GSD of our model, is a a topological invariant and well–
defined topological observable. Hence, our GSD can be
taken as the trace of the ground state projector in Eq.
(16), which is as we have just seen a Hermitian operator
that is invariant under the mutations, namely,

GSD = tr(P 0
Γ), (25)

where trace can be taken on any one of the graphs that
are connected by the mutation moves, but the result is
obviously independent of this choice.

IV. THE GROUND STATE DEGENERACY

AND TOPOLOGICAL DEGREES OF FREEDOM

Ground state degeneracy (GSD) partially characterizes
a topological phase. The nontrivial feature is that the
GSD depends only on the spatial topology of the system.
Two topological phases having different GSDs must be
considered different.

Another important characteristic of topological phases
is the emergent fractional quantum numbers of the el-
ementary excitations in these phases and the fractional
statistics of the quasiparticles of these elementary exci-
tations. The relation with GSD is that the GSD is equal
to the number of species of the quasiparticles of the ele-
mentary excitations.

The significance of the GSD lies in the degrees of free-
dom that are capable of distinguishing the degenerate
ground states. The topological dependence of the GSD
originates in that these degenerate degrees of freedom are
global. An interesting question then arises: How to char-
acterize these global degrees of freedom? Answering this
question will enable us to (1) discern between two dif-
ferent topological phases that have the same topological
dependence of GSD and (2) understand better the rela-
tionship between the global degrees of freedom in the de-
generate ground states and the emergent fractional quan-
tum numbers of the elementary excitations.

In what follows we calculate the GSD of our model on
a torus and then analyze the global degrees of freedom
in the degenerate ground states.

A. Ground state degeneracy on a torus

The topological invariance of the GSD of our model
enables us to compute the GSD on the simplest triangle
graph that triangulates the surface on which the model
is defined.

In the case of finite groups, the GSD of our model on a
2–sphere is always unity because a 2–sphere has a trivial
topology, in the sense that its fundamental group is triv-
ial. This fact can be checked by following the approach
to be presented shortly in this section. This is a common
feature of all known models of topological phases.

A torus is the simplest closed surface with a non–trivial
topology. Fig. 4 depicts the simplest triangle graph that
triangulates a torus.

1

2

3

4

g

g

h h

FIG. 4: Triangulation of a torus, with g, h ∈ G.

This graph has two triangle faces and only one vertex.
But for the sake of assigning the 3–cocycles in Ax

v easily,
we use 1, 2, 3 and 4 to enumerate the sole vertex. This is
perfectly fine because the boundary condition automati-
cally merge the differently labeled vertices into one. We
identify the boundary edge [12] with [34], and [13] with
[24]. It is tricky to notice that the four enumerations
can not be arbitrary. In Fig. 4, the orientations of the
two boundary edges are consistently taken from higher
enumerations to lower enumerations.

The subspace HBf =1 is spanned by the basis vectors

{|g, h〉 |g, h ∈ G, gh = hg} (26)

corresponding to the assignment of [13] = g, [12] = h and
[14] = gh = hg in the above graph.

Since there is only one vertex in Fig. 4, we simplify
the notation of Ax

v at this mere vertex by Ax, the action
of which, according to its definition in Eq. (9), is

Ax |[13], [12]〉

=
(

α ([13], [34′], [4′4]) α ([12], [24′], [4′4])
−1

)

α ([13′], [3′3], [34])
−1

α ([12′], [2′2], [24′])
(

α ([1′1], [13′], [3′4′]) α ([1′1], [12′], [2′4′])
−1

)

|[1′3′], [1′2′]〉 , (27)

where the rule [1′1] = [2′2] = [3′3] = [4′4] = x holds
for the new enumerations 1′, 2′, 3′ and 4′. The coefficient
consisting of the six 3–cocycles are determined as follows.

We obtain
(

α ([13], [34′], [4′4]) α ([12], [24′], [4′4])−1
)

at

enumeration 4, then replace 4 by 4′ to determine the

rest of the factors. Next we obtain α ([13′], [3′3], [34])
−1

at enumeration 3 and then again replace 3 by 3′. Hav-
ing repeated similar steps at enumerations 2 and 1, we
arrive at the above formula. One may derive a seem-
ingly different coefficient by following a different path,
e.g., 1 → 2 → 3 → 4. But because of the topological in-
variance, the new coefficient can be brought to precisely
the same as that in Eq. (27) by applying 3–cocycle con-
ditions, as one can check.

Now we write down the action explicitly in terms of
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the group elements g, h and x.

Ax |g, h〉
=α(g, hx−1, x)α(h, gx−1, x)−1

α(gx−1, x, hx−1)−1α(hx−1, x, gx−1) (28)

α(x, gx−1, xhx−1)α(x, hx−1, xgx−1)−1
∣∣xgx−1, xhx−1

〉

One can verify the multiplication law AxAy = Axy by
3–cocycle conditions (3), which agrees with the result in
Appendix B. The ground-state projector is thus

P 0 =
1

|G|
∑

x

Ax (29)

Taking a trace of the ground–state projector (29) com-
putes the GSD,

GSD =tr(
1

|G|
∑

x

Ax)

=
∑

g,h

δgh,hg 〈g, h| Ax |g, h〉

=
1

|G|
∑

h,g,x

δgh,hgδhx,xhδxg,gxα(g, hx−1, x)

α(h, gx−1, x)−1α(gx−1, x, hx−1)−1α(hx−1, x, gx−1)

α(x, gx−1, h)α(x, hx−1, g)−1 (30)

where the trace is evaluated in the subspace HBf =1.
The seemingly complicated summation of the six 3–

cocycles in Eq. (30) can actually be simplified in many
cases due to a hidden simple mathematical structure. To
see this, we shall first explore in the next subsection the
algebraic structure in Eq. (28), after which we come back
to the simplification of the GSD.

B. Topological degrees of freedom

We now proceed to extract the algebraic structure in
Eq. (28) and explore the classification of the topological
degrees of freedom in the ground states, so as to reveal
the deep mathematical significance of the GSD yet not
fully discussed in the previous subsection.

To this end, we rewrite Eq. (28) as follows by applying
appropriate 3-cocycle conditions (see Appendix C for the
derivation).

Ax |g, h〉

=
α(g, x−1, xhx−1)α(x−1, xhx−1, xgx−1)

α(x−1, xgx−1, xhx−1)

α(h, g, x−1)

α(g, h, x−1)α(h, x−1, xgx−1)

∣∣xgx−1, xhx−1
〉

. (31)

By defining a new function in terms of 3–cocycles as

βa(b, c)
def
=

α(a, b, c)α(b, c, c−1b−1abc)

α(b, b−1ab, c)
, (32)

∀a, b, c ∈ G, and plugging it into Eq. (31), we obtain

Ax |g, h〉 =
βg(x−1, xhx−1)

βg(h, x−1)

∣∣xgx−1, xhx−1
〉

= ηg(h, x)
∣∣xgx−1, xhx−1

〉
,

(33)

where we define

ηg(h, x) =
βg(x−1, xhx−1)

βg(h, x−1)
, (34)

for any given g ∈ G and h ∈ Zg = {x ∈ G|xg = gx}, the
centralizer subgroup for g ∈ G. Let h = g in the above
definition, we have

ηg(g, x) =
βg(x−1, xgx−1)

βg(g, x−1)
= 1, (35)

for all g, x ∈ G, which can be quickly checked by di-
rectly using the 3–cocycle condition. Interestingly, if
x ∈ Zg,h = {x ∈ G|xg = gx, xh = hx}, we see that
the U(1) number

ρg(h, x)
def
= ηg(h, x)

∣∣∣
Zg,h

=
βg(x−1, h)

βg(h, x−1)
(36)

is actually a 1–dimensional representation of the sub-
group Zg,h ⊆ G. This is because ρg(h, x)ρg(h, y) =
ρg(h, xy), which is a consequence of AxAy = Axy on the
ground states.

It follows from Eq. (33) that the ground states are
spanned by the vectors

{
1

|G|
∑

x∈G

ηg(h, x)
∣∣xgx−1, xhx−1

〉
∣∣∣∣∣g ∈ G, h ∈ Zg

}
.

(37)

This tempts one to think that counting the GSD amounts
to counting the elements in Hom

(
π1(T 2), G

)
/conj,

where the conj in the quotient is the conjugacy equiv-
alence: (g, h) ∼ (xgx−1, xhx−1) for any x. This is in
general not true, however, as one may over–count the
states because in Eq. (37), the terms that are summed
over for some g and h may actually vanish, causing the
corresponding states non–existing, as we now classify by
studying the algebraic structure of the function βa de-
fined in Eq. (32).

Using the 3–cocycle condition of α, one can show that
the function βa is in fact a normalized, twisted 2–cocycle
satisfying twisted 2–cocycle condition,

δ̃βa(x, y, z) ≡ βx−1ax(y, z)βa(x, yz)

βa(xy, z)βa(x, y)
= 1, (38)

and the normalization condition

βa(x, e) = βa(e, x) = 1, (39)

for all a, x, y, z ∈ G. The δ̃βa is called the twisted 3–
coboundary of βa.
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Furthermore, when its variables are restricted to the
centralizer Za of a ∈ G, βa clearly reduces to a nor-
malized, usual 2–cocycle over Za, which obeys the usual
2–cocycle condition,

βa(y, z)βa(xy, z)−1βa(x, yz)βa(x, y)−1 = 1, (40)

for all x, y, z ∈ Za.
The function βa is closely related to the projective

representations of Za. In fact, each βa classifies a class
of projective representations called βa–representations
ρ̃ : Za→GL (Za) obeying

ρ̃(x)ρ̃(y) = βa(x, y)ρ̃(xy) (41)

It is evident that the normalization condition corresponds
to ρ̃(e)ρ̃(x) = ρ̃(x)ρ̃(e) = ρ̃(x), while the 2–cocycle
condition in Eq. (38) corresponds to the associativ-
ity ρ̃(x) (ρ̃(y)ρ̃(z)) = (ρ̃(x)ρ̃(y)) ρ̃(z). In particular, if
the 3–cocycles that define βa are the trivial one, i.e.,
α = α0 ≡ 1, then βa = 1, reducing ρ̃ to the usual linear
representations of Za.

In this paper, we are interested in the classification
of βa–representations of Za with fixed a ∈ G. Here we
record a few important properties of this kind of repre-
sentations.

An element g ∈ Za is βa–regular if βa(g, h) = βa(h, g)
for all h ∈ Za,g ⊆ Za. Moreover, g is βa–regular if and
only if all its conjugates are so, which can be verified by
the 3–cocycle condition in Eq. (3). That is, g is βa–
regular ⇔ [g] is βa–regular. We call [g] a βa–regular
conjugacy class. In particular, each g is always βg–
regular.

Let us denote all the conjugacy classes of G by CA and
number of such classes by r(G). Since for any a, b ∈ CA,
Za

∼= Zb, it is convenient to denote these isomorphic cen-
tralizers by ZA, obtained by any representative of the
class. We henceforth collect any chosen set of repre-
sentatives of all CA by simply RC = {gA ∈ CA|A =
1 . . . r(G)}.

For a ∈ ZA, let the number of βa–regular conjugacy
classes in ZA be r(ZA, βa). Clearly, we have

r(ZA, βa) ≤ r(ZA). (42)

It is known that the number of inequivalent irreducible
βa–representations of ZA is equal to r(ZA, βa). In par-
ticular, in the case where βa = 1 because of the trivial
3–cocycle α0, we arrive at the familiar result that the
number of the irreducible linear representations equals
the number of conjugacy classes. Eq. (42) states that
irreducible βa–representations of Za are fewer than the
irreducible liner representations.

The topological degrees of freedom is related to this
classification of projective representations of ZA. To
show this, we reexpress the GSD in Eq. (30) as

GSD =
1

|G|
∑

g,h,x∈G

δgh,ghδgx,xgδhx,xhηg(h, x)

=
1

|G|
∑

g∈G

∑

h∈Zg

∑

x∈Zg,h

ρg(h, x),
(43)

which can be further simplified, by the identity

1

|Zg,h|
∑

x∈Zg,h

ρg(h, x) =

{
1, h is βg regular
0, otherwise

(44)

where |Zg,h| is the order of the subgroup Zg,h with fixed
g, h ∈ G.

Here is the proof of Eq. (44). As shown below Eq.
(36), the phase ρg(h, x) in Eq. (36) is a 1–dimensional
representation of Zg,h; it is the trivial representation
ρ0 = 1 if h is βg–regular and is otherwise a non–trivial ir-
reducible representation (i.e., different from the identity
representation). By the orthonormal condition

1

|Zg,h|
∑

x∈Zg,h

ρg(j)(h, x) = δj,0, (45)

where j = 0 corresponds to the trivial representation and
j 6= 0 a non-trivial irreducible representation, we obtain
Eq. (44).

Equation (44) renders Eq. (43) as

GSD =
∑

g∈G

∑

h∈Zg

|Zg,h|
|G| ×

{
1, h is βg regular
0, otherwise

=
∑

h∈ZA,A

|ZA|
|G|

|ZgA,h|
|ZA| ×

{
1, h is βgA –regular
0, otherwise

=
∑

A

r(ZA, βgA ). (46)

In the last equality use is made of that |G|/|ZA| = |CA|.
According to the relationship between the number of

βg–regular conjugacy classes of Zg and the number of
βg–representations of Zg as discussed above, the GSD
can take the form

GSD =
∑

A

#(βgA –representations of ZA), (47)

where # stands for “the number of”.

C. Ground States Basis

As promised in the previous subsection, we have sim-
plified GSD evaluation in Eq. (30) to counting the rel-
evant projective representations. Computing the GSD
of our model on a torus amounts to counting the irre-
ducible projective βgA–representations of each conjugacy

class CA, then sum it over CA in G.
Hence, the ground states on a torus can be labeled by

pairs (gA, h) with gA running over RC and h running
over a set of βgA–regular conjugacy class representatives

of ZA. Equivalently, the ground states can also be labeled

by pairs (A, µ) with A = 1 . . . r(G) and µ labeling ρ̃gA

µ ,

which are the irreducible βgA–representations of ZA. We
posit that the basis vectors |A, µ〉 can be defined as:

|A, µ〉 =
1√
|G|

∑

g∈CA,h∈Zg

χ̃g
µ(h) |g, h〉, (48)



11

where χ̃g
µ(h) = trρ̃g

µ(h) is the projective character defined
as usual by the trace of the representation, and |G| the
order of G. Since the centralizers Zg are isomorphic for
all g in a conjugacy class CA, so are the set of irreducible
βg–representations of Zg for all g ∈ CA. Therefore the
same label µ works for all βg–representations. We de-
tail the construction of the isomorphism among the ir-
reducible βg–representations for g ∈ CA in Appendix F.
The projective characters χ̃g

µ(h) satisfy the following re-
lation under simultaneous conjugation of g and h:

χ̃xgx−1

µ (xhx−1) = ηg(h, x)χ̃g
µ(h). (49)

for all x ∈ G. Keep in mind that if h ∈ ZA but
h 6= g, then h /∈ CA. Practically, for each conjugacy
class CA with its representative element gA, if we find a

βgA –representation ρ̃gA

µ of ZA, we can construct the βg–

representations for all other elements g of CA. Through-
out this paper, we take the representations such that the
relation (49) are always satisfied.

Note that in general, the projective characters are
not functions of conjugacy classes because the fact
that ρ̃g

µ(a)ρ̃g
µ(b) = βg(a, b)ρ̃g

µ(ab) yields the relation

χ̃g
µ(xhx−1) =

[
βg(hx−1, x)/βg(x, hx−1)

]
χ̃g

µ(h). Never-
theless, the orthogonality and completeness relations of
these projective characters still hold, namely, for all βg–
regular elements a, b in G,

1

|Zg|
∑

h∈Zg

χ̃g
µ(h)χ̃g

ν(h) = δµ,ν ,

|CA|
|Zg|

∑

µ

χ̃g
µ(a) χ̃g

µ(b) =

{
1, a conjugate to b
0, otherwise

,

(50)

where |Zg| is the order of the subgroup Zg, and |CA| is
the cardinality of the conjugacy class CA containing a in
the subgroup Zg. By Eq. (50), one can verify that the
basis in Eq. (48) is orthonormal. Moreover, if h is not
βg–regular, then χ̃g

µ(h) = 0, which is the very Proposition
1 proven in Appendix F.

We can now justify that |A, µ〉 is indeed a ground state
by its invariance under the action of the ground state
projection operator P 0 defined in Eq. (29).

P 0|A, µ〉

=
1

|G|
∑

x∈G

Ax|A, µ〉

=
1√
|G|3

∑

x∈G

∑

g∈CA

h∈Zg

χ̃g
µ(h)ηg(h, x)|xgx−1, xhx−1〉

=
1√
|G|3

∑

x∈G

∑

g∈CA

h∈Zg

χ̃xgx−1

µ (xhx−1)|xgx−1, xhx−1〉

=
1√
|G|3

∑

g′∈CA,h′∈Zg

χ̃g′

µ (h′)|g′, h′〉
∑

x∈G

1

=
1√
|G|

∑

g∈CA,h∈Zg

χ̃g
µ(h) |g, h〉 = |A, µ〉, (51)

where Eqs. (33) and (49) are used respectively in the sec-
ond and third equalities, while substitutions g′ = xgx−1

and h = xhx−1 are made to get the fourth equality but
renamed back to g and h in the end. Therefore, we con-
clude that the set of |A, µ〉 does furnish an orthonormal
basis of the ground states, i.e.,

H0 = span{|A, µ〉 : A = 1 . . . r(G), µ = 1 . . . r(ZA, βgA )}
(52)

This uncovers the mathematical structure that clas-
sifies the topological degrees of freedom in the ground
states via representation theory. We start with our model
specified by a 3–cocycle α over G and end up with the
result that the topological degrees of freedom are deter-
mined by the 2–cocycles βg over Zg.

the ground–state basis vectors (A, µ) label the set of
all inequivalent irreducible representation spaces of the
twisted quantum double Dα(G), which plays a central
role in the orbifolds by a symmetry group G of a holo-
morphic conformal field theory. We may understand the
term “twisted” as twisting linear representations to pro-
jective representations. We are not going to explain the
details of the twisted quantum double, which is beyond
the concern of this paper. But for completeness, we note
here the multiplication law in the twisted quantum dou-
ble Dα(G):

(Pa ⊗ x)(Pb ⊗ y) = βa(x, y)δa,xbx−1 (Pa ⊗ xy), (53)

for all a, b, x, y ∈ G, where Pa projects out a while x
obeys the usual group multiplication with a projective
phase factor.

In particular, as to be shown in Section VIII, the un-
twisted version of our model (i.e., when α = α0) turns
out to be Kitaev’s quantum double model (or, the toric
code model), the GSD of which agrees with the num-
ber of irreducible representations of the quantum double
D(G) of the finite group G. Therefore, our model can be
viewed as a deformation of the quantum double model
by a twisting with the βa in Eq. (32), which twists the
linear representations of a group to the projective rep-
resentations. This is mainly why we christen our model
twisted quantum double (TQD) model.

V. FRACTIONAL TOPOLOGICAL NUMBERS

In the previous section, we studied the GSD as the
simplest topological observable of our model. But topo-
logical phases are only partially characterizes GSD. It is
possible that two models specified by two inequivalent 3–
cocycles have the same GSD but in the mean time, give
rise to distinct topological phases.

Hence, a natural question is how to differentiate two
distinct topological phases if they bear the same GSD. It
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is known that the emergent fractional topological num-
bers in the elementary excitations can differentiate such
distinct topological phases.

In this section, we shall first construct on the subspace
HBf =1 the topological observables then solve their eigen–
problems to acquire the expected fractional topological
numbers. These fractional topological numbers are re-
lated to the fractional statistics of quasiparticles in the
elementary excitations. Actually, there is believed to ex-
ist a correspondence between the topological degrees of
freedom in the ground states of the system on a torus and
the local degrees of freedom of the quasiparticles in the
elementary excitations. We shall come back to address
this correspondence in Section IX.

A. Topological observables as SL(2,Z) generators

Consider the graph Γ on which the model is defined.
In Section III, we constructed the mutation transforma-
tions that can change the local structure of the graph
but preserve the graph topology, i.e., the topology that
Γ triangulates. Under such mutations, the topological
degrees of freedom of the ground states are intact. All
such transformations are local. The ground–state projec-
tor

∏
v Av can also be constructed from such mutations.

Here, on the other hand, we look into the large trans-
formations that alter the graph structure globally but
still preserve the graph topology and lead to richer topo-
logical observables.

Again, since we are not interested in the local trans-
formations of the graph, we need only to work on the
simplest triangulation of torus as in Fig. 4.

The transformations that change the topology are the
familiar modular transformations, which form the group
SL2(Z) that is generated by

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
, (54)

satisfying relations (ST )3 = S2 and S4 = 1.
To cast the modular transformations in the form of

3–cocycles, let us redraw the torus in Fig. 4 in the co-
ordinate frame in Fig. 5, which illustrates the S and T
transformations on the torus. The S and T transforma-

S :

1

2

3

4

7→

12

34

T :

1

2

3

4

7→

1

2

3

4

FIG. 5: S and T transformations of a torus.

tions on the subspace HBf =1 are constructed as follows.

We leave the details of the construction to Appendix
E but claim here that

Sx

∣∣∣∣∣
1

2

3

4 〉

=α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([2′4′], [4′1], [13])
−1

α ([1′2′], [2′1], [12])
−1

×α ([2′3′], [3′4′], [4′1]) α ([1′2′], [2′3′], [3′1])
−1

×α ([1′2′], [2′3′], [3′4′])

∣∣∣∣∣
3′

1′

4′

2′ 〉
(55)

where we set the order of the enumerations by 1′ < 2′ <
3′ < 4′ < 1 < 2 < 3 < 4 such that the orientation of
the two boundary edges are taken consistently. One sees
that the wave function transforms oppositely in Fig. 5.

Taking [12] = [34] = h, [13] = [24] = g, and [3′1] =
[1′2] = [4′3] = [2′4] = x, Sx is casted explicitly in terms
of the group elements as

Sx|g, h〉
=α(xg−1h−1, g, h)α(xg−1h−1, h, g)−1

×α(xh−1x−1, xg−1, g)−1α(xgx−1, xg−1h−1, h)−1

×α(xg−1h−1x−1, xgx−1, xg−1)α(xgx−1, xg−1h−1x−1, x)−1

×α(xgx−1, xg−1h−1x−1, xgx−1)|xh−1x−1, xgx−1〉,
(56)

where |[1′3′], [1′2′]〉 def
= |xh−1x−1, xgx−1〉.

Similarly, we claim that T x behaves as

T x

∣∣∣∣∣
1

2

3

4 〉

=α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([3′′2′], [2′1], [13]) α ([4′′2′], [2′1], [12])
−1

×α ([1′′3′′], [3′′2′], [2′1]) α ([1′′4′′], [4′′2′], [2′1])
−1

×α ([1′′3′′], [3′′4′′], [4′′2′])

∣∣∣∣∣
1′′

4′′

3′′

2′ 〉
(57)

where we set 1′′ < 3′′ < 4′′ < 2′ < 1 < 2 < 3 < 4 as the
order of enumerations, and when explicitly expressed in
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term of group elements, becomes

T x|g, h〉
=α(xg−1h−1, g, h)α(xg−1h−1, h, g)−1

×α(xhx−1, xg−1h−1, g)α(xgx−1, xg−1h−1, h)−1

×α(xgx−1, xhx−1, xg−1h−1)α(xhx−1, xgx−1, xg−1h−1)−1

×α(xgx−1, xhg−1x−1, xgx−1)|xgx−1, xg−1hx−1〉 (58)

The s and T transformation are defined by

S =
1

|G|
∑

x

Sx, T =
1

|G|
∑

x

T x. (59)

The operators S, T in Eq. (59) are a representation
of the S and T matrices in Eq. (54) on the subspace
HBf =1 of the model. Indeed, a direct evaluation by the
3–cocycle conditions verifies (ST )3 = S2 and S4 = 1.

On a torus, the vertex operator Ax and the modular
transformation operators Sx and T x comprise an inter-
esting algebraic structure, namely,

SxAy = Sxy = AxSy,

T xAy = T xy = AxT y.
(60)

We shall not prove this here, as it can be done straight-
forwardly by manipulating the 3–cocycles in the above
equations. This algebraic structure results in the follow-
ing important reexpression of the S and T operators.

P 0T e = T = T eP 0, P 0Se = S = SeP 0, (61)

the first of which is proven as follows.

T =
1

|G|
∑

x∈G

T x Eq.(61)
======

1

|G|
∑

x∈G

T eAx

=T e(
1

|G|
∑

x∈G

Ax)

=T eP 0 = P 0T e,

where e is the identity element of G. The proof of the
second relation in Eq. (61) follows likewise. This indi-
cates that the operators S and T are indeed topological
observables and symmetries in H0.

We can lay the ground states in the basis composed of
the eigenvectors {Φk} of T ,

T |Φk〉 = θk|Φk〉 (62)

where θk is a U(1) phase, and k = 1, 2, ..., GSD labels
the degenerate ground states. These eigenvectors will be
identified with |A, µ〉 in the next subsection.

We remark that T also has other eigenvectors, whose
eigenvalues are zero, which is implied by the first relation
in Eq. (61). These zero eigenvectors are actually the
excited states of the model; however, we are not going to
dwell on them in this paper.

Hence, one can regard the eigenvalues θk of T as a set
of topological numbers of the model. In fact, from Fig. 5,

T can be viewed as a global twisting of the system, and
thus its eigenvalues θk can be regarded as the topological
spins of the topological sectors |Φk〉.

Another set of topological numbers are the S–matrix
of the topological sectors,

sij = 〈Φi| S|Φj〉. (63)

where i, j = 1, 2, ..., GSD. This matrix is orthonormal:

∑

j

sijsjk = δik. (64)

Above all, apart from GSD, we obtain two more sets
of topological numbers, {θk}, and {sij}, to characterize
the topological phases in our model.

We remark that we have presented here a novel deriva-
tion of the modular S and T matrices, which is purely
based on our model and in terms of 3–cocycles of G, with-
out resorting to any theory of group representations.

B. S and T Matrices

We now offer concrete solutions of the topological num-
bers {θk, sij}, which are tied to the projective represen-
tation theory. We emphasize that the topological ob-
servables S and T are defined on the subspace HBf =1,
whereas the solutions to their eigen–problems are to be
obtained on H0 ⊂ HBf =1.

In the following we diagonalize the T matrix in Eq.
(59). One should bear in mind that the transformation
T acts non–vanishingly only on the ground states. In
Section IV C, we see that the ground states are spanned
by the orthonormal basis |A, µ〉 defined in Eq. (48), with
A running over all conjugacy classes of G and µ over the
irreducible βgA –representations of ZA. It turns out that
|A, µ〉 are eigenvectors of T as we demand, Here we sketch
the proof. In the |A, µ〉 basis, the action of T becomes

T |A, µ〉
=T eP 0|A, µ〉 = T e|A, µ〉

=
1

|G|
∑

g∈CA

h∈Zg,ν

χ̃g
µ(h)χ̃g

ν(g−1h)|A, ν〉

=
χ̃gA

µ (gA)

dimµ
|A, µ〉, (65)

where dimµ is the dimension of the representation µ, the
second row uses Eq. (61) and Eq. (51), and in the fourth
equality use is made of the inverse transformation

|g, h〉 =
1√
|G|

r(ZB ,βg)∑

ν=1

χ̃g
ν(h) |B, ν〉, (66)

which is defined in H0 only, with g ∈ CB is assumed.
Appendix F proves Eq. (65) step by step.
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Therefore, the basis vectors |A, µ〉 are indeed the eigen-
vectors of T , with the eigenvalues

θA
µ =

χ̃gA

µ (gA)

dimµ
. (67)

Clearly, the projective characters are the ground–state
wave functions of the system, collapsed in the basis vec-
tors that are the eigenvectors of the T matrix.

The above calculation guides us to interpret θA
µ from

the representation theory as an invariant that charac-
terizes the representation ρ̃g

µ. More precisely, for any

g ∈ CA, the matrix ρ̃g
µ(g) commutes with all other ma-

trices ρ̃g
µ(h) for h ∈ Zg, as

ρ̃g
µ(g)ρ̃g

µ(h) =
βg(g, h)

βg(h, g)
ρ̃g

µ(h)ρ̃g
µ(g) = ρ̃g

µ(h)ρ̃g
µ(g), (68)

where the second equality can be checked by a direct
evaluation in terms of 3–cocycles. From Schur’s lemma,
the matrix ρ̃g

µ(g) is a multiple of the identity matrix

ρ̃g
µ(g) =

χ̃g
µ(g)

dimµ
1. (69)

Moreover, by setting h = g in Eq. (49) and using Eq.

(35), we find that χxgx−1

(xgx−1) = χg(g), indicating
that the topological number θA

µ = χ̃g
µ(g)/dimµ is indeed

an invariant on CA, associated with the representation
ρ̃g

µ of ZA.

The topological spin θA
µ are given in terms of 3–

cocycles α by

(θA
µ )pA = ωA (70)

with

ωA
def
=

pA−1∏

n=0

α(g, gn, g) (71)

for conjugacy class CA of G, and pA the degree, i.e., the
least integer such that gpA = e, where gn is the power of
g. The ωA is independent of the choice of g ∈ CA and
thus a conjugacy class function. This relation is verified
by applying Eq. (41) to (ρ̃A

µ )pA = (θA
µ )pA1. Therefore,

the topological spin θA
µ takes values in the pA–th roots

of ωA. Moreover, each of the pA distinct pA–th roots
appears precisely r(ZA, βgA)/pA times in {θA

µ } for all µ,

where the ratio r(ZA, βgA )/pA is an integer. To see this,
one observes that each element in Zg can be uniquely
written as gnh with n = 0, 1, ..., pA for some h ∈ Zg,
and there are pA 1–dimensional representation of Zg by
ρj(gnh) = exp(2πijn/pA). Then for each representation
µ there exist a µ′ such that ρ̃A

µ′(gnh) = ρj(gnh)ρ̃A
µ (gnh),

and thus that θA
µ′ = exp(2πin/pA)θA

µ .
Similarly, the S–matrix can also be evaluated in terms

of the projective characters. We record as follows the

final formula for the S–matrix while detail the proof in
Appendix F. The S–matrix reads

s(Aµ)(Bν) = 〈A, µ| S|B, ν〉

=
1

|G|
∑

g∈CA,h∈CB

gh=hg

χ̃g
µ(h)χ̃h

ν (g). (72)

Again, we take the projective representations ρ̃g
µ such

that the projective characters are related by Eq. (49).
This general result of the S–matrix actually offers an
answer to one of the open questions listed in Ref34.

The mathematical significance of the S and T –
matrices is the following. They are the invariants carried
by the projective representations of ZA for all conjugacy
classes CA, in which the βg functions play a crucial role.
All these ingredients are well–organized by the represen-
tation theory of a twisted quantum group (or, a twisted
Hopf algebra), called the twisted quantum double Dα(G)
of the finite group G, which is parameterized by a 3–
cocycle α. All the irreducible βgA –representations for all

conjugacy class representatives gA form the linear irre-
ducible representations of Dα(G).

Usually, the irreducible representations of a (twisted)
quantum group classify the anyonic quasiparticle species.
The invariants of each irreducible representation identi-
fies the fractional topological quantum numbers of the
corresponding quasiparticle. The S–matrix has the origin
as a braiding operation that exchanges any two of these
quasiparticles, while the T –matrix contains the statis-
tical spins of the corresponding quasiparticles which are
determined by the braiding operation. For the discussion
of the S and T –matrices for the twisted quantum double
Dα(G), see Ref28,34,35. We also remark here that twisted
quantum double has been used to classify confinement
phases in planar physics36.

In this section, we have reproduced from our S and T
operators in terms of 3–cocycles the familiar S and T –
matrices in terms of projective characters for the twisted
quantum double Dα(G), which were originally obtained
from representation theory, according to a braiding oper-
ation. Our calculations are carried purely in the ground–
state subspace and root in the large transformation of the
spatial graph of the system on a torus. We expect that
the quasiparticles in the elementary excitations will be
classified by the same topological numbers in the way
that the GSD equals the number of the quasiparticle
species, the S and T –matrices on the ground states are
the same as those of the quasiparticles.

VI. TOPOLOGICAL NUMBERS AND

TOPOLOGICAL PHASES

We believe that the topological phases are classified by
the topological numbers {GSD, θA

µ , s(Aµ),(Bν)}. In all ex-
amples discussed in Section VII, we observe that they are
classified by the third cohomology classes of α, i.e., any
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two models HG,α and HG,α′ have the same topological
numbers if and only if α and α′ are equivalent.

In this section, we study how the topological numbers
depends on the cohomology classes of α.

A. When 3–Cocycle is cohomologically trivial

In Section II C, we have shown that two equivalent 3–
cocycles define equivalent twisted quantum double mod-
els, which consequently should describe the same topo-
logical phase. We now study this topological phase in
more details.

We begin with a special case, where the 3–cocycle of
our model belongs to class of the trivial 3–cocycle α0.
Such a 3–cocycle can take the form of a 3–coboundary:

α(x, y, z) = δβ(x, y, z) =
β(y, z)β(x, yz)

β(xy, z)β(x, y)
, (73)

where β(x, y) is any normalized 2–cochain, i.e., any func-
tion G × G → U(1) that satisfies β(e, x) = 1 = β(x, e)
for all x ∈ G. To be seen in Section VIII, such a model
is equivalent to Kitaev’s quantum double model.

The corresponding twisted 2–cocycle βg, defined in Eq.
(32), is automatically trivial such that it has the freedom
to be written as a twisted 2–coboundary:

βg(x, y) = δ̃ǫg(x, y), (74)

where

ǫg(x) = β(x, x−1gx)β(g, x)−1 (75)

is a twisted 1–cochain, whose twisted 2–coboundary
reads

δ̃ǫg(x, y) = ǫg(x)ǫg(xy)−1ǫx−1gx(y), (76)

for all g, x, y ∈ G. From the relation (75), we inevitably
notice the following constant:

ǫg(h)ǫh(g) ≡ 1 and ǫg(g) ≡ 1, ∀g, h ∈ G. (77)

This is indeed a constant as it is clearly independent of
which α is picked in its equivalent class.

By the form of βg in Eq. (87), the irreducible βg–
representations ρ̃g

µ of Zg are in one–to–one correspon-
dence to the irreducible linear representations ρµ, by

ρ̃g
µ(h) = ǫg(h)ρg

µ(h) (78)

for all h ∈ Zg, by which one can directly check the defi-
nition property (41).

The ground states in Eq. (48) now become

|A, µ〉 =

√
1

|G|
∑

g∈CA,h∈Zg

ǫg(h)χg
µ(h)|g, h〉, (79)

where χg
µ = trρg

µ is the usual character.

Eq. (76) implies that βg(x, y) = βg(y, x) for all x, y ∈
Zg with xy = yx. This means that all elements in Zg are
βg–regular and that ηg(h, x) ≡ 1 for all x ∈ Zg,h. Hence,
the GSD in Eq. (43) now reads

GSD =
∑

g∈G

∑

h∈Zg

∑

x∈Zg,h

1

|G| =

∣∣∣∣
Hom(π1(T 2), G)

conj

∣∣∣∣ , (80)

where the quotient means the equivalence (g, h) ∼
(xgx−1, xhx−1) for any x ∈ G.

By (78) and the constraint (77) of the ǫa, the topolog-
ical numbers θA

µ and the S–matrix are expressed by

θA
µ =

χ̃gA

µ (gA)

dimµ
=

χgA

µ (gA)

dimµ
(81)

and

s(Aµ)(Bν) =
1

|G|
∑

g∈CA,h∈CB

gh=hg

χg
µ(h)χh

ν (g).
(82)

When the 3–cocycle is α0 = 1, the ground states are
labeled by the usual irreducible linear representations of
all the centralizers ZA ⊆ G. For α ∈ [α0] but α 6= α0, the
ground states are labeled by projective representations,
which are related to the corresponding linear represen-
tations by merely a phase, of all the centralizers, since
βg 6= 1; however, all topological numbers are the same as
those in the case of α0, as they should be.

B. When twisted 2–cocycle is cohomologically

trivial

When the 3–cocycle α /∈ [α0], it could still be “trivial”
at a lower level, in the mathematical sense that the 2–
cocycle βa it defines in Eq. (32) is cohomologically trivial,
i.e., this βa is actually a twisted 2–coboundary:

βa(x, y) = δ̃ǫa(x, y), (83)

for all a, x, y ∈ G. Note that however, the twisted 1–
cochain ǫa in this case does not necessarily have the
closed form in Eq. (75) in general because α is not co-
homologically trivial; hence, ǫg(g) 6= 1 in general. The
twisted 2–cocycle condition in Eq. (38) yields

ηg(h, x) =
ǫxgx−1(xhx−1)

ǫg(h)
(84)

for all h ∈ Zg and x ∈ G, which is unity for all x ∈ Zg,h.
Similar to the previous case, the ground–state subspace

in the current case are also spanned by the basis vectors
|A, µ〉 of the form in Eq. (79), where µ labels the βg–
representations ρ̃g

µ of Zg, which are again related to the
usual linear representations ρµ by Eq. (78).

Since Eq. (84) renders all elements in Zg βg–regular,
as before, the GSD in this case copies that in Eq. (80).
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By the form (78), the topological numbers θA
µ and the

s matrix are related to ǫg(h) by,

θA
µ = ǫgA (gA)

χgA

µ (gA)

dimµ
(85)

and

s(Aµ)(Bν) =
1

|G|
∑

g∈CA,h∈CB

gh=hg

χg
µ(h)χh

ν (g) ǫg(h)ǫh(g).
(86)

The GSD is the same as the one in the [α0]–model,
a result of the cohomologically trivial βg. Nevertheless,
the topological numbers θA

µ and the S–matrix charac-
terize the difference between the current model and the
untwisted model. The Eq. (85) exhibits the physical rel-
evance of the phases ǫ: They endow each basis ground
state |A, µ〉 an extra spin factor ǫgA(gA) in addition to
the topological spins in Eq. (81).

C. General properties of the topological numbers

Since our model is defined in terms of 3–cocycles α, all
of the topological numbers discovered must depend on α
at the bottom level. Notwithstanding this, the special
cases belabored above imply that in general, some topo-
logical numbers may have a higher–level dependence of
α via the quantities derived from α, such as the equiv-
alence class of α and the twisted 2–cocycles. We now
list as follows the general characteristic properties of the
topological numbers {GSD, θA

µ , s(Aµ)(Bν)} of our model
on torus.

1. The set {GSD, θA
µ , s(Aµ)(Bν)} of all topological

numbers depends on the equivalence class [α] ∈
H3(G, U(1)) of the α that defines the model.

2. The GSD depends only on the equivalence classes
[βgA ] ∈ H2(ZA, U(1)) for gA ∈ RC , A =

1, . . . , r(G), independent of the representatives gA.

3. The topological spins {θA
µ } are classified by

{r(ZA, βA), ωA} for all conjugacy classes CA.

We now elaborate on the two properties above in order.
For property 1, one can check that any two equivalent

3–cocycles α′ and α related by α′ = αδβ, as in Eq. (13),
give rise to two equivalent twisted 2–cocycles β′

a and βa

related by a twisted 2–coboundary as follows.

β′
a(b, c) = βa(b, c)δ̃ǫa(b, c), (87)

where the twisted 2–coboundary δ̃ǫ happen to be those
defined in Eq. (75) and Eq. (76). The constraint in

Eq. (76) implies that GSD′ = GSD, θ′A
µ = θA

µ , and
s′

(Aµ)(Bν) = s(Aµ)(Bν).

Property 2 is manifest in Eq. (46), in which the GSD
is a sum of the numbers r(ZA, βgA ) over all conjugacy

classes CA of G. One further confirms this by looking
at Eq. (43), where the GSD is a sum of the phases ρg

as a function of βg defined in Eq. (36), which is a 1–
dimensional representation of Zg,h with h ∈ Zg. Suppose
two 3–cocycles α and α′, not necessarily inequivalent,
that define βa and β′

a equivalent for all a ∈ G, in the sense
that there exists functions ǫa : G → U(1) parameterized
by a ∈ G, which satisfies ǫa(e) = 1, such that βa and β′

a

are different by merely a twisted 2–coboundary, namely,

β′
a(x, y) =

ǫa(x)ǫx−1ax(y)

ǫa(xy)
βa(x, y), (88)

for all a, x, y ∈ G. In the restriction to x ∈ Za and
y ∈ Za,x, one sees that β′

a and βa are equivalent up to a
usual 2–coboundary over Za. By Eq. (88) and Eq. (43),
we obtain

ρ′g(h, x) = ρg(h, x),

which verifies that GSD′ = GSD. Furthermore, Eq. (44)
states that the sum of ρg(h, x) over Zg,h is either unity
or zero, regardless of which representative g ∈ CA is
chosen. Therefore, property 1 holds, as expected from
the analysis in Section II C.

Property 3 is straightforward. As discussed in Sec-
tion V, each of the pA distinct pA–roots appears pre-

cisely r(ZA, βgA

)/pA times in {θA
µ } for all µ. Then

ωα = ωα′ yields θA
µ = θ′A

µ up to a relabeling of µ =

0, 1, ..., r(ZA, βA) − 1, assuming r(ZA, βA) = r(ZA, β′
A).

VII. EXAMPLES

In this section, we explicitly compute various exam-
ples of our model, making contact with the structure dis-
cussed in the previous sections. We declare that some
parts of the results here are adapted from certain known
results26–28,34 of 3–cocycles and projective representa-
tions that were otherwise discovered in studies of con-
formal field theory by means of representation theory,
which now, however, as we show, become applicable to
describing topological phases, owing to the lucid connec-
tion revealed by our model between topological phases
and group cohomology. In all examples to be discussed
in this section, any two models HG,α and HG,α′ have the
same GSD and satisfy the condition in Eq. (77) if and
only if α and α′ are equivalent via Eq. (13).

A. G = Zm

When G is the cyclic group Zm of order m, it is known
that the cohomology group is H3 (Zm, U(1)) ∼= Zm, and
hence there are m inequivalent classes of 3-cocycles37.

We denote by a ∈ {0, 1, ..., m − 1} the elements of Zm.
The multiplication in Zm is a · b = a + b mod m.
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The m cohomology classes of 3-cocycles are generated
by34,37,38

α : Zm × Zm × Zm → U(1)

α(a, b, c) = exp

{
2πi

m2
a [b + c − 〈b + c〉)]

}
,

(89)

where a, b, c ∈ Zm, and 〈a〉 is the residue of a mod m.
By “generated” we mean that the m classes of 3-cocycles
can be represented by the powers of α in Eq. (89) as

{αk(a, b, c)| k = 0, 1, ..., m − 1}. (90)

One verifies that αm = 1 and αkαl = αk+l.
The βg for each αk has the form (83), with

ǫa(b) = exp{2πi

m2
k × a × b}. (91)

Hence each αk gives rise to GSD = m2.
The linear characters are χµ(a) = exp(2πiµa/m), for

µ = 0, 1, ..., m − 1. Applying this to Eqs. (85) and (86)
yields

θa
µ = exp

[
2πi(ka2 + maµ)/m2

]

s(aµ),(bν) =
1

m
exp

{
−2πi[2kab + m(aν + bµ)]/m2

}

(92)

B. G = Z2 and Z3

In the special case where G is the simplest finite group
Z2, there are two classes of 3-cocycles. The first is the
trivial one, namely,

α0(a, b, c) = 1, (93)

where a, b, c = 0, 1 are elements of Z2.
The second one is given as follows, according to Eq.

(89),

α1(1, 1, 1) = −1,

α1(a, b, c) = 1, for all other a, b, c
(94)

We recognize the α0 model as Kitaev’s toric code
model, or dual to the Levin-Wen model with the 6j
symbols determined by irreducible representations of Z2.
The α1 model is dual to the Levin-Wen model with
the 6j symbols determined by the semisimple irreducible
representations of the quantum group Uq(sl(2,C)) for
q = exp(iπ/3), up to a local unitary transformation (see
Section X). These form the complete solutions to Levin–
Wen models with Z2 fusion rule. The topological spins
θx

µ for ground states (x
µ) are given in Table I.

When G = Z3, there are three classes of 3–cocycles,
denoted by α0, α1, and α2. The α0 model is dual to
the Levin–Wen model with the 6j symbols determined

(0

0
) (0

1
) (1

0
) (1

1
)

α0 1 1 1 −1

α1 1 1 i −i

TABLE I: θx
µ for models with G = Z2

(0

0
) (0

1
) (0

2
) (1

0
) (1

1
) (1

2
) (2

0
) (2

1
) (2

2
)

α0 1 1 1 1 e
2πi

3 e− 2πi
3 1 e− 2πi

3 e
2πi

3

α1 1 1 1 e
2πi

9 e
8πi

9 e− 4πi
9 e

8πi
9 e

2πi
9 e− 4πi

9

α2 1 1 1 e
4πi

9 e− 8πi
9 e− 2πi

9 e− 2πi
9 e− 8πi

9 e
4πi

9

TABLE II: θx
µ for models with G = Z3

by the irreducible representations of Z3 (or equivalent to
Kitaev’s model with Z3), whereas the α1 and α2 models
are not dual to any Levin–Wen models with the Z3 fu-
sion rule, as there is only one Levin–Wen model in the
circumstance. The topological spins θx

µ are also tabu-
lated in Table II.

Consider the complex conjugation K. The models
HZ2,α0 , HZ2,α1 and HZ3,α0 are invariant under K, whereas
the models HZ3,α1 and HZ3,α2 are not. The complex con-
jugation K transforms the topological spins in the HZ3,α1

model to those in the HZ3,α2 model, as seen in Table II.
The HZ3,α1 and HZ3,α2 models are the simplest mod-
els that break the complex conjugation symmetry which
persists in the Levin–Wen models.

C. G = Zm × Zm

The simplest non–cyclic Abelian group is G = Z2
m.

But nothing is really new compared with the case where
G = Zm. The cohomology group H3(Z2

m, U(1)) = Z3
m

has three generators. We will label the group elements in
G = Z2

m as pairs a = (a1, a2) with a1, a2 = 0, 1, ..., m−1.
The multiplication is the obvious one (a1, a2)(b1, b2) =
(a1 + b1 mod m, a2 + b2 mod m). The three 3–cocycle
generators are

α
(1)
I (a, b, c) = exp{2πi

m2
a1(b1 + c1 − 〈b1 + c1〉)},

α
(2)
I (a, b, c) = exp{2πi

m2
a2(b2 + c2 − 〈b2 + c2〉)},

α
(12)
II (a, b, c) = exp{2πi

m2
a1(b2 + c2 − 〈b2 + c2〉)},

(95)

where 〈x〉 = x mod m is the residue of x. The m3 classes
of 3–cocycles are the products of powers of these three
generators. The βa function for all these three generators
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has the form (83), with

(ǫ
(1)
I )a(b) = exp{2πi

m2
a1 × b1},

(ǫ
(2)
I )a(b) = exp{2πi

m2
a2 × b2},

(ǫ
(12)
II )a(b) = exp{2πi

m2
a1 × b2}.

(96)

Therefore the associated βa for all 3–cocycles are
equivalent, and correspond to the trivial element in
H2(Z2

m, U(1)) = Zm, though the second cohomology
group itself is non-trivial.

We conclude the models specified by all 3–cocycles
have GSD = m4.

D. G = Zm × Zm × Zm

When it comes to the case of G = Z
3
m, things become

more interesting. We label the group elements by triples
a = (a1, a2, a3) with a1, a2, a3 = 0, 1, ..., m−1. The coho-
mology group H3(Z3

m, U(1)) = Z7
m has seven generators,

α
(i)
I (a, b, c) = exp{2πi

m2
ai(bi + ci − 〈bi + ci〉)},

α
(ij)
II (a, b, c) = exp{2πi

m2
ai(bj + cj − 〈bj + cj〉)},

αIII(a, b, c) = exp{2πi

m
a1b2c3},

(97)

where 1 ≤ i ≤ 3 and 1 ≤ i ≤ j ≤ 3 are assumed respec-
tively in the first two lines, and 〈x〉 is the residue of x
mod m.

The βa function for the first two types has the form of
Eq. (83), with

(ǫ
(j)
I )a(b) = exp{2πi

m2
aj × bj},

(ǫ
(jk)
II )a(b) = exp{2πi

m2
aj × bk},

(98)

But αIII cannot be decomposed as in Eq. (83). This
provides further classification of the models defined by
the m7 3–cocycle representatives. Precisely speaking,
each 3–cocycle class has a representative of the form of
a product of powers of the seven generators. They are
classified into m classes, depending on the power of αIII

they contain, namely the form αq
III for q = 0, 1, ..., m−1.

The 2–cocycle for each αq
III is given by

βa(b, c) = exp{2πi

m
q(a1b2c3 − b1a2c3 + b1c2a3)}. (99)

If α1 and α2 belong to two different classes with the pow-
ers q1 and q2 6= q1, the corresponding models have inequal
GSD in general.

Then the GSD in Eq. (30) for the model specified by
α depends on the class only, i.e., the power q of αIII .
Specifically, the GSD is determined by Eq. (43), with βa

q = 0 q = 1 q = 2 q = 3 q = 4

m = 2 64 22

m = 3 729 105 105

m = 4 4096 400 1408 400

m = 5 15625 745 745 745 745

TABLE III: GSD with G = Zm × Zm × Zm

given by Eq. (99). According to the analysis in Section
IV A, computing the GSD amounts to count the number
of βa–regular conjugacy classes of Za, for each conjugacy
class representative a of G, then sum over all a. The
GSD is

GSD =
m6

f3

∏

p

[
(pkp − 1)(1 + p−1 + p−2) + 1

]
, (100)

where f = m/ gcd(q, m) is the greatest common divisor
of q and m, p and kp are the prime number and the corre-
sponding power in the prime decomposition f =

∏
p pkp .

The GSD in m = 2, 3, 4, 5 cases are given in Table III,
which can be computed either from the original formula
Eq. (30) or the final reduced formula Eq. (100).

The models with q = 0, i.e. with only αI and αII as the
defining 3–cocycles, possess similar topological numbers
{GSD, θ, s} as those in the previous examples for G = Zm

and G = Zm × Zm. The θ and S are derived from the
linear characters

χµ(x) = exp

{
2πi

m
(µ1x1 + µ2x2 + µ3x3)

}
, (101)

with µ1, µ2, µ3 = 0, 1, ..., m − 1 labeling the irreducible
representations of G = Zm × Zm × Zm.

The models with q 6= 0, i.e., involving αIII in the defin-
ing 3–cocycle, possess more interesting topological num-
bers. Though the finite group G is Abelian, the topolog-
ical charges of the ground states are non-Abelian.

E. G = Z
n
m

We now study the Abelian non-cyclic group Zn
m for

some integer m and n more generally, whose special cases
where n ≤ 3 were investigated in previous sub sections.
For n > 3, things are similar to G = Z

3
m case. The second

and the third cohomology groups are

H2(Zn
m, U(1)) ≃ Z

n(n−1)/2
m ,

H3(Zn
m, U(1)) ≃ Z

n+n(n−1)/2+n(n−1)(n−2)/3!
m . (102)
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Like in the Z3
m case, there are three types of 3–cocycles

taking the following form

α
(i)
I (a, b, c) = exp{2πi

m2
ai(bi + ci − 〈bi + ci〉)},

α
(ij)
II (a, b, c) = exp{2πi

m2
ai(bj + cj − 〈bj + cj〉)},

α
(ijk)
III (a, b, c) = exp{2πi

m
aibjck},

(103)

where 1 ≤ i ≤ 3, 1 ≤ i ≤ j ≤ 3, and 1 ≤ i ≤ j ≤ k ≤ 3
are assumed respectively in the three lines. the num-
ber of three types of generators are n, n(n − 1)/2, and
n(n−1)(n−2)/3!, corresponding to the number of gener-
ators in H3(Zn

m, U(1)). Topological phases are classified
by the elements in H3(Zn

m, U(1)). The 2–cocycles βa ob-
tained from type–III generators correspond to non-trivial
elements in H2(Zn

m, U(1)).

F. G = Dm for odd m

The simplest non-Abelian finite groups are the dihedral
groups Dm. Specifically, D3 (equivalent to the permuta-
tion group S3) is the simplest non-Abelian group. We
will only consider odd m here, in which all 3–cocycles
can be decomposed as in (83).

We will label the elements in Dm by pairs (A, a) for
A = 0, 1 and a = 0, 1, ..., m − 1. The multiplication law
takes the form

(A, a)(B, b) = (〈A + B〉2, 〈(−1)Ba + b〉m) (104)

where 〈x〉2 = x mod 2 and 〈x〉m = x mod m means tak-
ing the residue.

The cohomology group H3(Dm, U(1)) = Z2m has only
one generator of the 3–cocycles:

α
(
(A, a), (B, b), (C, c)

)
= exp

{
2πi

m2

[
(−1)B+Ca

[
(−1)Cb + c − 〈(−1)Cb + c〉m

]
+

m2

2
ABC

]}
. (105)

The representatives of each 3–cocycle class takes the
form αp for p = 0, 1, ..., 2m − 1.

The βa for this 3–cocycle generator takes the form (83),
with

ǫ(A,a)

(
(B, b)

)

= exp

(
2πi

m2

{
b

[
(−1)Ba + 2Ab

]
− Ab2 +

m2

4
AB

})
,

(106)

for all (A, a) and (B, b) that satisfy (A, a)(B, b) =
(B, b)(A, a). The GSD is the same for all 3–cocycles,

and are given by GSD = m2+7
2 .

VIII. KITAEV’S QUANTUM DOUBLE MODEL:

α IS TRIVIAL

In this section, we show that in the special case where
the 3-cocycle is trivial, our model becomes the Kitaev’s
quantum double(QD) model. By “trivial” we mean that
the 3–cocycle takes the constant value 1,

α0(x, y, z) = 1, for all x, y, z ∈ G (107)

With this α0, the definition (9) of Av operator is re-
duced to

Av3

∣∣∣∣∣
v1 v2

v3

v4 〉
=

∣∣∣∣∣
v1 v2

v′
3

v4 〉
, (108)

Then the model defined by (5) and (1) becomes the
familiar Kitaev’s quantum double model on triangle
graphs. With a nontrivial 3-cocycle α, our model can
be viewed as the twisted version of Kitaev’s QD model,
where the twisting is specified by the 3-cocycle α. We will
explain the twisting in more detail in the next section.

To gain more intuition, we would like to briefly review
Kitaev’s quantum double model in the language of gauge
theory.

To set up a gauge theory on the graph Γ, we need to
specify the connections and the gauge transformations.
Each basis vector in Eq. (1) corresponds to a connection,
namely, an assignment g : E → G to each edge e of Γ
a group element ge of G. A gauge transformation h on
Γ is an assignment to each vertex v a group element hv

of G. The action L(h) of a gauge transformation h on a
connection g is given by [L(h)g]e = gt(e)geg−1

s(e) for each e,

where s(e) and t(e) are the starting and ending vertices
of the edge e. For example, on one edge e orienting from
v1 to v2, the action of a gauge transformation h is

L(h) :

∣∣∣∣∣ v1 v2

ge
〉

→
∣∣∣∣∣ v1 v2

hv2 geh−1

v1

〉
(109)

The action of any gauge transformation can be decom-
posed into local operators defined at each vertex. We
denote by Lv(hv) the action of a local gauge transforma-
tion of at vertex v, which is defined as,

Lv(hv) :

∣∣∣∣∣ g1 g2

g3

〉
→

∣∣∣∣∣ hvg1 hvg2

hvg3

〉
(110)
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The Hamiltonian of Kitaev’s QD model is

H = −
∑

v∈V

Av −
∑

f∈F

Bf (111)

It includes two types of local operators Av and Bf .
The operator Av at vertex v defined by

Av = |G|−1
∑

hv∈G

Lv(hv), (112)

is an average of all local gauge transformations at v. This
is the same as Eq. (108) By checking that Lv(h′

v)Av =
|G|−1

∑
hv∈G Lv(h′

vhv) = |G|−1
∑

hv∈G Lv(hv) = Av, we
see this is the projector that projects onto states that are
invariant under the local gauge transformation Lv(h′

v) at
vertex v for any h′

v ∈ G. Therefore, Av prefers gauge
symmetry at vertex v. While the gauge symmetry bro-
ken states are allowed, it costs a energy of 1 to break
the gauge symmetry. An important consequence of this
gauge symmetry breaking is that a quantum number
emerges at vertex v, and it is classified by the repre-
sentations of the gauge group G. This quantum number
identifies a quasiparticle at vertex v. The group element
ge represent the action on the states of the parallel trans-
port of this emergent quasiparticle along the edge e of the
graph.

The operator Bf on face f is defined via

Bf

∣∣∣∣∣
v1 v2

v3

g1

g3 g2

〉
= δg1·g2·g3

∣∣∣∣∣
v1 v2

v3

g1

g3 g2

〉
, (113)

which is the same as Eq. (6).

Here g1g2g3 is the holonomy around the face f , and
the delta function δa = 1 if the group element a equals
the identity element e in G and 0 otherwise. The delta
function can be expanded in terms of characters,

δg = |G|−1
∑

ρ∈Irrep(G)

dimρ χρ(g),

where Irrep(G) is the set of all irreducible representations
of G, dimρ the dimension of the representation ρ, and χρ

the character of the ρ. Thus Bf is a projector that mea-
sures whether the holonomy around the face f is trivial
or not.

Returning to the cases where α is in general nontrivial,
our model (5) may be viewed as the twisted version of
Kitaev’s QD model. In this interpretation, Ag

v is the ac-
tion of the twisted gauge transformation at v, and the Av

is the average of all local twisted gauge transformations.
To make this interpretation precise, we need to study the
algebra of all local operators, which is the main task of
the next section.

IX. RELATION TO DIJKGRAAF–WITTEN

TOPOLOGICAL GAUGE THEORY AND

CONFORMAL FIELD THEORY

In this section, we dwell on the relation between our
model, a lattice realization due to Dijkgraaf and Witten
of topological Chern–Simons gauge theories, and confor-
mal field theories.

We begin with a quick review of the gist of the part
of Dijkgraaf–Witten gauge theories that is relevant to
our model. In Ref27, Dijkgraaf and Witten established
a correspondence between the three dimensional Chern–
Simons gauge theories with a compact gauge group G and
the two dimensional sigma models with Wess-Zumino
interactions of the group G, in the sense that there is
a natural map from the cohomology group H4(BG,Z),
which classifies the Chern–Simons theories, and the
group H3(G,Z), which classifies the Wess–Zumino inter-
actions. The classifying space of the group G is denoted
by BG. In general, the prescription of the topological ac-
tion of a three dimensional Chern–Simons gauge theory
is rather abstract; however, in view of that H4(BG,Z) is
isomorphic to H3(BG, U(1)) when G is finite, Dijkgraaf
and Witten constructed a concrete lattice realization of
the topological action in the case of finite gauge groups.
From now on in this section, we restrict the discussion to
finite groups only.

So, more precisely, consider a topological gauge the-
ory defined in a three dimensional manifold M , with a
finite gauge group G, the lattice realization is defined on
a three-skeleton, i.e., a triangulation T, of M , with a
group element of G living on each 1–simplex, which is
oriented, of the triangulation (see Fig. 6). The topo-
logical partition function of such a lattice gauge theory
reads

Z(T(M), G) =
1

|G|
∏

i

W (Ti)
εi , (114)

where the product runs over all of the tetrahedra Ti

in the triangulation T(M), and εi is a sign, +1 or
−1, depending on whether the four vertices of the cor-
responding tetrahedron are in a right–handed arrange-
ment or left–handed arrangement. It is shown27 that
the W (Ti) associated with each tetrahedron Ti is a 3–
cocycle over G. For example, for the tetrahedron in Fig.
6, W (T ) = α(g, h, k).

Note that α is an equivalence class, any two represen-
tatives of the class are related by a 3–coboundary. If the
manifold M is closed, the value of Z(T(M), G) does not
depend on the choice of the representative of an equiv-
alent class of 3–cocycles. The partition function is also
invariant under the Pachner moves that connect two sim-
plicial triangulations of M . Another remark is that the
labeling of the vertices of the tetrahedron in Fig. 6 is
fixed once for all. At this point, the partition function
does not have tetrahedral symmetry.

On closed manifolds, the partition function in Eq.
(114) also has a gauge invariance. Consider the single
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1
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g h

k

gh
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ghk

FIG. 6: A tetrahedron whose edges are graced with group
elements; group multiplication rule applies to each of the four
triangles. The corresponding 3–cocycle is α(g, h, k).

tetrahedron in Fig. 6 as an example, the gauge transfor-
mation that acts on vertex 1 transforms the topological
action as follows.

W (T) → W ′(T) =
α(c, g, h)α(c, gh, k)

α(c, g, hk)
W (T), (115)

where c ∈ G is the gauge parameter. This gauge transfor-
mation can be understood topologically as in Fig. 7. The

1

2

3

4

g h

k

gh

hk

ghk

1′

c

cg

cgh

cghk

FIG. 7: Gauge transformation acting on the vertex 1 in Fig.
6; a new vertex 1′ is created at the barycenter, accompanied
by a new group element c on the edge [1′1]. Also understood
as the 1 → 4 Pachner move.

tetrahedron [1234] is associated with the original topo-
logical action W (T). The gauge transformation acting
on vertex 1 creates a new vertex 1′ inside the tetrahe-
dron (can be thought as being at the barycenter) and
thus created four new tetrahedra, of which the tetrahe-
dron [0′123] is associated with the new topological action
W ′(T) = α(cg, h, k). There are five tetrahedra all told in
Fig. 7, associated with which the five 3–cocycles satisfy
the 3–cocycle condition and thus lead to Eq. (115). On
closed manifolds, the topological action is invariant under
the gauge transformation Eq. (115) because the factors
on the RHS of Eq. (19) can be canceled by those pro-
duced by the gauge transformation on the neighbouring
tetrahedra. Topologically, the gauge transformation be-
haves like a 1 → 4 Pachner move that splits a tetrahedron
at it barycenter into four tetrahedra. Such a Pachner
move can be visualized only in four–dimension, whereas
Fig. 7 is the three–dimensional projection of a 4–simplex
whose five boundary 3–simplices are the five tetrahedra
in the figure.

To gain a deeper understanding of the gauge transfor-
mation Eq. (115), let us rewrite the equation in terms of

3–cocycles only as follows.

α(g, h, k) → α′(g, h, k)

= α(cg, h, k) = γ(c, g, h, k)α(g, h, k),
(116)

where we define

γ(c, g, h, k) =
α(c, g, h)α(c, gh, k)

α(c, g, hk)
.

In general, however, the new object α′(g, h, k) is not a 3–
cocycle any longer because one can check that it does not
meet the 3–cocycle condition Eq. (3). Nonetheless, that
α′ is not a 3–cocycle makes it possible to choose a conve-
nient gauge such that the prescription of the topological
partition function becomes simpler. Indeed, according to
Ref27, depending on the divisibility of |G|, the following
gauge of the 3–cocycles may be imposed.

α′(g, g−1, h) = α′(g, h, h−1) = 1. (117)

Under this gauge, the ordering of the vertices of a tetrahe-
dron is irrelevant; in other words, the topological action
W ′(T) acquires tetrahedral symmetry, in the sense that
it is invariant under the change of the labeling of the ver-
tices. Therefore, the 3–cocycle condition and the gauge
in Eq. (116) are incompatible unless the 3–cocycle un-
der consideration is equivalent to the trivial one, namely
α ∈ [α0].

If the manifold M has a boundary (open or closed),
however, the gauge transformation in Eq. (115) ceases
to apply because a boundary condition must be imposed
on M , which fixes the boundary value of the embedding
of M into the classifying space BG and hence forbids
the Pachner moves that involve the boundary simplices.
Effectively, there are now degrees of freedom that can-
not be gauged away on the two–dimensional boundary
∂M of M . As such, the three–dimensional partition
function turns out to be the wave function of the cor-
responding boundary state at certain time. Since the
Dijkgraaf–Witten Chern–Simons theory is a topological
gauge theory, there is no nonvanishing Hamiltonian due
to Legendre transform that can enable the notion of
ground and excited states for the boundary states. In-
stead, here we have only gauge–invariant and noninvari-
ant states. In particular, however, if the manifold M
has a closed boundary, e.g., a solid torus with its bound-
ary a 2–torus, the remaining boundary states are auto-
matically only those gauge–invariant ones. This can be
understood by the standard technique of ”gluing” and
”sewing” if a topological quantum field theory, which in
the current case gives the size of the Hilbert space on
the boundary. As such, the Dijkgraaf–Witten partition
function becomes the dimension of the Hilbert space of
the gauge–invariant states on the closed boundary of M .

At this point, one may ask if it is possible to construct a
Hamiltonian on the closed boundary of M whose ground
states happen to be the gauge–invariant boundary states
of the Dijkgraaf–Witten theory in M . Yes, the Hamilto-
nian of our TQD model turns out to be a positive answer
to this question, as explained as follows.
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Staring at Fig. 6 again as if it is a triangulation of a
3–ball, then the the right–to–left projection of the four
triangles comprising the boundary 2–sphere to the paper
plane is the very graph in Fig. 2(b), a basis graph of our
twisted quantum double model. Note that in this case,
there are four triangles in Fig. 2(b), including the trian-
gle [124] in the back. When the corresponding state of
the graph in Fig. 2(b) is a ground state, the Bf operator
is unity acting on any of the triangles, complying with
the group multiplication rule on each of the triangles in
Fig 6.

By comparing Ac
3 with c ∈ G at vertex 3 on the graph

in Fig. 2(b) to Eq. 115, one may see the vertex operator
Ag

v in the Hamiltonian of our model is formally identi-
cal to the gauge transformation on the partition function
in Dijkgraaf–Witten theory. In our model, the opera-
tors Av evolve the states; however, we have Av = 1 on
the ground states, which implies that they are invariant
under the Dijkgraaf–Witten gauge transformation in Eq.
(115). If we embed the graph of the TQD model on a
torus or any surface homeomorphic to it, say, ∂X × S1,
where X is homeomorphic to a disk, we soon see that the
ground states of the TQD model are the gauge–invariant
boundary states of the Dijkraaf–Witten theory defined
on M = X × S1. Therefore, we can conclude that

ZCS

(
T(X × S1), G

)
= GSDT QD

(
T (∂X × S1)

)
.

The results obtained in Sections IV and V fall into this
latter case, which can be verified by comparing them to
the corresponding results in Ref27,34.

Now that we have gone through the logic of this corre-
spondence, we can claim that our twisted quantum dou-
ble models may indeed be regarded as a valid Hamilto-
nian extension of the Dijkgraaf–Witten discrete Chern–
Simons theories. Although the discussion so far is re-
stricted to 3–dimension, the correspondence described
above may be readily generalizable to higher dimensions.

In light of this correspondence, the gauge transforma-
tion in Eq. (116) implies that all twisted quantum double
models but the one defined by [α0] do not have tetrahe-
dral symmetry.

On the other hand, the CS theories in a 3–manifold
M also correspond to other two–dimensional theories on
the boundary ∂M , namely the rational conformal field
theories (RCFT), such as Wess–Zumino–Witten (WZW)
models. The salient point of this correspondence is that
the CS Hilbert space on ∂M is isomorphic by a canoni-
cal identification to the space of holomorphic conformal
blocks of the RCFT on ∂M , while the CS wave–function
reproduces the fusion algebra of the holomorphic sector
of the RCFT. Note that this correspondence is level by
level, in the sense that the CS theory and the WZW
interaction of the corresponding RCFT are both at the
same level, say, k.

What follows naturally is a correspondence between
our twisted quantum double models with a finite group
G and a type of RCFTs, namely the CFTs as orbifolds by
the group G of a holomorphic CFT. The modular data of

a G–orbifold is twisted by a 3–cocycle over G. This cor-
respondence is also level by level, in the following sense.
The third cohomology group over G, H3(G, U(1)), is a
discrete group; in particular it is Z if G is a compact Lie
group. Hence, one can label the equivalence classes as the
elements of H3(G, U(1)) by integers, say, [k]. The situa-
tion is similar when G is finite, in which case H3(G, U(1))
also becomes finite, indicating that there are only finite
number of levels available. Hence, a twisted quantum
double model defined by a 3–cocycle α ∈ [k] corresponds
to a G–orbifold twisted by the same α, which has a
twisted modular data at level k too. As such, when
α = α0 ∈ [0], the twisted quantum double model is actu-
ally untwisted, which is equivalent to Kitaev model, and
thus corresponds to the usual untwisted G–orbifold.

Let HG,α be a twisted quantum double model on a
torus and CG,α a twisted toroidal orbifold of a holomor-
phic CFT C. One can check that they correspond to each
other in the respects tabulated row by row as follows.

HG,α CG,α

States: |g, h〉 conformal blocks: h�
g

Ground State: |A, µ〉 1–loop characters: κ
A
µ

Ground state degeneracy Number of primary fields

S & T matrices in |A, µ〉 basis S & T matrices in κ
A
µ basis

TABLE IV: Correspondence between a TQD and a twisted
G–orbifold.

A few remarks on the table are in order. The equality
between the GSD of the TQD model and the number of
primary fields of the corresponding orbifold is not surpris-
ing, as each primary field is associated with a highest–
weight vector of an irreducible representation of the Vira-
soro algebra that is annihilated by the positive modes of
the algebra and thus can be thought as a “ground state”.
At this moment, such a relation may appear to be ab-
stract; however, if a TQD model has a boundary, it may
be possible to construct a boundary CFT whose number
of primary fields matches the GSD of the TQD model.
An example is shown numerically for a (2+1) dimensional
Haldane model and its boundary CFT39. Since each 1–
loop character counts all the descendants of a primary
field, including the primary field itself, it naturally corre-
sponds to a unique ground state of the TQD model. Like
the TQD ground states |A, µ〉, The 1–loop characters κA

µ

form an orthonormal basis, in which the T operator is
diagonal. The conformal blocks h�

g
projects onto this

basis as

h�
g

=
∑

µ

χ̃gA

µ (h)κA
µ ,

which is precisely how a TQD state |g, h〉 projects onto
the ground state basis, as in Eq. (66).

Although we have been talking about the fractional
topological numbers and statistics of the quasiparticles
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of our model, we do not have in hand the operators
that can create or annihilate these quasiparticles, nor do
we know the exact wave functions of these quasiparti-
cles. Nevertheless, as a ramification of the correspon-
dence with the orbifold CFTs, that we can study the
topological numbers and statistics of the possible quasi-
particles of our model by using only the modular matrices
can be expected. This ramification is further propped by
a similar correspondence between the (2+1)–dimensional
Hamiltonian formulation of fractional quantum Hall ef-
fect (FQHE) systems and two–dimensional RCFT, which
maps the holomorphic wave functions of the quasiparti-
cles of the FQHE system to the conformal blocks of the
CFT.

X. RELATIONS TO LEVIN–WEN MODELS

In this section, we discuss the relation between Levin–
Wen models and our TQD models. In particular, we
demonstrate a duality map of a class of Levin–Wen mod-
els into certain TQD models.

To begin with, let us briefly review Levin–Wen Mod-
els. Levin–Wen models, also known as string–net models,
were proposed to generate the ground states that exhibit
the phenomenon of string–net condensation as a physi-
cal mechanism for the time reversal invariant topological
phases. They are believed to be a Hamiltonian formu-
lation of the Turaev–Viro topological field theories40–43,
analogous to that our TQD models are a Hamiltonian
extension of topological Chern–Simons theories, as be-
labored in the previous section. Levin–Wen models are
usually defined on the honeycomb lattice.

String degrees of freedom reside on the edges of the
honeycomb lattice, each link of which is graced with one
of N + 1 string types. In the most general setting, the
N + 1 string types form a finite set I equipped with a
duality map ∗ : I → I such that j∗∗ = j for all j ∈
I. These abstract string types are usually considered to
label the irreducible representations of certain group or
algebra (e.g., a quantum group).

A Levin-Wen model is specified by a triple of the input
data {d, δ, F }. Quantum numbers dj are called quantum
dimensions and are complex numbers associated with the
group elements j ∈ G, satisfying dj = dj∗ . There are in
principle two ways of setting up the fusion rules δ. First,
one can let the tensor product rules of the irreducible
representations labeled by the string types as the fusion
rules. But we do not consider this case here. Second,
which is the case to be discussed in this section, one can
use the product rule of certain group G as the fusion
rule, which is in fact a Kronecker δ–function associated
with each triple of string types {i, j, k} respectively on
the three links meeting at a vertex, such that δijk equals
1 if the group multiplication ijk is the identity element
e, and 0 otherwise. The quantum dimensions and fusion

rules must satisfy

didj = δijk∗ dk. (118)

The dual string type j∗ = j−1 can also represent the cor-
responding inverse group element in G. Fig. 8 illustrates
the fusion rule on the honeycomb lattice, by showing just
one vertex. A link a of the lattice is graced with a string
type sa and endowed with an orientation, specified by an
arrow. Such a string of type sa can also be represented
by a flipped arrow, but with the conjugate string type
s∗

a = (sa)−1.

sa sc

sb

sa sc

−s∗
b

FIG. 8: A string–net vertex.

The 6j symbol F are complex numbers that obey the
following self–consistency conditions






F ijm
kln = F mij

nk∗l∗

vmvn

vj vl
= F klm∗

ijn∗ = F jim
lkn∗ = F j∗i∗m∗

l∗k∗n ,

F mlq
kp∗nF jip

mns∗ F js∗n
lkr∗ = F jip

q∗kr∗F riq∗

mls∗ ,

F mlq
kp∗nF l∗m∗i∗

pk∗n = δiqδmlqδk∗ip,

(119)
where vj =

√
dj (and ve = 1 for the identity group ele-

ment e). The first line is a symmetry over the indices of
F , where the last equality is meant for the Hamiltonian
to be Hermitian, the second line the pentagon identity,
and the last line the orthogonality condition. We re-
mark here that it is the solution of the F–symbols and
the quantum dimensions to Eq. (119) that dictates for
which the abstract string types label the irreducible rep-
resentations. Often, the string types turn out to label
the irreducible representations of a rather complicated
algebra A although the group G that supplies the fusion
rules is very simple. See Section VII B for an example.

The usual string–net Hamiltonian takes the form

H = −
∑

v

Âv −
∑

p

B̂p, (120)

where Âv

∣∣∣ i k
j

〉
= δijk

∣∣∣ i k
j

〉
is the vertex operator de-

fined at each string–net vertex, and B̂p =
∑N

s=0 asB̂s
p,

with as = ds/D and D =
∑N

i=0 d2
i , is the ”magnetic–

flux” operator defined for each hexagonal plaquette of
the string–net lattice. Each operator B̂s

p in B̂p acts on a

plaquette as follows22.

B̂s
p

∣∣∣∣∣

l1l2

l3

l4 l5

l6

e1e2

e3

e4

e5

e6

〉
=

6∏

a=1

F
lae∗

aea−1

s∗e′
a−1e′∗

a

∣∣∣∣∣

l1l2

l3

l4 l5

l6

e′

1e′

2

e′

3

e′

4

e′

5

e′

6

〉
, (121)

where e′
a = eas.

The vertex operators Âv are projectors. The parame-
ter as ensures that the operators B̂p are also projectors.



24

It can be shown that {Âv, B̂p|∀v, p} is a set of commuting
operators, whose common eigenstates span the Hilbert
space of the model. The ground states of the model are
thus the +1 eigenstates of Âv and B̂p, which are known
as the string–net condensed states.

We emphasize that in Levin–Wen models, the plaque-
tte operator B̂p is identically zero outside of the subspace

of Âv = 1 because the F–symbols are automatically zero.
This is in contrast to our TQD models in which the vertex
operators are well–defined and nontrivial outside HBf =1.

The honeycomb lattice has as its dual lattice the trian-
gular lattice, which is a regular case of the triangle graph
Γ on which our TQD models are defined. We further no-
tice that the way we enumerate the vertices and assign
group elements on the edges of Γ does induce orienta-
tions on the links of the dual honeycomb lattice, as seen
in Eq. (122), in which only the dual honeycomb plaque-
ttes are shown. Bear in mind that the enumerations of
the vertices of Γ now label the plaquettes.

v1 v2

v3

v4

v1 v2

[v1v2]

v3

v4

v1
v2

[v2v1]

v3

v4

(122)

The pair [v1v2] indicates that the plaquette v1 is on the
left of their common edge, while v2 is on the right. Hence,
the group element on the edge can be denoted as g[v1v2]

and obviously satisfies g[v1v2] = g−1
[v2v1]. This rule can be

applied to the entire graph.
These observations imply that there may exist a kind of

duality between the concerned type of Levin–Wen mod-
els and certain TQD models, in fact an inclusion of the
former into the latter, as we now explore.

We claim that any F–symbol that solves Eq. (119) can
be mapped to a 3–cocycle α (up to a 3–coboundary) that
defines a TQD model. That said, a Levin–Wen model
with such an F can be identified with a TQD model
with the corresponding α. Indeed, a tensor F has three
independent indices and can be expressed as

F ijm
kln = α(i, j, k)δm,(ij)−1 δn,jkδl,(ijk)−1 (123)

where α ∈ C× = C \ {0} is a function of i, j, k ∈ G. The
self–consistency conditions in Eq. (119) become






α(i, j, k) = α
(
(ij)−1, i, jk

) vijvjk

vjvijk

= α
(
k, (ijk)−1, i

)

= α
(
j, i, ijk−1

)
= α (j−1, i−1, ijk),

α(l, k, j)

α(ml, k, j)

α(m, lk, j)

α(m, l, kj)
α(m, l, k) = 1,

α(m, l, k)α(l−1, m−1, mlk) = 1,

(124)
respectively. The pentagon identity in the second line is
readily the 3–cocycle condition of this α that turns out to

be a 3–cocycle in H3(G,C×). It does not harm to assume
that α is U(1)–valued in H3(G, U(1)) ∼= H3(G,C×).
Then we see that the orthogonality condition is identified
with one equality in the symmetry condition.

The quantum dimension dj then takes the definition

di = α(i−1, i, i−1), (125)

as is verified by setting j = i−1 and k = i in the symmetry
condition and by the 3–cocycle condition.

The conditions didk = dik and di = di−1 = ±1 are
immediate consequences of the symmetry condition in
Eq. (124). By setting j to the identity element e in the
first equality of the symmetry condition (124) and by
applying the 3–cocycle condition δα

(
(ij)−1, i, j, k

)
= 1,

we obtain

vivk

vik
=

α(e, e, k)

α(i−1, i, k)α(i−1, i, e)
. (126)

Since α(i−1, i, k)2 = 1 from the symmetry condition for
all i, k ∈ G, taking a square of the above equation yields
didk = dik. The condition di = di−1 = ±1 is due to
α(i−1, i, i)2 = 1 and didi−1 = de = 1.

Substituting the α in Eq. (123) into the B̂s
p in Eq.

(121), we find that As
p|Bf =1 can be identified with dsB̂s

p

for all p up to a common unitary transformation that de-
pends on the enumeration of the vertices and the choice
of {vi}, where As

p|Bf =1 is the TQD model vertex operator
acting on the vertex p dual to the plaquette p on the hon-
eycomb lattice, with the action restricted to the subspace
HBf =1. Notice that the enumeration dependence of the
transformation is related to the enumeration dependence
of the definition of As

p.
Therefore, we infer that the Levin–Wen model with the

fusion rule δijk determined by the group multiplication
law of G and the F–symbols meeting Eq. (119) can be
identified as the TQD model restricted to HBf =1 that is
defined by the (not necessarily normalized) U(1)–valued
3–cocycle α that satisfies

α(i, j, k) = α
(
(ij)−1, i, jk

) vijvjk

vjvijk
= α

(
k, (ijk)−1, i

)

= α
(
j, i, ijk−1

)
= α

(
j−1, i−1, ijk

)−1
(127)

where vi =
√

di and di = α(i, i−1, i).
Nevertheless, not all 3–cocycles satisfy the conditions

(127), in which case the TQD models do not correspond
to any Levin-Wen models. For example, with Z2 fusion
rule, there are two Levin–Wen models, namely the toric
code model and the double semion model, which can be
identified with the TQD models respectively with the [α0]
and [α1] given in Eq. (89), which correspond to d1 = 1
and d1 = −1 respectively, according to Eq. (125). There
is, however, only one Levin-Wen model with Z3 fusion
rule that has a dual TQD model—the one with the [α0]
given in Eq. (90). Note that here, we do not distin-
guish the TQD models defined by equivalent 3–cocycles
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because they describe the same topological phases, as ex-
plained in Section II C. Details of the TQD models with
Z2 and Z3 are found in Section VII B.

The study in this section partially answers the question
when and how Levin–Wen models can be characterized
by group cohomology, which was raised in Ref22.

XI. DISCUSSIONS AND OUTLOOK

In this very last section, we shall summarize our major
results along with discussions on a few questions bonded
to these results that are yet not fully answered in this
paper but deserve future exploration.

First of all, we fabricated a new model—the Twisted
Quantum Double model—of 2d topological phases by a
3–cocycle [α] ∈ H3(G, U(1)) of a finite group G on a
graph composed of triangles, each edge of which is dec-
orated by an element of G. This model constitutes a
very rich class of topological phases, which are otherwise
missing in some other models, such as the Kitaev model
and Levin–Wen model. The topological properties of the
TQD model are reflected in the topological numbers—
GSD, topological spin, etc—associated with the topolog-
ical observables of the model.

We further classified these topological numbers, which
either directly depend on the defining 3–cocycle of the
model or indirectly via a twisted 2–cocycle determined by
the 3–cocycle. Two TQD models defined by two equiv-
alent 3–cocycles are shown to bear the same topological
phase. We thus expect that the classification of the topo-
logical numbers does the job as well for the topological
phases described by the TQD models. We expect but do
not affirm this yet because we have not been able to ex-
plicitly prove that two inequivalent 3–cocycles never yield
the same topological phase. This and detailed studies of
the topological phases certainly calls for more efforts in
future works.

Second, our TQD model appears to be certain gener-
alization of the Kitaev model in the following sense. A
TQD model is precisely a Kitaev model when its defin-
ing 3–cocycle is trivial. In this situation, the Hamilto-
nian consists of local gauge transformations and local
flux projections. As a collective effect, the ground states
are classified by the irreducible representations of quan-
tum double of the finite group G, and this is expected to
be true also for the quasiparticle excitations. When the
defining 3–cocycle is non–trivial, the Hamiltonian can be
viewed as consisting of local twisted gauge transforma-
tions and local flux projections. Similarly the ground
states are classified by the irreducible representations of
the twisted quantum double of the finite group G.

Third, we relate our TQD models to the Dijkgraaf–
Witten (DW) topological Chern–Simons theories, by
viewing ours as a Hamiltonian extension of the latter. In
fact, we have shown that the GSD of a TQD model de-
fined by some 3–cocycle on the boundary of a 3–manifold
coincides with the partition function of the DW topolog-

ical Chern-Simons theory in the bulk, whose topological
action is given by the same 3–cocycle.

This connection motivates a correspondence between
our TQD models on a torus and the RCFTs that are
the toric orbifolds by a finite group of a holomorphic
CFT and are twisted by nontrivial 3–cocycles. This
correspondence identifies the ground states, the GSD,
and the modular matrices of a TQD model, respectively,
with the holomorphic characters, the number of primary
fields, and also the modular matrices of the correspond-
ing RCFT. Provided with the description of fractional
quantum Hall effect by CFT, we are encouraged to ex-
pect that the statistical and topological properties of the
quasiparticle excitations and hence the topological phase
of a TQD model can be investigated in terms of the mod-
ular matrices of the model.

Fourth, to echo the fact that our model is partly moti-
vated by the Levin–Wen model, we studied the relation
between TQD models and the type of Levin–Wen models
where the fusion rules coincide with the multiplication
laws of finite groups: we demonstrated that each such
Levin–Wen model on a graph can be directly translated
to a TQD model of the type on the dual graph. The
reverse is not true, however, indicating that TQD mod-
els embodies more topological phases than this type of
Levin–Wen models. In our study of this in Section X, we
adopted simply the original settings of the Levin–Wen
model11.

Furthermore, as pointed out in Section X and in Ref22,
the fusion rules in a Levin–Wen model can in principle
be identified with the tensor product rules of the irre-
ducible representations of certain group or algebra. If
this is the case, the pentagon identity in Eq. (119) of
the F–symbols contains a summation over the index n
on the LHS due to the summation that would appear
in the fusion rules, which comprises the interpretation of
the F–symbols as 3–cocycles and the pentagon identity
as the corresponding 3–cocycle condition. Then clearly,
this type of Levin–Wen models, apart from the special
cases where the representations are restricted so as to re-
move the summation, cannot be dual to our TQD mod-
els. This type of Levin–Wen models are believed to be
classified in terms of tensor categories. This distinction
between the two types of Levin–Wen models is related
to the question when and how Levin–Wen model can
be classified by group cohomology, which is raised in
Ref22 that is inspired by the duality between certain SPT
phases and long range entangled topological phases de-
scribed by certain Levin–Wen models22,23,44. The duality
found between our TQD models and Levin–Wen models
then partially answered this question.

Above all, a main purpose of this paper is to reveal
the topological properties of the ground states. We pro-
pose the following topological properties of the elemen-
tary excitations. The number of quasiparticle species
in the elementary excitations is equal to the GSD on
a torus. Moreover, the topological charge that identifies
the quasiparticles are classified by the twisted quantum
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double of the finite group G, and The S and T statistical
matrices are the same as the modular S and T matri-
ces derived from the topological observable in the ground
states on a torus. Work is in progress in this direction. In
general, two inequivalent 3 cocycles may yield the same
topological phase, because of possible relabeling of the
quasiparticles. For example, H3(Z2 ×Z2, U(1)) has eight
equivalence classes of 3-cocycles. If we assume that the
set {GSD, S, T } gives the number of topological phases,
then it is verified that there are only 4 independent sets
of GSD, S, T in the case of Z2 ×Z2. At this moment, we
are lack of a systematic understanding of the underlying
principle and general pattern, and shall try to address
this issue in our future work.
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Appendix A: Basics of Hn(G, U(1))

The 3-cocycles concerned in this paper correspond to
the topological actions in the Dijkgraaf-Witten Chern-
Simons theory realized on simplicial triangulations of 3-
manifolds. This physics is introduced in SectionIX. Here
in this appendix, to be self-contained, we briefly catalog
basic definitions of cohomology groups Hn(G, U(1)) of
finite groups G.

The n-th cochain group Cn(G, U(1)) of a finite group G
is an Abelian group of n-cochains c(g1, . . . , gn) : G×n →
U(1), where gi ∈ G, with the group multiplication:
c(g1, . . . , gn)c′(g1, . . . , gn) = (cc′)(g1, . . . , gn). There is a
natural derivation from Cn to Cn+1, namely the cobound-

ary operator δ defined as follows.

δ : Cn → Cn+1

: c(g1, . . . , gn) 7→ δc(g0, g1 . . . , gn),

where

δc(g0, g1 . . . , gn)

=

n+1∏

i=0

c(. . . , gi−2, gi−1gi, gi+1, . . . )(−1)i

,

where it is understood as when i = 0, the arguments
start at g0, and when i = n + 1, the arguments end at
gn−1. Equation (3) is the example for n = 3. It is easy
to verify that δ2c = 1, the nilpotency of δ, by which the
following exact sequence is established:

· · · Cn−1 δ→ Cn δ→ Cn+1 · · · ,

where the n-cochains in im(δ : Cn−1 → Cn) are called
n-coboundaries, and those in ker(δ : Cn → Cn+1) are
called n-cocycles, i.e. those satisfying the cocycle con-

dition δc = 1. Again, Eq. (3) is the example for n = 3.
This exact sequence gives rise to the definition of the
cohomology group

Hn(G, U(1)) :=
ker(δ : Cn → Cn+1)

im(δ : Cn−1 → Cn)
,

which is the Abelian group of equivalence classes of
n-cocyles that defer from each other by merely an n-
coboundary. Trivial n-cocycles are those in the equiva-
lence class with the unit 1.

Appendix B: Algebra of local operators

In this appendix, we show that the local operators in
the Hamiltonian Eq. (5) forms the following algebra.

(i) [Bf ′ , Bf ] = 0, [Bf , Ag
v] = 0,

(ii) [Ag
v , Ah

w] = 0 if v 6= w,

(iii) Ag
v′ A

h
v = Ag·h

v , (B1)

where in (iii), [v′v] = g is understood. The equality (iii)
in the above implies that Av =

∑
g Ag

v/|G| is a projector.

(i). That [Bf ′ , Bf ] = 0 follows immediately from the def-
inition of Bf in Eq. (6). Since Av affects only the group
elements on the boundary of the vertex v, [Bf , Ag

v] = 0
holds obviously when the vertex v is not on the bound-
ary of f . In the case where v is right on the boundary of
v, without loss of generality, let us consider two actions,
Ag

v2
Bf and Bf Ag

v2
, on the basis vector

∣∣∣∣∣
v1 v2

v3 〉
.

We have

Ag
v2

Bf

∣∣∣∣∣
v1 v2

v3 〉
(B2)

= . . .
δ[v1v′

2]·[v′

2v3]·[v3v1]

α ([v1v′
2], [v′

2v2], [v2v3])

∣∣∣∣∣
v1 v′

2

v3 〉
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= . . .
δ[v1v2]·[v2v3]·[v3v1]

α ([v1v′
2], [v′

2v2], [v2v3])

∣∣∣∣∣
v1 v′

2

v3 〉

= . . .
δ[v1v2]·[v2v3]·[v3v1]

α ([v1v′
2], [v′

2v2], [v2v3])

∣∣∣∣∣
v1 v′

2

v3 〉

=Bf Ag
v2

∣∣∣∣∣
v1 v2

v3 〉
, (B3)

where [v′
2v2] = g is understood, the dots . . . collects

all other factors irrelevant and thus omitted, and the
second equality follows from applying the chain rule
[v1v′

2]·[v′
2v3] = [v1v′

2]·[v′
2v2]·[v2v′

2]·[v′
2v3] = [v1v2]·[v2v3].

Hence, we conclude that [Bf , Ag
v] = 0 holds for all

f, v ∈ Γ.

(ii). It is clear by the definition of Bv that if v1 and v2

are not connected by any edge, [Ag
v1

, Ah
v2

] = 0 is true.
We then need only to check the case where v1 and v2 are
neighboring to each other. Let us first check the following
action of Ag

v1
Ah

v2
on a relevant basis vector.

Ag
v1

Ah
v2

∣∣∣∣∣
v1

v3

v2

v4 〉

=
(

α ([v1v′
2], [v′

2v2], [v2v4])
−1

α ([v1v′
2], [v′

2v2], [v2v3]) ...
)

Ag
v1

∣∣∣∣∣
v1

v3

v′
2

v4 〉

=
(

α ([v1v′
2], [v′

2v2], [v2v4])
−1

α ([v1v′
2], [v′

2v2], [v2v3]) ...
)

(
α ([v′

1v1], [v1v′
2], [v′

2v4])

α ([v′
1v1], [v1v′

2], [v′
2v3])

−1
...

)∣∣∣∣∣ v′
1

v3

v′
2

v4 〉
(B4)

with [v′
2v2] = h, [v′

1v1] = g. Only those 3-cocycles corre-
sponding to the two common boundary vertices are writ-
ten down.

By using twice the 3-cocycle condition in (3), we have

α ([v′
1v′

2], [v′
2v2], [v2v4]) α ([v′

1v1] · [v1v′
2], [v′

2v2], [v2v4])
−1

α ([v′
1v1], [v1v′

2] · [v′
2v2], [v2v4])

α ([v′
1v1], [v1v′

2], [v′
2v2] · [v2v4])

−1 ×
α ([v′

1v1], [v1v′
2], [v′

2v2]) = 1 (B5)

and

α ([v′
1v′

2], [v′
2v2], [v2v3])

α ([v′
1v1] · [v1v′

2], [v′
2v2], [v2v3])

−1

α ([v′
1v1], [v1v′

2] · [v′
2v2], [v2v3])

α ([v′
1v1], [v1v′

2], [v′
2v2] · [v2v3])

−1

α ([v′
1v1], [v1v′

2], [v′
2v2]) = 1

(B6)

together with the chain rule Eq. (10), we find the action
of Ag

v1
Ah

v2
is the same as Ah

v2
Ag

v1
:

Ah
v2

Ag
v1

∣∣∣∣∣
v1

v3

v2

v4 〉

=
(

α ([v′
1v1], [v1v2], [v2v4])

α ([v′
1v1], [v1v2], [v2v3])

−1
...

)
Bh

v2

∣∣∣∣∣ v′
1

v3

v2

v4 〉

=
(

α ([v′
1v1], [v1v2], [v2v4]) α ([v′

1v1], [v1v2], [v2v3])
−1

...
)

(
α ([v′

1v′
2], [v′

2v2], [v2v4])
−1

α ([v′
1v′

2], [v′
2v2], [v2v3]) ...

)∣∣∣∣∣ v′
1

v3

v′
2

v4 〉
(B7)

Notice that the chain rule in Eq. (10) guarantees that
each group element indexed by the same pair of enumer-
ations is the same in the above evaluations. Therefore
we arrive at Ag

v1
Ah

v2
= Ah

v2
Ag

v1
.

(iii). We show Ag
v′Ah

v = Ag·h
v , where v is assumed to

become v′ after the action of Ah
v with [v′v] = h, while

v is turned to be v′′ with [v′′v] = g · h. We begin with
the action of Ag

v′Ah
v on the vertex v2of the basis vector

as follows.

Ag
v′

2
Ah

v2

∣∣∣∣∣
v1 v3

v2

v4 〉

=α ([v1v′
2], [v′

2v2], [v2v3])

α ([v1v′
2], [v′

2v2], [v2v4])
−1

α ([v′
2v2], [v2v3], [v3v4])

−1
Ag

v′

∣∣∣∣∣
v1 v3

v′
2

v4 〉

=
(

α ([v1v′
2], [v′

2v2], [v2v3]) α ([v1v′
2], [v′

2v2], [v2v4])
−1

α ([v2v′
2], [v′

2v3], [v3v4])
−1

)

(
α ([v1v′′

2 ], [v′′
2 v′

2], [v′
2v3]) α ([v1v′′

2 ], [v′′
2 v′

2], [v′
2v4])

−1

α ([v′′
2 v′

2], [v′
2v3], [v3v4])

−1
)∣∣∣∣∣

v1 v3
v′′

2

v4 〉
. (B8)
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Using three times the 3-cocycle condition (3),

α ([v1v′
2], [v′

2v2], [v2v3]) α ([v1v′′
2 ], [v′′

2 v′
2], [v′

2v3])

=α ([v1v′′
2 ], [v′′

2 v′
2], [v′

2v2]) α ([v1v′′
2 ], [v′′

2 v2], [v2v3])

α ([v′′
2 v′

2], [v′
2v2], [v2v3]) (B9)

α ([v1v′′
2 ], [v′′

2 v′
2], [v′

2v4])
−1

α ([v′′
1 v′

2], [v′
2v2], [v2v4])

−1

=α ([v1v′′
2 ], [v′′

2 v′
2], [v′

2v2])
−1

α ([v1v′′
2 ], [v′′

2 v2], [v2v4])
−1

α ([v′′
2 v′

2], [v′
2v2], [v2v4])

−1
(B10)

α ([v′
2v2], [v2v3], [v3v4])

−1
α ([v′′

2 v′
2], [v′

2v3], [v3v4])
−1

=α ([v′′
2 v′

2], [v′
2v2], [v2v3])

−1
α ([v′′

2 v′
2], [v′

2v2], [v2v4])

α ([v′′
2 v2], [v2v3], [v3v4]) (B11)

we obtain

α ([v1v′′
2 ], [v′′

2 v2], [v2v3]) α ([v1v′′
2 ], [v′′

2 v2], [v2v4])
−1

α ([v′′
2 v2], [v2v3], [v3v4])

∣∣∣∣∣
v1 v3

v′′
2

v4 〉
(B12)

According to the chain rule in Eq. (10), we have
[v′′

2 v2] = [v′′
2 v′

2] · [v′
2v2]. The above action is identified

as action of Ag·h
v2

. Therefore we conclude that

Ag
v′ A

h
v = Ag·h

v

Though the above proof is done on a triangle plaquette,
the general proof on a plaquette of any other shape is
straightforward.

Appendix C: Mutations are Unitary Symmetry

transformations

1. Symmetry

When restricted to ground states in H0
Γ ⊂ HBf =1

Γ , we
can impose the following chain rule on all triangles in Γ:

[vivj ] = [vivj ] · [vjvk], (C1)

where vi, vj , and vk are the three vertices of any triangle.
Since the mutation operators are defined on the subspace

HBf =1
Γ for all Γ, to show that TiPΓ = PΓ′Ti, where Γ′ =

Ti(Γ), we can neglect the face operators in the projectors
PΓ and PΓ′ defined in Eq. (16). We thus need to show
that

Ti

∏

v∈Γ

Av =
∏

v∈Γ′

AvTi (C2)

holds for all mutation operators Ti, i = 1, 2, 3, and any

state in HBf =1
Γ on any graph Γ. Since a Ti acts on at

most four three triangles and does not affect any other
triangle in the same graph, Ti certainly commutes with
any Av at any vertex v that does not lie on the bound-
ary of the triangles on which the Ti acts. Hence, in Eq.
(C2) we can neglect the part of Γ out of the scope of the
action of Ti and hence the Av acting on this part. We
now pursue the proof in the following equations respec-
tively for T1, T2, and T3. In the sequel, [ijk] denotes a
triangle whose vertices are i, j, and k counter–clockwise,
and “· · · ” represents all the irrelevant factors, which are
thus omitted.

T1([1′2′4′], [2′3′4′])

4∏

i=1

Ai

∣∣∣∣∣ 1

2

3

4 〉

=
1

|G|4
∑

[1′1],[2′2],
[3′3],[4′4]∈G

· · · α ([1′1], [12], [24])

× α ([1′2′], [2′2], [24])
−1

α ([2′2], [23], [34])

× α ([2′3′], [3′3], [34])
−1

α ([1′2′], [2′4′], [4′4])

× α ([2′3′], [3′4′], [4′4]) T1

∣∣∣∣∣ 1′

2′

3′

4′ 〉

=
1

|G|4
∑

[1′3′],[1′1],[2′2],
[3′3],[4′4]∈G

· · · α ([1′1], [12], [24])

× α ([1′2′], [2′2], [24])
−1

α ([2′2], [23], [34])

× α ([2′3′], [3′3], [34])
−1

α ([1′2′], [2′4′], [4′4])

× α ([2′3′], [3′4′], [4′4]) α ([1′2′], [2′3′], [3′4′])

×
∣∣∣∣∣ 1′

2′

3′

4′ 〉
(C3)

4∏

i=1

AiT1([124], [234])

∣∣∣∣∣ 1

2

3

4 〉

=
∑

[13]∈G

α ([12], [23], [34])

4∏

i=1

Ai

∣∣∣∣∣ 1

2

3

4 〉

=
1

|G|4
∑

[13],[1′1],[2′2],
[3′3],[4′4]∈G

· · · α ([1′1], [12], [23])

× α ([1′1], [13], [34]) α ([1′2′], [2′2], [23])
−1

× α ([1′2′], [2′3′], [3′3]) α ([1′3′], [3′3], [34])
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× α ([1′3′], [3′4′], [4′4]) α ([12], [23], [34])

×
∣∣∣∣∣ 1′

2′

3′

4′ 〉
(C4)

It is straightforward to show that the RHS of Eq.
(C3) is equal to that of Eq. (C4) by knowing that∑

[1′1],[13],[3′3] =
∑

[1′1],[1′3′],[3′3] because of the chain

rules [1′1] · [13] = [1′3] and [1′3′] · [3′3] = [1′3], and by
applying the following four 3–cocycle conditions in order.

α ([1′2′], [2′4′], [4′4]) α ([2′3′], [3′4′], [4′4]) = α ([1′3′], [3′4′], [4′4]) α ([1′2′], [2′3′], [3′4]) α ([1′2′], [2′3′], [3′4′])
−1

,

α ([1′1], [12], [24]) = α ([12], [23], [34]) α ([1′2], [23], [34])
−1

α ([1′1], [13], [34]) α ([1′1], [12], [23]) ,

α ([2′2], [23], [34]) α ([1′2], [23], [34])
−1

= α ([1′2′], [2′3], [34])
−1

α ([1′2′], [2′2], [24]) α ([1′2′], [2′2], [23]) ,

α ([2′3′], [3′3], [34])
−1

α ([1′2′], [2′3′], [3′4]) α ([1′2′], [2′3], [34])
−1

= α ([1′3′], [3′3], [34])
−1

α ([1′2′], [2′3′], [3′3]) .

Thus, Eq. (C2) holds for T1.
The case of T2 is a bit trickier. Let us write down how

the LHS and RHS of Eq. (C2) act on a state as follows.

T2([2′3′4′])

3∏

i=1

Ai

∣∣∣∣∣
2 3

4 〉

=
1

|G|3
∑

[2′2],[3′3],

[4′4]∈G

α ([2′2], [23], [34]) α ([2′3′], [3′3], [34])
−1

α ([2′3′], [3′4′], [4′4]) T2

∣∣∣∣∣
2′ 3′

4′ 〉

=
1

|G|3
∑

[2′2],[3′3],[4′4],
[12′],[13′],[14′]∈G

α ([2′2], [23], [34]) α ([2′3′], [3′3], [34])
−1

× α ([2′3′], [3′4′], [4′4]) α ([12′], [2′3′], [3′4′])

∣∣∣∣∣
2′ 3′

1

4′ 〉
(C5)

3∏

i=1

AiT2([234])

∣∣∣∣∣
2 3

4 〉
=

∑

[12],[13],
[14]∈G

α ([12], [23], [34])
−1

4∏

i=1

Ai

∣∣∣∣∣
2 3

1

4 〉

=
1

|G|4
∑

[12],[13],[14],[1′1],
[2′2],[3′3],[4′4]∈G

α ([12], [23], [34]) α ([1′1], [13], [34]) α ([1′1], [12], [24])
−1

α ([1′1], [12], [23])

× α ([1′2′], [2′2], [23])
−1

α ([1′2′], [2′2], [24]) α ([1′2′], [2′3′], [3′3])

× α ([1′3′], [3′3], [34])
−1

α ([1′2′], [2′4′], [4′4])
−1

α ([1′3′], [3′4], [44])

∣∣∣∣∣
2′ 3′

1′

4′ 〉

=
1

|G|3
∑

[2′2],[3′3],[4′4],
[1′2′],[1′3′],[1′4′]∈G

α ([2′2], [23], [34]) α ([2′3′], [3′3], [34])
−1
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× α ([2′3′], [3′4′], [4′4]) α ([1′2′], [2′3′], [3′4′])

∣∣∣∣∣
2′ 3′

1′

4′ 〉
, (C6)

where the last equality is obtained by first plugging into
the second row the following four 3–cocycle conditions

α([1′1],[13],[34])α([1′1],[12],[23])
α([1′1],[12],[24]) =

α([1′2],[23],[34])
α([12],[23],[34])

α([1′2′],[2′2],[24])
α([1′2′],[2′2],[23]) =

α([2′2],[23],[34])α([1′2′],[2′3],[34])
α([1′2],[23],[34])

α([1′2′],[2′3′],[3′3])
α([1′3′],[3′3],[34]) =

α([1′2′],[2′3′],[3′4])
α([1′2′],[2′3],[34])α([2′3′],[3′3],[34])

α([1′3′],[3′4′],[4′4])
α([1′2′],[2′4′],[4′4]) =

α([2′3′],[3′4′],[4′4])α([1′2′],[2′3′],[3′4′])
α([1′2′],[2′3′],[3′4]) ,

and then by applying to the summations these chain
rules:

[1′1] · [12] · [2′2]−1 = [1′2′],

[1′1] · [13] · [3′3]−1 = [1′3′],

[1′1] · [14] · [4′4]−1 = [1′4′],

which are guaranteed by the restriction of Bf = 1 and the
properties of the vertex operators Ai. The summations
over [2′2], [3′3], and [4′4] can be replaced by those over
[1′2′], [1′3′], and [1′4′] respectively. Since [1′1] does not
appear in the 3–cocycles any more,

∑
[1′1] contributes a

factor a |G|. Clearly, the vertex enumerated by 1′ on the
RHS of the last equality of Eq. (C6) is now dummy and
thus can be re–enumerated by 1 without altering its order
relative the enumerations of the other three vertices. As
such, we can see that the RHS of Eq. (C6) and that of
Eq. (C5) are actually identical. That is, Eq. (C2) is true
for T2.

When it comes to the case of T3, we have the action of
the LHS and that of the RHS of Eq. (C2) on the same
state respectively being

T3([1′2′3′4′])

4∏

i=1

Ai

∣∣∣∣∣
1 3

2

4 〉

=
1

|G|4
∑

[1′1],[2′2],

[3′3],[4′4]∈G

· · · α ([1′1], [12], [24]) α ([1′1], [12], [23])
−1

α ([1′2′], [2′2], [23])

× α ([1′2′], [2′2], [24])
−1

α ([2′2], [23], [34]) α ([1′2′], [2′3′], [3′3])
−1

× α ([2′3′], [3′3], [34])
−1

α ([1′2′], [2′4′], [4′4]) α ([2′3′], [3′4′], [4′4]) T3

∣∣∣∣∣
1′ 3′

2′

4′ 〉

=
1

|G|4
∑

[1′1],[2′2],

[3′3],[4′4]∈G

· · · α ([1′1], [12], [24]) α ([1′1], [12], [23])
−1

α ([1′2′], [2′2], [23]) α ([1′2′], [2′2], [24])
−1

× α ([2′2], [23], [34]) α ([1′2′], [2′3′], [3′3])
−1

α ([2′3′], [3′3], [34])
−1

× α ([1′2′], [2′4′], [4′4]) α ([2′3′], [3′4′], [4′4]) α ([1′2′], [2′3′], [3′4′])

∣∣∣∣∣
1′ 3′

4′ 〉
, (C7)
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3∏

i=1

AiT3([1234])

∣∣∣∣∣
1 3

2

4 〉
= α ([12], [23], [34])

3∏

i=1

Ai

∣∣∣∣∣
1 3

4 〉

=
1

|G|3 α ([12], [23], [34])
∑

[1′1],[3′3],

[4′4]∈G

α ([1′1], [13], [34]) α ([1′3′], [3′3], [34])
−1

α ([1′3′], [3′4′], [4′4])

∣∣∣∣∣
1′ 3′

4′ 〉
.

(C8)

The RHS of Eq. (C7) and that of Eq. (C8) can be
identified by applying the four 3–cocycle conditions to

the corresponding 3–cocycles in Eq. (C7).

α ([1′1], [12], [24]) α ([1′1], [12], [23])
−1

= α ([12], [23], [34]) α ([1′1], [13], [34]) α ([1′2], [23], [34])
−1

α ([1′2′], [2′2], [23]) α ([1′2′], [2′2], [24])
−1

α ([2′2], [23], [34]) = α ([1′2], [23], [34]) α ([1′2′], [2′3], [34])
−1

α ([1′2′], [2′3′], [3′3])
−1

α ([2′3′], [3′3], [34])
−1

= α ([1′3′], [3′3], [34])
−1

α ([1′2′], [2′3], [34]) α ([1′2′], [2′3′], [3′4])
−1

α ([2′3′], [3′4′], [4′4]) α ([1′2′], [2′4′], [4′4]) = α ([1′3′], [3′4′], [4′4]) α ([1′2′], [2′3′], [3′4]) α ([1′2′], [2′3′], [3′4′])
−1

.

(C9)

These 3–cocycle conditions render the 3–cocycles resulted
independent of the

∑
[2′2] in Eq. (C7), which then con-

tributes a factor of |G|. Therefore, we conclude that Eq.
(C2) holds for all mutation operators and any state in

HBf =1
Γ , which means that the mutation operators pre-

serve the space of ground states.

2. Unitarity

Now we need to show that all mutation transforma-
tions are unitary, i.e., they satisfy Eq. (24). It is suffi-
cient to show all generators T1, T2, and T3 are unitary.
We show them respectively in the following.

We first demonstrate that T1 is unitary not only on
the ground states but also so over the entire subspace
HBf =1. Let us consider the action of T 2

1 on a generic
basis state as follows, in which only the relevant part of
the graph is shown.

T 2
1

∣∣∣∣∣
v1

v2

v3

v4 〉

=
∑

[v1v3]∈G

α ([v1v2], [v2v3], [v3v4]) T1

∣∣∣∣∣
v1

v2

v3

v4 〉

=
∑

[v1v3]∈G

∑

[v2v4]′∈G

α ([v1v2], [v2v3], [v3v4])

× α ([v1v2], [v2v3], [v3v4])−1

∣∣∣∣∣
v1

v2

v3

v4 〉

=
∑

[v1v3]∈G

∑

[v2v4]′∈G

δ[v2v4]′,[v2v4]

∣∣∣∣∣
v1

v2

v3

v4 〉

=
∑

[v1v3]∈G

∣∣∣∣∣
v1

v2

v3

v4 〉

=

∣∣∣∣∣
v1

v2

v3

v4 〉
,

which deserves some explanation. In the second equality,
the action of T1 on two triangles sharing a horizontal
edge is understood from rotating by π/2 either way the
action of T1 on two triangles with a vertical common
edge as in the first equality because there is a global
rotation symmetry on the graph. The inverse 3–cocycle
α−1 follows the rule described below Eq. (21). The group
element [v2v4]′ that is summed over in the second equality
is brought by the action of the second T1, as the edge
[v2v4] in the second equality is a new edge relative to
the [v2v4] on the LHS of the equation, despite the same
end vertices, and thus should be graced with a different
group element [v2v4]′, which is however constrained by
Bf = 1 on the four triangles to be equal to [v2v4]. The
last equality is also due to the restriction to the subspace
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HBf =1. As a result, T1 = T −1
1 , such that we can define

that T †
1 = T1 and infer that T1 is unitary over the entire

HBf =1.
Next, we show that T3T2 = 1 on the entire subspace

HBf =1. We consider the action of T3T2 on a generic
basis state as follows, in which only the relevant part of
the graph is shown.

T3T2

∣∣∣∣∣
v1 v2

v3 〉

=
∑

[v1q],[v2q],
[v3q]∈G

α ([qv1], [v1v2], [v2v3]) T3

∣∣∣∣∣
v1 v2

q

v3 〉

=
∑

[v1q],[v2q],[v3q]∈G

α ([qv1], [v1v2], [v2v3])

× α ([qv1], [v1v2], [v2v3])
−1

∣∣∣∣∣
v1 v2

v3 〉

=

∣∣∣∣∣
v1 v2

v3 〉
,

where the inverse 3–cocycle α−1 follows from the rule
introduced below Eq. (23). At this point, one may think
that T3 is the inverse of T2 on HBf =1. But this is not true
because T2T3 6= 1 in general. Nevertheless, fortunately,
as we now show, T2T3 = 1 on the ground states H0.

Since T2T3P 0 = T2P 0T3 = P 0T2T3 on H0, we have

T2T3P 0(1, 2, 3, 4)

∣∣∣∣∣
1 3

2

4 〉

=T2P 0(1, 2, 3, 4)T3

∣∣∣∣∣
1 3

2

4 〉

=α ([12], [23], [34]) T2P 0(1, 2, 3)

∣∣∣∣∣
1 3

4 〉

=α ([12], [23], [34]) P 0(1, 2, 3)T2

∣∣∣∣∣
1 3

4 〉

=P 0(1, 2, 3)
∑

[12′],[2′3],
[2′4]∈G

α ([12], [23], [34])

×α ([12′], [2′3], [34])
−1

∣∣∣∣∣
1 3

2′

4 〉

=P 0(1, 2, 3)
∑

[12′],[2′3],
[2′4]∈G

α ([12′], [2′2], [23])

×α ([2′2], [23], [34]) α ([12′], [2′2], [24])
−1

∣∣∣∣∣
1 3

2′

4 〉

=P 0(1, 2, 3)
1

|G|
∑

[2′2]∈G

α ([12′], [2′2], [23])

×α ([2′2], [23], [34]) α ([12′], [2′2], [24])
−1

∣∣∣∣∣
1 3

2′

4 〉

=P 0(1, 2, 3)A2

∣∣∣∣∣
1 3

2

4 〉

=P 0(1, 2, 3, 4)

∣∣∣∣∣
1 3

2

4 〉
, (C10)

where P 0(1, 2, 3) and P 0(1, 2, 3, 4) are projectors acting
on the vertices of the corresponding basis graph. The
fifth equality in the equation above is obtained by apply-
ing to the two 3–cocycles in the fourth row the following
3–cocycle condition.

α ([12], [23], [34])

α ([12′], [2′3], [34])
=

α ([12′], [2′2], [23]) α ([2′2], [23], [34])

α ([12′], [2′2], [24])
.

We now explain why this 3–cocycle condition is applica-
ble. The action of T3 on the basis graph in the first row of
Eq. (C10) followed by an action of T2 on the resulted ba-
sis vector in the third row of the equation can be viewed
(see Fig. 9 and assume the line [2′2] nonexisting for the
moment) as if the original tetrahedron [1234] is first flat-
tened to be the triangle [134] and then lifted again to a
new tetrahedron [12′34]. These two tetrahedra share a
face, i.e., the triangle [134], so there are seven triangles
all told.The restriction to the subspace HBf =1 imposes
a chain rule of the three group elements on each of the
seven triangles, such that the following identities on the
group elements hold.

[2′1] · [12] = [2′3] · [32],

[2′3] · [32] = [2′4] · [42],

[2′4] · [42] = [2′1] · [12].

This enables one to add the line [2′2] and assign [2′2] =
[2′1] · [12] = [2′3] · [32] = [2′4] · [42]. Hence there are
now five tetrahedra in Fig. 9 with Bf = 1 on any of the
ten triangles, justifying the 3–cocycle condition above.
Furthermore, [2′2] determines [12′], [2′3] and [2′4], the
summation in the fifth equality in Eq. (9) can be replaced
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by
∑

[2′2] /|G|, where the factor of 1/|G| arises because

[2′2] ∈ G is a new element to be summed over.

1

2

4

3

2′

FIG. 9: The topology of the action of T2T3.

We infer from Eq. (9) that T2T3 = 1 on the ground
states, which together with T3T2 = 1 on HBf =1, implies

that T2 = T †
3 and T3 = T †

2 on H0. That is, T2 and T3 are
unitary on the ground states.

An interesting byproduct of this proof is that on the
subspace HBf =1,

T2T3 = Av, (C11)

where v is the vertex annihilated by the action of T3.

Appendix D: Ground state operators

We prove Eq. (31) in this appendix. We start with
the coefficient in Eq. (28), which can be expressed by
Ix(a, b)/Ix(b, a), where Ix(a, b) is

Ix(a, b) = α(a, bx−1, x)α(bx−1, x, ax−1)α(x, ax−1, xbx−1).
(D1)

We use the 3–cocycle condition (3) together with
the normalization condition (4) to rewrite the three 3–
cocycles above. By

δα(a, b, x−1, x) = 1

δα(b, x−1, x, ax−1) = 1

δα(x, x−1, xax−1, xbx−1) = 1

δα(x−1, x, x−1, xax−1) = 1

and have

α(a, bx−1, x) =
α(ab, x−1, x)

α(b, x−1, x)α(a, b, x−1)

α(bx−1, x, ax−1) =
α(x−1, x, ax−1)α(b, x−1, x)

α(b, x−1, xax−1)

α(x, ax−1, xbx−1) =

1

α(x−1, xax−1, xbx−1)α(x, x−1, xax−1)

α(x−1, x, ax−1) = α(x, x−1, xax−1)α(x−1, x, x−1)

These four identities leads to

Ix(a, b) =

α(ab, x−1, x)α(x−1, x, x−1)

α(a, b, x−1)α(b, x−1, xax−1)α(x−1, xax−1, xbx−1)
(D2)

Using ab = ba, We evaluate Ix(a, b)/Ix(b, a) directly and
arrive at Eq. (31).

Appendix E: Modular Transformations

Here we show how we construct the modular transfor-
mation operators Sx and T x.

Sx :

∣∣∣∣∣
1

2

3

4 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

∣∣∣∣∣
1

2

3

2′ 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([2′4′], [4′1], [13])
−1

∣∣∣∣∣
1

2

4′

2′ 〉

7→ α ([2′1], [13], [34])

α ([2′1], [12], [24]) α ([2′4′], [4′1], [13])

×α ([1′2′], [2′1], [12])
−1

∣∣∣∣∣
1

1′

4′

2′ 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([2′4′], [4′1], [13])
−1

α ([1′2′], [2′1], [12])
−1

×α ([2′3′], [3′4′], [4′1])

α ([1′2′], [2′3′], [3′1])

∣∣∣∣∣
3′

1′

4′

2′ 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([2′4′], [4′1], [13])
−1

α ([1′2′], [2′1], [12])
−1

×α ([2′3′], [3′4′], [4′1]) α ([1′2′], [2′3′], [3′1])
−1

×α ([1′2′], [2′3′], [3′4′])

∣∣∣∣∣
3′

1′

4′

2′ 〉
(E1)
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T x :

∣∣∣∣∣
1

2

3

4 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

∣∣∣∣∣
1

2

3

2′ 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([3′′2′], [2′1], [13])

∣∣∣∣∣
1

2

3′′

2′ 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([3′′2′], [2′1], [13])

α ([4′′2′], [2′1], [12])

∣∣∣∣∣
1

4′′

3′′

2′ 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([3′′2′], [2′1], [13]) α ([4′′2′], [2′1], [12])
−1

×α ([1′′3′′], [3′′2′], [2′1])

α ([1′′4′′], [4′′2′], [2′1])

∣∣∣∣∣
1′′

4′′

3′′

2′ 〉

7→α ([2′1], [13], [34]) α ([2′1], [12], [24])
−1

×α ([3′′2′], [2′1], [13]) α ([4′′2′], [2′1], [12])
−1

×α ([1′′3′′], [3′′2′], [2′1]) α ([1′′4′′], [4′′2′], [2′1])
−1

×α ([1′′3′′], [3′′4′′], [4′′2′])

∣∣∣∣∣
1′′

4′′

3′′

2′ 〉
(E2)

Appendix F: Solutions for S and T matrices

1. Projective Characters.

The centralizer subgroups Zg are isomorphic for all el-
ements g of the conjugacy class CA. Therefore the corre-
sponding projective representations are also isomorphic.
Given the representation ρ̃g

µ for a fixed g ∈ CA, we con-

struct ρ̃xgx−1

µ as follows. For all x ∈ G, the elements

xhx−1 runs over all elements in xZgx−1 while h runs
over all elements in Zg. We can define a projective repre-

sentation ρ̃xgx−1

µ of xZgx−1 from a given representation
ρ̃g

µ of Zg, by

ρ̃xgx−1

µ (xhx−1) =
βg(x−1, xhx−1)

βg(h, x−1)
ρ̃g

µ(h) (F1)

We verify that ρ̃xgx−1

µ is indeed a βxgx−1 represen-
tation. We check the the multiplication rule for all
h1, h2 ∈ Zg

ρ̃xgx−1

µ (xh1x−1)ρ̃xgx−1

µ (xh2x−1)

=
βg(x−1, xh1x−1)

βg(h1, x−1)

βg(x−1, xh2x−1)

βg(h2, x−1)
ρ̃g

µ(h1)ρ̃g
µ(h2)

=
βg(x−1, xh1x−1)

βg(h1, x−1)

βg(x−1, xh2x−1)

βg(h2, x−1)
βg(h1, h2)ρ̃g

µ(h1h2)

=
βg(x−1, xh1x−1)

βg(h1, x−1)

βg(x−1, xh2x−1)

βg(h2, x−1)
βg(h1, h2)

×
[

βg(x−1, xh1h2x−1)

βg(h1h2, x−1)

]−1

ρ̃xgx−1

µ (xh1h2x−1)

=
ηg(h1, x)ηg(h2, x)

ηg(h1h2, x)
βg(h1, h2)ρ̃xgx−1

µ (xh1h2x−1)

=βxgx−1(xh1x−1, xh2x−1)ρ̃xgx−1

µ (xh1h2x−1) (F2)

where the last equality is obtained by using the following
relation:

ηg(h1, x)ηg(h2, x)

ηg(h1h2, x)
=

βxgx−1(xh1x−1, xh2x−1)

βg(h1, h2)
(F3)

which can be verified by directly applying the

twisted 2–cocycle conditions δ̃βg = 1 in (38) suc-
cessively to the triples (h1, h2, x−1), (h1, x−1, xh2x−1),
(x−1, xh1x−1, xh2x−1) and make the corresponding sub-
stitutions.

An immediate consequence of the above isomorphism
is the relation between the projective characters,

χ̃xgx−1

µ (xhx−1) = ηg(h, x)χ̃g
µ(h), (F4)

which is the very Eq. (49). This relation leads to the
following proposition.

Proposition 1 If h ∈ Zg is not βg–regular, χ̃g
µ(h) = 0.

Proof. The proof is straightforward. If h ∈ Zg is not βg–
regular, there must exist k ∈ Zg,h, such that βg(h, k) 6=
βg(k, h). By setting x = k−1 in Eq. (F4) we have

χ̃g
µ(h) =

βg(k, h)

βg(h, k)
χ̃g

µ(h) =⇒ χ̃g
µ(h) = 0.

2. Some Proofs

We prove the equalities in Eq. (65) in particular the
last one as follows. We first write down the action of
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T |A, µ〉 explicitly.

T |A, µ〉 =T eP 0|A, µ〉 = T e|A, µ〉

=
1

|G|
∑

g∈CA,h∈Zg

r(ZA,β
gA )∑

ν=1

×χ̃g
µ(h)α(g−1h−1, g, h)α(g−1h−1, h, g)−1

×α(h, g−1h−1, g)α(g, g−1h−1, h)−1

×α(g, h, g−1h−1)α(h, g, g−1h−1)−1

×α(g, hg−1, g)χ̃g
ν(g−1h−1)|A, ν〉,

where the inverse transformation in Eq. (66) is used.
Note that g must belong to precisely one conjugacy class,
so in the equation above the classes CA and CB are
identified. Knowing this, we rewrite the action of T in
the equation above by grouping the 3–cocycles into the
twisted 2–cocycles.

T |A, µ〉

=
1

|G|
∑

g∈CA

h∈Zg

r(ZA,β
gA )∑

ν=1

βg(g, g−1h)χ̃g
µ(h)χ̃g

ν(g−1h)

× βg(h, g−1h−1)

βg(g−1h−1, h)

βg(g−1h, gh)

βg(gh, g−1h)
|A, ν〉 (F5)

=
1

|G|
∑

g∈CA

h∈Zg

r(ZA,β
gA )∑

ν=1

βg(g, g−1h)χ̃g
µ(h)χ̃g

ν(g−1h)

× [ηg(h, gh)ηg(g−1h, g−1h−1)]−1|A, ν〉

=
1

|G|
∑

g∈CA

h∈Zg

r(ZA,β
gA )∑

ν=1

βg(g, g−1h)χ̃g
µ(h)χ̃g

ν(g−1h)|A, ν〉

where in the last step use is made of Eq. (49) to absorb
the two ηg terms into the projective characters χ̃g

µ and
χ̃g

ν .
Because Eq. (69) says that ρ̃g

µ(g) is a multiple of the
identity matrix, we have

βg(g, g−1h)χ̃g
µ(h) = tr

[
βg(g, g−1h)ρ̃g

µ(h)
]

= tr[ρ̃g
µ(g)ρ̃g

µ(g−1h)]

= tr[
χ̃gA

µ (gA)

dimµ
1ρ̃g

µ(g−1h)]

=
χ̃gA

µ (gA)

dimµ
χ̃g

µ(g−1h).

Clearly,
∑

h =
∑

g−1h, together with the orthogonality

condition in Eq. (50), the summation evaluates to

T |A, µ〉 =
χ̃gA

µ (gA)

dimµ
|A, µ〉, (F6)

confirming Eq. (65).
In the sequel, we derive the S–matrix in Eq. (63). We

first act the S operator on a generic eigenvector |B, ν〉 of
the T operator.

S|B, ν〉 =SeP 0|B, ν〉 = Se|B, ν〉

=
1√
|G|

∑

g′∈CB,h′∈Zg′

χ̃g′

ν (h′)

×α(g′−1h′−1, g′, h′)α(g′−1h′−1, h′, g′)−1

×α(h′−1, g′−1, g′)−1α(g′, g′−1h′−1, h′)−1

×α(g′−1h′−1, g′, g′−1)α(g′−1, g−1h−1, e)−1

×α(g′, g′−1h′−1, g′)|h′−1, g′〉.

Notice that in the equation above, the first two
and the fourth α terms define a twisted 2–cocycle
βg′(g′−1h′−1, h′)−1 the sixth α equals 1 as it is normal-
ized, and by the 3–cocycle condition the fifth and seventh
α terms are equal to α(h′−1, g′, g′−1)α(g′, g′−1h′−1, g′)−1,
which together with the third α term, define another
twisted 2–cocycle βg′(h′−1, g′−1)−1. As such, the above
equation becomes

S|B, ν〉 =
1√
|G|

∑

g′∈CB,h′∈Zg′

χ̃g′

ν (h′)

×βg′(g′−1h′−1, h′)−1βg′(h′−1, g′−1)−1|h′−1, g′〉

=
1√
|G|

∑

g′∈CB,h′∈Zg′

χ̃g′

ν (h′−1)βg′(h′−1, h′)

×βg′(g′−1h′−1, h′)−1βg′(h′−1, g′−1)−1|h′−1, g′〉

=
1√
|G|

∑

g′∈CB,h′∈Zg′

χ̃g′

ν (h′−1)|h′−1, g′〉,

where the second equality and third equality are respec-
tively the results of the following two identities.

ρ̃g′

ν (h′)ρ̃g′

ν (h′−1) = βg′(h′−1, h′)1

⇔ ρ̃g′

ν (h′) =
[
ρ̃g′

ν (h′−1)
]†

βg′(h′−1, h′)

⇔ χ̃g′

ν (h′) = χ̃g′

ν (h′−1)βg′(h′−1, h′),

which is due to the unitarity of the projective represen-
tation ρ̃.

βg′(h′−1, h′)βg′(g′−1, e)

βg′(g′−1h′−1, h′)βg′ (g′−1, h′−1)
= 1

⇐⇒ βg′(h′−1, h′)

βg′(g′−1h′−1, h′)βg′ (h′−1, g′−1)
= 1,

which is a consequence of the (twisted) 2–cocycle con-
dition, the normalization of βg′ , and the fact that
βg′(g′−1, h′−1) = βg′(h′−1, g′−1) because h′−1 must be

βg′–regular otherwise χ̃g′

ν (h′−1) vanishes.
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As such, the S–matrix reads

s(Aµ)(Bν)

= 〈A, µ| S|B, ν〉

=
1

|G|
∑

g∈CA

h∈Zg

∑

g′∈CB

h′∈Zg′

χ̃g
µ(h)χ̃g′

ν (h′−1)〈g, h|h′−1, g′〉

=
1

|G|
∑

g∈CA

h∈Zg

∑

h∈CB

g∈Zh

χ̃g
µ(h)χ̃h

ν (g),

where 〈g, h|h′−1, g′〉 = δh′−1,gδg′,h is understood. This
proves Eq. (63).



37

∗ Electronic address: yuting@physics.utah.edu
† Electronic address: ywan@meso.t.u-tokyo.ac.jp
‡ Electronic address: wu@physics.utah.edu
1 X. Wen, Physical Review B 40, 7387 (1989), ISSN

0163-1829, URL http://link.aps.org/doi/10.1103/

PhysRevB.40.7387.
2 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Physical Re-

view Letters 48, 1559 (1982), ISSN 0031-9007, URL http:

//link.aps.org/doi/10.1103/PhysRevLett.48.1559.
3 R. B. Laughlin, Physical Review Letters 50, 1395

(1983), ISSN 0031-9007, URL http://link.aps.org/doi/

10.1103/PhysRevLett.50.1395.
4 N. Read and S. Sachdev, Physical Review Letters 66, 1773

(1991), ISSN 0031-9007, URL http://link.aps.org/doi/

10.1103/PhysRevLett.66.1773.
5 X. Wen, Physical Review B 44, 2664 (1991), ISSN

0163-1829, URL http://link.aps.org/doi/10.1103/

PhysRevB.44.2664.
6 R. Moessner and S. L. Sondhi, Physical Review Letters

86, 1881 (2001), ISSN 0031-9007, URL http://link.aps.

org/doi/10.1103/PhysRevLett.86.1881.
7 V. Kalmeyer and R. Laughlin, Physical Review Letters

59, 2095 (1987), ISSN 0031-9007, URL http://link.aps.

org/doi/10.1103/PhysRevLett.59.2095.
8 X. Wen, F. Wilczek, and A. Zee, Physical Review B 39,

11413 (1989), ISSN 0163-1829, URL http://link.aps.

org/doi/10.1103/PhysRevB.39.11413.
9 N. Read and D. Green, Physical Review B 61, 10267

(2000), ISSN 1098-0121, URL http://link.aps.org/doi/

10.1103/PhysRevB.61.10267.
10 V. Gurarie and L. Radzihovsky, Physical Review B 75

(2007), ISSN 1098-0121, URL http://link.aps.org/doi/

10.1103/PhysRevB.75.212509.
11 M. Levin and X.-G. Wen, Physical Review B

71, 21 (2005), ISSN 1098-0121, 0404617, URL
http://arxiv.org/abs/cond-mat/0404617http:

//link.aps.org/doi/10.1103/PhysRevB.71.045110.
12 Z.-C. Gu and X.-G. Wen, Physical Review B 80 (2009),

ISSN 1098-0121, URL http://link.aps.org/doi/10.

1103/PhysRevB.80.155131.
13 F. Pollmann, E. Berg, A. Turner, and M. Oshikawa,

Physical Review B 85, 075125 (2012), ISSN 1098-0121,
URL http://link.aps.org/doi/10.1103/PhysRevB.85.

075125.
14 F. Haldane, Physics Letters A 93, 464 (1983),

ISSN 03759601, URL http://linkinghub.elsevier.com/

retrieve/pii/037596018390631X.
15 C. L. Kane and E. J. Mele, Physical Review Letters 95

(2005), ISSN 0031-9007, URL http://link.aps.org/doi/

10.1103/PhysRevLett.95.226801.
16 C. L. Kane and E. J. Mele, Physical Review Letters 95

(2005), ISSN 0031-9007, URL http://link.aps.org/doi/

10.1103/PhysRevLett.95.146802.
17 B. A. Bernevig and S.-C. Zhang, Physical Review Letters

96 (2006), ISSN 0031-9007, URL http://link.aps.org/

doi/10.1103/PhysRevLett.96.106802.
18 J. Moore and L. Balents, Physical Review B 75 (2007),

ISSN 1098-0121, URL http://link.aps.org/doi/10.

1103/PhysRevB.75.121306.
19 L. Fu, C. Kane, and E. Mele, Physical Review Letters 98

(2007), ISSN 0031-9007, URL http://link.aps.org/doi/

10.1103/PhysRevLett.98.106803.
20 X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Physical Re-

view B 78 (2008), ISSN 1098-0121, URL http://link.

aps.org/doi/10.1103/PhysRevB.78.195424.
21 Z.-C. Gu and X.-G. Wen, p. 49 (2012), 1201.2648, URL

http://arxiv.org/abs/1201.2648.
22 L.-y. Hung and Y. Wan, p. 15 (2012), 1207.6169, URL

http://arxiv.org/abs/1207.6169.
23 X. Chen, Z.-X. Liu, and X.-G. Wen, Physical Re-

view B 84, 53 (2011), ISSN 1098-0121, 1106.4772,
URL http://arxiv.org/abs/1106.4772http:

//link.aps.org/doi/10.1103/PhysRevB.84.235141.
24 X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, p. 53 (2011),

1106.4772, URL http://arxiv.org/abs/1106.4772.
25 Y.-M. Lu and A. Vishwanath, Physical Review B 86,

125119 (2012), ISSN 1098-0121, URL http://link.aps.

org/doi/10.1103/PhysRevB.86.125119.
26 R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde, Com-

mun. Math. Phys. 526, 485 (1989), URL http://www.

springerlink.com/index/PX45XX07946635X7.pdf.
27 E. Dijkgraaf, Robbert and Witten, Communications in

Mathematical Physics 429, 393 (1990), URL http://www.

springerlink.com/index/hk5q214j25m457m2.pdf.
28 M. Propitius, Ph.D. thesis, University of Amsterdam

(1995), 9511195v1, URL http://arxiv.org/abs/hep-th/

9511195.
29 V. I. A. and Arnold and B. A. Khesin, Topological Methods

in Hydrodynamics (Springer, 1998), ISBN 978-0387949475.
30 A. Kitaev, Annals of Physics 303, 2 (2003), ISSN

00034916, URL http://linkinghub.elsevier.com/

retrieve/pii/S0003491602000180.
31 A. Kitaev, Annals of Physics 321, 2 (2006), ISSN

00034916, URL http://linkinghub.elsevier.com/

retrieve/pii/S0003491605002381.
32 U. Pachner, Arch. Math. 30, 89 (1978).
33 U. Pachner, Ahb. Math. Sem. Univ. Hamburg 57, 69

(1987).
34 A. Coste, T. Gannon, and P. Ruelle, Nuclear

Physics B 581, 679 (2000), ISSN 05503213, URL
http://linkinghub.elsevier.com/retrieve/pii/

S0550321300002856.
35 R. Dijkgraaf, V. Pasquier, and P. Roche, Nuclear

Physics B-Proceedings . . . pp. 60–72 (1991), URL
http://onlinelibrary.wiley.com/doi/10.1002/cbdv.

200490137/abstracthttp://www.sciencedirect.com/

science/article/pii/092056329190123V.
36 F. Bais, B. Schroers, and J. Slingerland, Physical Review

Letters 89, 181601 (2002), ISSN 0031-9007, URL http:

//link.aps.org/doi/10.1103/PhysRevLett.89.181601.
37 G. Moore and N. Seiberg, Communications in Mathemat-

ical Physics 123, 177 (1989), ISSN 00103616, URL http:

//www.springerlink.com/index/10.1007/BF01238857.
38 M. Wakui, Osaka J. Math. 29, 675 (1992).
39 L. Cincio and G. Vidal, p. 10 (2012), 1208.2623, URL

http://arxiv.org/abs/1208.2623.
40 Y. Hu, S. Stirling, and Y.-s. Wu, Physical Review B 85,

075107 (2012), arXiv:1105.5771v3, URL http://prb.aps.

org/abstract/PRB/v85/i7/e075107.
41 Z. Wang, Topological Quantum Computation (Ameri-

can Mathematical Society, 2010), 1st ed., ISBN 978-
0821849309.



38

42 V. G. Turaev, Quantum Invariants of Knots and 3-

manifolds (Walter de Gruyter, Berlin, 1994).
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